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Abstract

This paper presents an extension of the displacement-based design procedure for bridges supported on hysteretic isolation bearings
equivalent damping ratio, derived from the particular characteristics of bridges supported on lead rubber bearings (LRBs), is proposed
of the equivalent damping ratio that is obtained is similar to that of the hysteretic energy bearing dissipation, over the whole range o
displacement demands that is expected for this type of device. The proposed method emphasizes material strain control by means o
displacement of isolator bearings and the lateral displacement of the pier top. The response is obtained directly from the elastic dis
response spectrum and is applicable to regular bridges with rigid superstructures that can be idealized as a single degree of freedo
system. The proposed methodology improves the displacement prediction capability of thelinear equivalent model when it is applied to bridg
supported on LRB isolators, and low data scatter is obtained, especially for displacements. Pier displacements are slightly underest
base shears are overestimated, compared to inelastic time-history results.
c© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Recent earthquakes have demonstrated that designi
bridge according to current codes,for a life safety performance
does not assure acceptable structural behavior, even d
moderate ground motion [1]. Today it is widely recognized
that seismic design codes needto incorporate a performance
based design criterion [2,3], the main objective of which
is to ensure that the engineered facilities show satisfac
performance under moderate and extreme earthquake gr
motion, according to owners, users and society expectations
A major challenge is the development of rational and effect
procedures for analysing and designing structural syst
that are capable of predicting the structural response for
earthquake ground motions that are expected to occur du
the system life-cycle. Several simplified methods have be
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proposed for performance-based design: (a) strength-b
design, (b) displacement-based design, and (c) energy-b
design. A discussion about the characteristics and capabilitie
of each method can be found in [2,3].

A very simple but reliable conceptual framework called
direct displacement-based design has been proposed for achie
ing the performance-based design objective [3,4]. It is rec-
ognized that damage is well correlated to maximum mate
strain or plastic hinge rotation at the base of piers, which ar
parameters that can be associated with lateral pier top disp
ment [3,4]. Based on this, the procedure is focused on displ
ment, instead of force, as a performance or damage indic
Although the displacement quantifier is not able to capture th
loading path and accumulates over time, as the energy quantifie
does, it is receiving a lot of attention because it is simple, ef
tive and allows designers to evaluate the structural perform
for various earthquake intensities. Thus, analysis methods fo
predicting displacement demands are needed.

Typical earthquake protection systems for bridges
seismic isolators in association with passive energy dissipa
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i.e. elastomeric or sliding bearings with dampers or damp
mechanisms. Lead rubber bearings (LRBs) are the m
commonly used isolators [1], as they provide an economi
reliable and simple solution for protecting medium an
short span bridges. This paper presents an extensio
the displacement-based design procedure for bridges si
supported on hysteretic isolation bearings. The methodolog
applicable to bridges on LRBs, but it can be modified easily
other types of displacement-dependentdevices. An extension
the procedure for continuous bridges is also under preparation

2. Equivalent linearization method

The response spectrum provides some of the most impo
characteristics of earthquake motion and gives the maxim
elastic deformation for structures over the entire range
periods. However, it is not able to predict damage level
damage involves inelastic deformations. Of course, maxim
displacement demands can be obtained through time-histor
analysis, but in most practical cases linear response spec
uniform hazard elastic response spectra are used. Hence,
approximate methods have been proposed to overcome
difficulty. Some of them are based on equivalent lineariza
of the system by using an effective lateral stiffness
equivalent damping ratio. Equivalent linear models have b
incorporated in AASHTO [5], Eurocode 8 [6] and Japan
Road Association [7], among other specifications, for designi
bridges with passive energy dissipation systems.

If it is assumed that the behavior of an inelastic hyster
structure subjected to ground accelerationẍg can be describe
by a single degree of freedom (SDOF) system, then
maximum inelastic response is given as,

ẍ + 2ξi ωi ẋ + fs(x)

m
= −ẍg (1)

wherex is the mass displacement relative to the ground,ξi is
the damping ratio,ωi is the initial circular frequency,fs(x)

is the restoring force, andm is the mass of the system.
the equivalent linearization method, the maximum inelas
displacement demand(xeq) is approximated by,

ẍeq+ 2ξeqωef ẋeq + ω2
efxeq = −ẍg (2)

where ξeq is the equivalent viscous damping ratio andωef

is the effective circular frequency. The appropriate value
ξeq and ωef depend on the material hysteretic behaviour,
maximum displacement demand and the number of incurs
into the inelastic range, amongothers. The main differenc
between the existing equivalent linear methods is the wa
which ξeq andωef are determined. The expressions that h
been proposed for computing these parameters are bas
analytical formulations, empirical relations and/or express
derived from experimental tests.

