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Lateral Force vs. Lateral Displacement Hysteresis
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Characteristics of FPS

OFPS is governed by 2 parameters
v'Friction coefficient at the sliding interface
v'Radius of the spherical surface

®Neglecting variation of the friction coefficient with
velocity and pressure that slightly effect the peak
response of the system, the only one parameter is
the radius of the spherical surface

®Residual displacements are reduced due to the
self-centering action induced by the concave

spherical surface.

Upward mounting Downward mounting
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FPS Being Developed at University of
California, Berkeley

Courtesy of Prof. Steven Mahin, UCB

Problems for Implementation

®Large diameter FPS needed to accommodate
+/- 0.5 m displacement
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If we consider @ =0.15m and Dg =0.2m
D=2(0.5+a)+ Dy
=1.5m
Consequently, the out-diameter of the FPS is
nearly 1.8m




In fact, much large diameter is needed
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Width of the upper steel is
D - Dyg Dy =2(D - Dg)+ Dy Damper Braces

| If D=1.5m, D becomes

D 2.8m

Unbond Brace Dampers

Damper Brace widely used for Buildings

Brace

Buckling constraint

casing of plastic bar )
\ ﬁ Plastic bar
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Morishita et al (2004)




Shake Table Test for Effectiveness
of Unbonded Brace Damper
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Courtesy of Shin-Nippon Steel Co. Ltd

Unbonded Brace Specimen No. 1

JMA Kobe Observatory, 1/17/95

Peak Ground Velocity = 40 cmis
Peak Story Drift Ratio = 0.02

Courtesy of Shin-Nippon Steel Co. Ltd

Damper Brace

Energy Dissipation of Unbond Damper

Braces
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where, Width/Thickness Ratio

o pi - Plastic displacement of i-th loading
5y : yield displacement
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Morishita et al (2004)




Shake Table Verification for Critical
Plastic Deformation

Morishita et al (2004)

Hysteretic Energy Dissipation by
Damper Brace
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Application of Damper Braces for
Seismic Retrofit of an Arch Bridge
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Coupling of Longitudinal and Vertical
Modes

Fundamental Natural Period T=1.1 sec




Seismic Response of As-Built Bridge under JMA
Kobe Ground Acceleration, 1995 Kobe EQ
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Criteria for selecting members where Damper
braces are installed
e>¢&,=1/100 Axial strain between 2 nodes

Au> Auy =1/10m Relative displacement
between 2 nodes

Ip <12m Length of member
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Analytical Idealization of Hysteretic
Behavior of Damper Brace
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Acceleration
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Effect of seismic Retrofit
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Effect of Seismic Retrofit by Damper
Braces
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Rocking Seismic Isolation of Bridges

Requirements of Foundations in
Seismic Design

Static Seismic Design
® Bearing capacity
® Sliding
® Rocking

Dynamic Response
® Sliding + Rocking
® Rocking + Jump

Requirements for Rocking Response
in the Static Design
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Is it true that@arge feundation
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Overturning of Foundation-Tower System of
Akashi Straight Bridge

@ Static Analysis on Overturning of Foundation-
Tower System was eliminated from seismic design

®|t was decided that the static overturning analysis
is unrealistic

®Decision of design was made based on nonlinear
dynamic response analysis and a preliminary static
design based on critical velocity which results in
overturning

Seismic Rocking Isolation
Rion Antirion Bridge, Greece

Courtesy of Dr. Alain Pecker
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Concept of Rocking Isolation of Rion
Anti-Rion Bridge

®Fault dislocation as large as 2 m is anticipated
although the location of fault is not known.

®Rocking isolation reduces bridge response.

Requirements for Rocking Response
in the Static Design

Static Equilibrium
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Analytical Idealizati

Bridge Analyzed Designed based on

the static design
“RAAAA [ method assuming
T 0.2g response

acceleration

12m N-Value
0 50

' Sand

Gravels

Ground Accelerations Subjected to Bridge
1995 Kobe, Japan earthquake Response Acceleration

JMA Kobe (NS) S
Q
v 20
_5 ~-10 E
) ““) | =
Ca < 10
R Y- S
SE o 0 ——
10 . ] 0 5
<
0 10 20 Natural Period (s)

Time (s)
Takatori Station (NS)

esponse Displacement

1
—
=

Acceleration
(m/sec?)
<

T 70 0 ———— 3
Time (s) Natural Period (s)

Seismic Response of the Bridge When
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Contribution of Footing Displacement and
Column Displacement to Deck Response
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Separations between

the Foundation and

the Underlying Ground Distance (m)
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Column and Foundation Interaction
Underlying ground Separations of the footing
resists tension from the underlying ground
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Collision between the Footing and
the Underlying Ground
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Effect of Bilateral Excitation

Moment vs. Rotation Hysteresis of the

Foundation
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