As the existing equations for computingξeq and kef
may produce inaccurate displacement predictions [8,9], an
improved expression for bridges supported on LRB isolato
proposed in this paper. A full description of the most comm
existing methods for definingξeq and kef (secant stiffness
g
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equivalent damping from one cycle of periodic excitatio
Iwan’s model [10,11], Kowalsky’s model [4]) and some
comments about their effectiveness in the prediction of inela
displacements demands can be found in [12]. In summary,
we can say thatξeq, derived from the harmonic respon
at maximum displacement, is notcapable of incorporating
the influence of time-history displacements in the energ
dissipation mechanism. Duringan earthquake, displacemen
are significantly lower than the maximum response mos
the time, and the energy dissipation can be overestimate
The stiffness variation during cyclic deformations cannot
reproduced by the secant stiffness method. As a consequ
local variations in the inelastic spectra cannot be reprodu
either. Iwan’s formula, derived from numerical minimization
the dif ference between elastic and inelastic responses, pro
the best approximation to these local variations in spect
Iwan’s model islimited to mid-period range structures a
µ ≤ 8. µ is the ductility factor = xmax/xy, xmax is the
maximum displacement of the oscillator andxy is the yielding
displacement. These conditionsare different to the expecte
hysteresis of LRB bearings for bridge isolation. Kowalsk
equation is derived from the Takeda degrading hysteresis m
for concrete piers, and is not applicable to LRB isolators either

According to Ref. [8,9] good approximation can be obtain
on average with existing linearization parameters, altho
there is considerable scatter in the data. Iwan and Gates13]
compared the accuracy of nine damping models for estimatin
the response of hysteretic bi-linear systems and found thaξeq

is overestimated in all the models for most of the ducti
range considered. The frequency content, effective dura
maximum energy input and near fault characteristics of gro
motion have not been adequately analysed.

3. An improved ξeq for bi-linear isolators

The energy dissipation capacity of bearing isolators p
a fundamental role in the effectiveness of damage reduc
in bridges subjected to earthquake ground motion. If
equivalent damping ratio is not capable of representing the
linear energy dissipated by thehysteretic behavior of bearing
then the maximum displacement would not be predic
accurately. Because of the aforementioned weakness o
existing equations, an improved empirical expression is derived
in thispaper, for the case of bridges supported on LRB beari

From the comparison of the overall shape of a fam
of inelastic response spectra for a given value ofµ, with
some linear response spectra, it has been found [13] that the
difference is very close to a translation along a line of constan
spectral displacement, i.e. thelinear spectrum for a specifi
damping coefficient may be translated to fit very closely to
inelastic spectrum for some ductility value. This conclusion
used in this paper to propose the equivalent damping rat
LRB bearings, as described below.

Assuming kef as the secant stiffness at maximu
displacement,ξeq is obtained by equating the non-line
displacement response spectrum for a given earthquake t
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.18
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Table 1
Characteristics of earthquake ground motion

Earthquake Station Duration (s) PGA (m/s2) f (Hz) PSA (m/s2)

Imperial Valley, 1940 El Centro 40.00 3.1 2.2 8.3
México 1985 Caleta de Campos 97.24 1.4 1.4 3.9
México 1985 Papanoa 118.10 1.2 4.0 4.7
México 1985 La Uni´on 124.60 1.5 2.2 5.7
México 1985 SCT 183.51 1.6 0.5 9.4
México 1989 SCT 80.00 0.4 0.5 1.3
LomaPrieta 1989 Corralitos 39.95 6.3 3.3 21.3
Northridge 1994 Santa Barbara 40.00 0.8 3.5 2.6

PGA= peak ground acceleration; PSA= pseudo spectral acceleration.

Table 2
Statistical data for all systems and earthquakes

µb 1 2 4 6 8 10 13 18 24 30

ξ̄eq(µb) 5.00 6.42 9.72 12.26 16.67 17.66 20.49 21.96 23.55 23
σ(µb) 0.00 1.07 2.56 3.50 3.50 4.59 4.41 3.79 4.95 4
CV 0.00 0.17 0.26 0.29 0.21 0.26 0.22 0.17 0.21 0
ξ̄eq(µb) − σ(µb) 5.00 5.35 7.16 8.76 13.18 13.07 16.07 18.17 18.60 19
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(ξh, T, α, µb, EGM)N L = Sd(ξeq, Tef, EGM)EL (3)

here Sd(ξh, T, α, µb, EGM)N L is the non-linear spectral
splacement of a system with hysteretic dampingξh, period
, post-yield stiffness ratioα, and bearing ductilityµb, when it
subjected to a particular earthquake ground motion (EGM)
dSd(ξeq, Tef, EGM)EL is the spectral displacement of a linear
stem with viscous damping ratioξeq and periodTef, when it
subjected to the same earthquake ground motion EGM. A
semble of 8 earthquakes, whose characteristics are sho
Table 1, were applied. The acceleration values were scale
order to obtain different displacement ductility ratios of the

olators.
The LRB bearing properties used for the numerica
aluation are based on code design specifications for bearing

olators [6]. The plan area of the bearings,Ar , satisfies
e allowable compression stress for service conditions. The
aring height and lead core diameter meet the design and
ometric code recommendations. The initial stiffness is
fficiently high to prevent excessive displacements caused

strong winds, traffic loads or moderate earthquake
combination of the LRB properties(0.05 ≤ α ≤

15, 0.05Ws ≤ Fy ≤ 0.20Ws, 0.05Ar ≤ Al ≤ 0.10Ar ) are
ployed in the analysis, whereWs refers to superstructure

eight, Al is the lead core area, andFy is the shear yield force.
Expected ductility factors of the LRB isolators depend on

e limit states defined at the beginning of the design proces
ased on experimental data and field-test results, 1≤ µb ≤ 40
considered to be appropriate for the analysis. The bearing
ctility is computed as the ratio of the maximum displacemen

max) and the yield displacement of the bearing(xy = Fy/k1),
here,

y = Al τy (4)
,

n
wn
d

l

s.

s.

t

k1 = 1

α

Gr Ar

hr

(
1 + 10

Al

Ar

)
(5)

in which Gr is the shear modulus,hr is the total thickness o
elastomer, andµb is given by,

µb = xmax

xy
= Gr Ar

αAl τyhr

(
1 + 10

Al

Ar

)
xmax (6)

ξeq is obtained as the viscous damping ratio of the lin
system that equalizes both spectra (non-linear and linear
the combination of all parameters described above. Afterξeq

has been obtained forn systems, their sample mean(ξ̄eq(µb))

and sample standard deviation(σ (µb)) is computed for each
bearing ductility factor,

ξ̄eq(µb) = 1

n

n∑
i=1

ξeqi
(µb) (7)

σ(µb) =
√√√√ 1

n − 1

n∑
i=1

[
ξeqi

(µb) − ξ̄eq(µb)
]2

. (8)

The histograms ofξeq for µb valuesequal to 2, 4, 6, 8, 10, 13
18, 24, 30 were computed, where all variables (earthqua
post-yield stiffness values and initial system stiffness) w
taken together [12]. In general, theξeq distribution for all
ductility levels resembles the normal distribution. Assumin
normal probability distribution, the probabilities of exceedi
50% and 84.1% represent the mean value and mean value m
one standard deviation, respectively. These data are giv
Table 2, where it can also be seen that the scattering of d
increases for higher inelastic displacement demands, w
maximumσ(µa) = 4.95 forµb = 24. However, the coefficien
of variation (the ratio between standard deviation and the m
increases with the ductility factor, up to a maximum of 0.285
µb = 6,and is rather uniform for higher ductility displaceme
(Fig. 1). Unfortunately, maximum dispersion occurs in t
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Fig. 1. Coefficient of variation (CV) for all earthquakes and systems.

Fig. 2. Mean equivalent damping ratio for all earthquakes and system

velocity sensitive spectral region, where the damping effec
more pronounced.

The ξ̄eq(µb) ratio distribution over the whole range ofµb

is shown inFig. 2. For low values of inelastic displaceme
demands,̄ξeq increases very rapidly up to aboutµb = 10. For
higher displacement demands,ξ̄eq tends tobe asymptotic.Fig. 3
shows a typical curve for the hysteretic energy dissipated
the isolator bearing(Eh), normalized to the input energy(Ei ),
over the whole range ofµb. The same trendcan be observe
from Figs. 2and3, and is quite similar for all earthquakes an
systems considered in this study.Eh/Ei tends toone only when
the bearing dissipates the whole input energy, but this is
the case because of the contribution to the energy dissip
of the piers, abutments and foundation. The influence ofµb

on ξeq derived from one cycle of steady response to harmo
excitation (proposed in several codes for isolated bridges
displayed in Fig. 4 for α = 0.05 and 0.1, and does n
correspond to the curve trend of Eq.(9) or curve trend shown
in Fig. 3. Contrary to expectations, the damping ratio decrea
when the maximum displacement of the bearing increases fo
µb > 6.0.

Since ξ̄eq increases very rapidly for lowµb ratios and
then is rather uniform, it seems reasonable to fitξ̄eq(µb) to a
logarithmic curve. After data fitting, the following expressio
is proposed:

ξeq = 0.05+ 0.05 ln(µb). (9)

This expression has an adequate minimum value of
equivalent damping ratio, namelyξeq = 0.05 for µb = 1.0,
since 5% viscous damping is a common value recommen
for rubber bearings without a lead core.
s

t
on

c
is

s

e

d

Fig. 3. Hysteretic energy dissipated by the isolator normalized to input en
and proposed equivalent damping ratio.

Fig. 4. ξeq from one cycle of steady-state response to harmonic excitation
the proposed equation.

3.1. Comparison of the equivalent linearization parameters

A comparison of some of the existing models f
determining kef andξeq is given inFig. 5 (α = 0.1 is assumed,
typical for LRB bearings). The flexibility produced bykef is
represented in terms of the ratio of the effective period to
initial period (Tef/T1). If µb < 15, the secant stiffness mod
leads to a more flexible system, and the contrary is true f
higher ductility ratios. A linear trend represents the Iwan
(Tef/T1) − µb relationship, giving rise to very flexible system
for µb > 15 compared to other models.

For high ductility ratios, ξeq derived from Kowalsky’s
expression and from the steady-state harmonic respo
diminishes with increasing inelastic displacements. In contr
ξeq obtained with the equation proposed(9) and with Iwan’s
model resembles the trend of the hysteretic energy dissip
by isolator bearings.

However, the comparison of the different expressions fo
computing ξeq does not provide enough information fo
reaching conclusions about the adequacy of the predictio
maximum displacement. The response is affected not
by the system energy dissipation capacity but also by the
system stiffnesskef and ground acceleration characteristics
displacement overestimation derived from a reduced value o
ξeq can be mitigated by an overestimation ofkef. In order to
compare the adequacy of the existing linear equivalent mod
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Fig. 5. Comparison ofTef andξeq for different equivalent linearization models.
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aβ factor that includes thecombined influence ofξeq andkef is
proposed.

The amplification factor(βk) of the elastic displacemen
spectral ordinates derived from the usage ofkef, for the
mid-period range of 0.4–3.0 s and firm soils, is somew
proportional to,

βk ∝ (Sd)elastic
√

k1/kef. (10)

The reduction factor(βξ ) of the elastic displacement spect
ordinates produced byξeq can be estimated by substituting t
equivalent damping ratio in the following expression [6]:

βξ =
(

7

2 + ξeq

)0.35

. (11)

Thus, the combined influence of system stiffness and hyste
damping can be estimated approximately as:

β = (Sd)elastic

√
k1

kef

[
7

2 + ξeq

]0.35

. (12)

It is evident that actual spectral displacement demands de
on the characteristics of ground motion and on the nume
evaluation of the hysteretic damping over the total duration
ground acceleration; nevertheless, for assessment purpoβ
is a better estimator thanξeq or kef by themselves.Fig. 6shows
the comparison of equivalent models in terms ofβ obtained
from period ratio instead of stiffness ratio, i.e.,

β = Tef

T1

(
7

2 + ξeq

)0.35

. (13)

During ground motion loading, displacements are significant
smaller thanxmax most of the time. Because of this, t
steady-state harmonic response method, based on the cy
response atxmax, underestimates maximum displacements
low ductility ratios. Chopra and Goel [14] have also reported
displacement underestimation,with errors approaching 50%
On the other hand, the equation proposed predicts the lar
displacements of all methods forµb < 15 (Fig. 6), providing
at

l

tic

nd
al
f
s,

e of
r

st

Fig. 6. Comparison of different equivalent linearization models for
combined influence of system flexibility and hysteretic damping.

a better fit to inelastic time-history displacements as present
in Section 5. For high ductility ratios, Iwan’s model gives the
largest displacements and the proposed equation leads t
smallest displacement. The displacement increment obtaine
with Kowalsky’s and steady-state harmonic response meth
for the high ductility range is caused by the anomalo
reduction ofξeq for large displacement demands.

The equivalent damping model proposed presents a c
improvement in respect to some of the linearization techniq
available (and presented in the paper) in the particular cas
bridges supported in isolating devices with bi-linear hyster
characteristics. In fact, Eq.(9) is the only one that is derive
from the particular characteristics of bridges supported on
linear hysteretic bearings, for the complete ductility ratio ra
that is expected during an earthquake ground motion for
type of device. In contrast to other methods, the trend
the equivalent damping ratio obtained (seeFigs. 4–6) seems
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Fig. 7. Idealized single degree of freedom system.

like the trend in hysteretic energy bearing dissipation over
whole range of inelastic displacement demands (Fig. 3). Unlike
the models that are based on optimisation of the minim
differences between the inelastic and elastic responses
empirical expression proposed is rational and simple,
ties the physical behavior of this type of systems. Besi
the good trend when compared to bearing dissipation,
(9) also provides a displacement prediction that is in go
agreement with inelastic time-history displacements, as can
seen in the examples presented inSection 5. In addition, Eq.(9)
can easily be incorporated into the direct displacement-base
design framework, as presented in the design example.

3.2. Equivalent damping ratio for the isolator–pier–foundati
system

If the bridge superstructureis presumed to be relativel
rigid in comparison to the combined stiffness of bearings
piers, the bridge model can be simplified as a SDOF sys
consisting of the mass of the superstructure and the f
recovery and energy dissipation characteristics provided by
isolation devices and piers (Fig. 7).

The algebraic summation of isolator dampingξeq and pier
damping(ξp) cannot be assumed, as the isolation bearings
connected to piers in series. Instead, the damping ratio of th
isolation–pier system can be determined by the proportio
energy damping method, originally proposed in [15],

(ξeq)i =

n∑
j
(ϕT

i ) j C j (ϕ i ) j

2ϕT
i KT ϕ i

(14)

where(ξeq)i is the equivalent damping ratio of modei , (ϕ i ) j is
the mode shape vector of subsystemj corresponding to mod
of vibrationi , C j is the damping matrix of the subsystemj , ϕ i
is the mode shape vector of the overall system of the mode o
vibrationi , andKT is the stiffness matrix of the overall system
If piers and abutments are presumed to be fixed at their b
and the superstructure is assumed to be rigid, the mode s
vectors for the isolation–pier bearings system are,

ϕi =




1 + (kef) j

(kp) j
(kef) j

(kp) j


 x j (15)
e

he
d
s
.

d
m
e
e

re

l

e,
pe

(ϕ i ) j =



1
(kef) j

(kp) j


 x j (16)

where x j is the lateral displacement degree of freedom
subsystem j , kef is the effective stiffness of the isolator un
j , andkp is the lateral stiffness of pier or abutmentj . If the
limit state under consideration allows piers to be damaged,
an effective stiffness of a damaged pier has to be consid
according to the maximum ductility allowed. The stiffne
matrix of the overall system is,

KT =
(

(kef) j −(kef) j

−(kef) j (kef) j + (kp) j

)
. (17)

The damping matrixC j is the sum of the proportional dampin
matrix of the subsystem without isolation bearingsCs and the
non-proportional damping matrix due to the hysteretic damp
provided by the isolator bearingsCb,

C j = Cs + Cb. (18)

The resultant damping matrixC j is non-proportional and th
following product is not a diagonal matrix, whose off-diago
terms,ci j , arenot necessarily zero,

(ϕT
i ) j C j

(
ϕ i

)
j =


c11 c12 c13

c21 c22 c23
c31 c32 c33


 . (19)

As a consequence, uncoupling of the equations of motion is
possible. According to [9,15], the influence of the off-diagona
terms on the response is small if the hysteretic damping is
than 30%, and can be ignored because its relevance o
results is negligible.

The equation of motion for an SDOF hysteretic system
similar to that of a viscous system with a hysteretic damp
coefficient ch equal to 2ξhk, in which ξh represents the
hysteretic damping ratio. It has been found [9,15] that the
amplitude and phase angle of the transfer function are q
similar for hysteretic and viscous systems, and the differen
in the response to a transient excitation is practically ident
for both systems, except for the long period region. So thaξeq

andξp can be considered as hysteretic instead of viscous,
the corresponding hysteretic coefficients are(ch)b = 2ξeqkef

and(ch)p = 2ξpkp.
Thus, C j for the isolation–pier system, ignoring the o

diagonal terms is,

C j =
(

(2ξeqkef) j 0
0 (2ξpkp) j

)
. (20)

If piers are allowed to be damaged, then the equivalent dam
ratio of piers has to be used.

The equivalent damping ratio for the isolator–pier syst
(ξeq)s obtained by substituting Eqs.(15)–(17)and(20) in (14)
is given by,

(ξeq)s =
ξeq + ξp

kef
kp

1 + kef
kp

. (21)
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As the isolation units over one pier or abutment undergo
the same lateral displacement,the bearing total stiffness i
computed as the sum in parallel of the stiffness of each of tn
isolation devices on the pier,

kef =
n∑

k=1

(kef)k. (22)

The total lateral stiffness of the combined isolation–pier sys
(kef)s is the sum in series that is obtained as,

(kef)s =
kp

n∑
k=1

(kef)k

kp +
n∑

k=1
(kef)k

. (23)

If the flexibility and energy dissipation of the foundation a
considered,(ξeq)s of the combined isolation–pier–foundatio
system derivedfrom Eq.(14) is:

(ξeq)s =
ξeq + ξpkef

kp
+ ξfhkef

kfh
+ ξ f θ kef L2

k f θ

1 + kef
kp

+ kef L2

kfh

(24)

where ξfh is the equivalent damping ratio corresponding
horizontal vibration of the foundation,ξ f θ is the equivalen
damping ratio corresponding to rotational vibration of t
foundation,kfh is the horizontal foundation stiffness,k f θ is the
rotational foundation stiffness, andL is the column height.

(kef)s of the combined isolation–pier-foundation system
obtained by summing in series the stiffness provided by
foundation, pier and isolation bearing,

(kef)s = 1
1(

n∑
k=1

kef

)
k

+ 1
kp

+ L2

k f θ

. (25)

4. Procedure for bridges on hysteretic isolators

The proposed methodology is intended for regular brid
supported on bi-linear hysteretic isolation bearings. T
superstructure is presumed to be relatively rigid in compari
with the stiffness of piers and abutments, and it is assu
that dynamic response of the bridge can be predicted q
accurately with an SDOF system. A sketch of the ideali
model is shown inFig. 7.

Due to good correlation between strain and damage,
design methodology is based on strain control. The allow
strains should be associated with specific values of struct
response that can be accurately predicted and physi
measured in an actual structure. According to displacemen
based design, the structural response associated with
control is defined by the structure’s lateral displacements.
concrete and steel reinforcement strains are considered
damage indicators of bridge concrete piers, the limit st
can be related to lateral pier top displacements. In the
of isolated bridges, limitationsto bearing shear displaceme
must also be considered. Thus, the structural performan
e

s

n
d
e

e
e
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ly

in
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is

Fig. 8. Flowchart for the displacement-based design for isolated bridge

controlled by specifying a target bearing shear displaceme
(xb) and a target pier top displacement(xp). The maximum
total displacement of the system isxt = xp + xb + x f ,
where the last term is the contribution of the foundatio
flexibility. In contrast to force-based design, the end re
of the displacement-based design procedure is the req
stiffness, which is determined from the elastic spectrum b
means ofxt and(ξeq)s.

The procedure flowchart is presented inFig. 8 and the step
by step procedure description follows.

1. Limit states. Define the number of limit states that
should be checked, and the isolator shear strain(γb), concrete
compression strain(εc), and steel reinforcement strain(εs)

corresponding to each limit state.
2. Target pier top displacement.After defining preliminary

sections of piers, the maximumdisplacement can be obtain
by means of the following strain–displacement relationship
developed by Priestley for reinforced concrete piers [4]. The
target displacement(∆m) is the lesser of Eqs.(26)and(27),

∆m =
(εc

c
− φy

)
L p(L − 0.5L p) + φyL2

3
(26)

∆m =
(

εs

D′ − c
− φy

)
L p(L − 0.5L p) + φyL2

3
(27)
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where c is the neutral axis depth, which may be arbitrar
assumed or estimated from Eq.(28) for circular columns and
(29) for rectangular columns,

c = D

(
0.65P

f ′
c Ap

+ 0.24

)
(28)

c = h

(
0.85P

f ′
c Ap

+ 0.25

)
. (29)

L p is the plastic hinge length given by [4]:

L p = 0.08L + 0.022f ydbl ≥ 0.044f ydbl (30)

φy is the yield curvature= φy = εy
c � 2.45εy

D , L is the
column length,D′ is the distance from the extreme tensi
steel fiber to the extreme concrete compression fiber,εy is the
longitudinal reinforcement yield strain, anddbl is the diameter
of longitudinal reinforcement.

3. Bearing selection. The minimum in-plan area of the
bearing(Ar ) is determined by service load conditions, and the
lead core areaAl should be 0.02Ar ≤ Al ≤ 0.1Ar . Then
assume the height(h) of the bearing and the diameter of the lea
core. It is important to comply with the geometric and des
recommendations for LRB bearings proposed by codes.

The force that LRB bearings are able to transmit(Fb) can
be computed as the sum of the force transmitted by the ru
(Fr ) and the force transmitted by the lead coreFl ,

before yielding: Fb = Fr + Fl = Ar Gr γ + Al τ (31)

after yielding: Fb = Ar Gr γ + Al τy + Al
G2

G1
(τ − τy) (32)

whereG1 andG2 are the elastic and plastic shear stiffness
lead core alone, respectively.

The target bearing displacementxb is given directly by
the product of the total neoprene heighthr = ∑

i ti and the
maximum shear strainγb, (xb = hr γb).

4. Period of the SDOF system.The isolated bridge perio
(Tib)SDOF is obtained from the well-known expression f
SDOF systems, using the total lateral stiffness of the isola
bridge(kef)s (Eq.(23)or (25)). Kp is estimated from the basi
mechanical principles andkef is obtained from Eq.(33):

kef = Fo

xmax
+ k2 (33)

where thepost-yielding stiffness(k2) and the characteristi
dissipator strength(Fo) are,

k2 = kr

(
1 + 10

Al

Ar

)
= Gr Ar γ (1 + 10λ) (34)

Fo = Al τy(1 − α). (35)

After substituting in(33), the effective stiffness of the isolator
is,

kef = Al τy(1 − α) + Ar Gr γb(1 + 10λ)

xb
(36)

and the foundation’s flexibility(k f ) is,

k f = Fb/x f = Fb

L tan(FbL/k f θ ).
(37)
er

f

d

Fig. 9. Total displacement of the system.

Refer toFig. 9 for the meaning of the parameters. For sm
rotations,

k f = Fb

L(FbL/k f θ )
= k f θ

L2 . (38)

5.Period from the displacement design spectra. The isolated
bridge period is then determined from the design spe
(Tib)SPECby selecting the appropriate damping curve(ξeq)s and
the total system displacement(xt ).

6.Adjust bearing characteristics. Periods obtained in steps
and 5 must be equal. If they are not, then the isolator prope
should be modified. The new bearing area may be obta
by equating the force transmitted by the bearing to the fo
derived from the spectrum,

Ar Gr γb + Al τy + Al
G2

G1
(τ − τy) = (kef)sxt (39)

in which (kef)s is given by,

(kef)s =
(

2π

(Tib)SPEC

)2 W

g
. (40)

If λ = Al /Ar , thenew bearing area is obtained with,

Ar = (kef)sxt

Gr γb + λ
[

G2
G1

(τ − τy) + τy

] . (41)

Steps 4–6 would be repeated untilthe convergence criteria
satisfied (ε = 0.03, for instance),∣∣∣∣1 − (Tib)SDOF

(Tib)SPEC

∣∣∣∣ ≤ ε. (42)

If this criteria is not satisfied by changing the bear
properties, the pier section must be modified.

7. Determine forces and pier section design.Since the
periods are equal, design forces can then be determined,

Vbase= kpxp Mbase= VbaseL . (43)

Determine the longitudinal and transverse reinforcement. If
pier section is not appropriate for resisting the design for
repeat steps 2–7 until the section pier is appropriate.

8.Lateral displacements verification. Determine the update
pier top displacement(∆m)u with the latestc, εs andεc values.
If ∆m ≥ (∆m)u, then repeat steps 2–7 with(∆m)u as the initial
displacement.
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Fig. 10. Four simply supported span bridge model.
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Fig. 11. Performance space for conventional and isolated bridges.

9. Materials strain verification.Check if concrete and stee
strains fulfill the limit states requirements. Curvature ducti
µθ must be calculated first (Eq.(44)), then maximum curvatur
φm, with Eq. (45), and concrete and steel strains by means
Eq.(46) [4]:

µθ = 1 + µ∆ − 1

3L p
L (44)

φm = µθφy (45)

εc = φmc εs = φm
(
D′ − c

)
. (46)

After verifying thatεs andεc fulfil the limit state defined at the
beginning, repeat steps 2–9 for other limit states.

5. Examples

First, an example is presented to show the des
methodology explained in chapter 4. A four span bridge mo
supported on LRB bearings, with 10 m heigh piers and ri
abutments, has been considered. The bridge is compos
simply supported spans; the span length is 20 m and the circ
concrete piers are assumed to be 1.7 m in diameter, fixed at
bases (Fig. 10). The concrete cylinder’s compressive strengt
25 MPa and the yield stress of steel is 400 MPa. The Euroco
displacement design spectra [6] for firm soil is considered. The
shear modulus of rubber is 1.0 MPa and the shear yield st
of the lead plug is 10 MPa.

The period of the simple oscillator computed in the fi
iteration (Tib)SDOF = 2.11 s is greater than the perio
obtained from the design spectrum(Tib)SPEC = 1.80 s, and
the convergence criteria (Eq.(42)) is not satisfied. Therefore
(kef)s must be increased by modifying the isolator dimensi
(Eq.(41)). After increasingAr andAl , (Tib)SDOF = 1.79 s, and
convergence is reached. Then, the pier section is designe
the longitudinal and transverse reinforcement are determined
f

n
el

of
lar
eir
s

8

ss

t

s

nd

Since(∆m)u = 0.153 m, computed with the latest paramete
is less than∆m = 0.17 m, a seconditeration has to be carrie
out with ∆m = 0.153 m as the initial displacement. After a
second iteration,(∆m)u = 0.146 m is obtained and accepte
Final results are shown inTable 3.

Since the definition of limit states has social and econo
consequences, code committees should propose the num
limit states and their corresponding allowable parameters. In
example, six limit states are proposed arbitrarily to illustrate
the consequences of adopting different limit states. The fi
results are reported inTable 4. Thedefinitive design consists o
eight 350× 350 mm LRB bearings, with a lead core of 89 m
in diameter. The column section is 1.7 m, and the requ
longitudinal steel ratio isρ = 2.6%.

According to the conceptualframework for performance
based design, the couples of expected damage le
and expected earthquake intensity are called “Performa
Objectives” (PO) and can be represented in the “Performa
Space” [16] displayed inFig. 11. PO curves for conventional
and isolated bridges are depicted with discrete points (repo
in Ref. [17]) interconnected by straight lines. The “Structu
Performance” (SP) curve for the bridge model is displayed
the same figure, where it can beobserved that the definitiv
bridge design satisfies the design requirements represe
by the PO curve for non-isolated bridges. In this particu
case, the second limit state governs the design; obviously
conclusion depends on the value assigned to each limit sta
εs or γb, instead ofεc, is selected as damage indicators, simi
trends for PO curves would be obtained.

The results obtained through the proposed methodology
compared to the “exact” resultscomputed with inelastic time
history analysis, using acceleration time histories compatible
with the Eurocode design spectra for firm soil, for 46 system
[12]. The results for maximum displacement of the pier
show thatalmost all values are located in the±20% zone.
The mean valuêx = is 0.944, that is, the pier displacement
slightly underestimated by the lineal equivalent procedure.
standard deviations = 0.110 and the coefficient of variation
CV = 0.117, reflects the low scatter of the displacements ra
The base shear is overestimated(x̂ = 1.24) with the equivalent
linearization method. The standard deviations = 0.212 and
coefficient of variation CV= 0.151 reflect the major scatter o
the shear base ratio.

In [12], the method has also been applied to 5 continu
concrete bridges, with symmetric and asymmetric transv
distributions of stiffness and different pier heights. The dyna
characteristics of the bridges are as follows:
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Table 3
Final results

∆m (26) ∆m (27) (TibSDOF) ∆m (27) εc (46) εs (46) ρ (%)

0.153 m 0.143 m 1.79 s 0.146 m 0.0034 0.0072 2.6

Table 4
Limit states proposed, and corresponding final results

Limit state P50 (%) ρlong (%) εc εs γb Xb (m) Xb/Xp

1 50 1.5 0.0022 0.0062 0.8 0.16 1.28
2 28 2.6 0.0034 0.0072 1.0 0.20 1.37
3 15 2.0 0.0071 0.0161 1.5 0.30 1.61
4 10 1.9 0.0088 0.0192 2.0 0.40 1.67
5 2 1.2 0.0111 0.0322 3.0 0.60 2.16
6 1 1.4 0.0151 0.0395 3.5 0.70 1.76

Limit state ξb (%) ξp (%) ξib (%) Tib (s) Tib/To µp µb

1 13.9 5.0 10.7 1.97 2.21 1.00 5.9
2 15.0 8.7 12.8 1.79 1.97 1.32 7.4
3 17.0 10.2 14.6 2.25 2.53 1.51 11.1
4 18.5 15.4 17.4 2.35 2.64 2.55 14.8
5 20.5 16.5 19.1 3.00 3.37 2.95 22.2
6 21.3 18.9 20.4 3.00 3.37 4.23 25.9
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1. The maximum eccentricity between the center of gravity
of the transverse stiffness in the supports and the center of
of the bridge is less than 12% of the total bridge length.

2. The stiffness of any subsystem pier+isolator is less than
twice the stiffness of the contiguous pier+isolator.

3. The difference in mass between two contiguous supp
is less than 25%.

4. The bridge skewness is less than 20◦ in all cases.
5. The percentage of the mass in the first vibration mod

more than 90%.
Comparison with the results from a non-linear analy

shows that the ratio of linear to non-linear displacements
the isolation devices has a meanvalue between 1.01 and 1.12
(always on the safe side) with a coefficient of variation tha
very low (less than 0.14). In the case of the displacement on
top of the piers, the mean value of the ratio of linear to no
linear displacement is in the range 1.07–1.39, with a coeffic
of variation equal to 0.34. The greatest differences appear in
estimation of the shear force in the base. In fact, in this c
the mean value is in the range 1.07–1.41, and with a high
coefficient of variation than in the case of displacements.
most important differences occur in the bridges with peri
close to the maxima of the response spectra. As seen, how
in all cases (displacements and shear forces) the results from
the proposed model remain on the safe side.

In spite of the good agreement obtained in the exam
presented, more research is needed to determine the equi
damping coefficient and the effective stiffness that sho
be used for earthquake motion of different characteristics
particular, energy dissipation for concrete elements and o
type of hysteretic or viscous devices should be investiga
The limitations imposed on the continuous symmetric a
asymmetric bridges should also be kept in mind. Sev
authors [8,9] have assessed the accuracy of other existin
ass
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equivalent linearization methods, and small mean errors h
been obtained, but dispersion of the results in some cas
substantial, particularly for large levels of inelastic behavio
can be affirmed that the proposed methodology improves
prediction capability of the linear equivalent model when it
applied to bridges supported on LRB isolators.

6. Conclusions

This paper presents a displacement-based design proc
for bridges supported on isolation bearings with bi-line
characteristics. The proposed method emphasizes strain co
by means of the shear displacement of the isolation bea
and the lateral pier top displacement. The response is estim
directly from the elastic displacement response spectra by u
of an effective period and equivalent viscous damping,
is applicable to regular and quasi-regular bridges with rigid
superstructures whose response can be idealized as an SD

An equivalent damping ratio, derived from the particu
characteristics of bridges supported on bi-linear hyster
bearings, is proposed. In contrast to other methods, the t
of the equivalent damping ratio obtained seems like the tr
of the hysteretic energy bearing dissipation over the wh
range of inelastic displacement demands that is expected fo
this type of device. Unlike the models that are based
optimisation of the minimum differences between the inelas
and elastic responses, the empirical expression (Eq.(9))
proposed is rational and simple, and ties the physical beha
of this type of systems. This equation provides a displacem
prediction that is in good agreement with inelastic time-hist
displacements and can easily beincorporatedinto the direct
displacement-based design framework.

The proposed methodology improves the displacemen
prediction capability of the linear equivalent model when
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is applied to bridges supported on LRB isolators. The res
obtained through the proposed methodology are comp
with the “exact” results computed with inelastic time-histo
analysis, and it has been found that pier displacements
slightly underestimated but base shears are overestimated
data scatter is obtained over the whole range of ducti
displacement ratio expected for this type of isolator, especiall
for displacements. In spite of the good agreement obtained
these cases, more research is needed to determine the equ
linearization parameters for concrete elements and other typ
of hysteretic or viscous devices, and the influence of earthq
motions of different characteristics.
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