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Characteristics of FPS

FPS is governed by 2 parameters

Friction coefficient at the sliding interface

Radius of the spherical surface

Neglecting variation of the friction coefficient with 
velocity and pressure that slightly effect the peak 
response of the system, the only one parameter is 
the radius of the spherical surface

Residual displacements are reduced due to the 
self-centering action induced by the concave 
spherical surface.

Upward mounting Downward mounting

After Professor M. Calvi

FPS Being Developed at University of 
California, Berkeley

Courtesy of Prof. Steven Mahin, UCB

Problems for Implementation

Large diameter FPS needed to accommodate 
+/- 0.5 m displacement

0.5m + α
If we consider m15.0=α

SD D

and mDS 2.0=
SDD ++= )5.0(2 α

m5.1=
Consequently, the out-diameter of the FPS is 
nearly 1.8m
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In fact, much large diameter is needed

D

SDD −
Width of the upper steel is 

SSU DDDD +−= )(2

SDD −= 2

If D=1.5m, DU becomes 
2.8m

Damper Braces

Damper Brace

Brace

Plastic bar

Buckling constraint 
casing of plastic bar

Morishita et al (2004)

Unbond Brace Dampers 
widely used for Buildings

Courtesy of Shin-Nippon Steel Co. Ltd 
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Shake Table Test for Effectiveness 
of Unbonded Brace Damper

Courtesy of Shin-Nippon Steel Co. Ltd Courtesy of Shin-Nippon Steel Co. Ltd 

Morishita et al (2004)

Damper Brace Energy Dissipation of Unbond Damper 
Braces

Width/Thickness Ratio

Width-thickness ratio
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piδ

yδ
: plastic displacement of i-th loading

: yield displacement
52.1800,17 −= rcrη

Morishita et al (2004)
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Shake Table Verification for Critical 
Plastic Deformation

Morishita et al (2004) Morishita et al (2004)

Hysteretic Energy Dissipation by 
Damper Brace

Axial strain (%)

static
dynamic

99m

17.5m

Application of Damper Braces for 
Seismic Retrofit of an Arch Bridge

Fundamental Natural Period T=1.1 sec

Coupling of Longitudinal and Vertical 
Modes
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Criteria for selecting members where Damper 
braces are installed

Axial strain between 2 nodes

Relative displacement 
between 2 nodes
Length of member Displacement(m)
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Analytical Idealization of Hysteretic 
Behavior of Damper Brace
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Rocking Seismic Isolation of Bridges

Requirements of Foundations in 
Seismic Design

Bearing capacity

Sliding

Rocking

Static Seismic Design

Dynamic Response

Sliding + Rocking

Rocking + Jump

Requirements for Rocking Response
in the Static Design
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Akashi Straight Bridge
The World Longest Bridge

In the static design, overturning was 
the major factor for sizing those foundations
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Is it true that such a large foundation 
overturns under a seismic excitation??

Mass
Natural period
Frequency content of a ground motion

Overturning of Foundation-Tower System of 
Akashi Straight Bridge

Static Analysis on Overturning of Foundation-
Tower System was eliminated from seismic design

It was decided that the static overturning analysis 
is unrealistic

Decision of design was made based on nonlinear 
dynamic response analysis and a preliminary static 
design based on critical velocity which results in 
overturning

Rion Antirion Bridge, Greece

Courtesy of Dr. Alain Pecker

Seismic Rocking Isolation
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Concept of Rocking Isolation of Rion
Anti-Rion Bridge

Fault dislocation as large as 2 m is anticipated 
although the location of fault is not known. 

Rocking isolation reduces bridge response.

Rion Antirion Bridge

Requirements for Rocking Response
in the Static Design

Start to Uplift

Fθ

BM
V

Static Equilibrium

Fsv Ground

Uplifted at the Left

Fθ

BM
V

x

Separation

Nonlinear Interaction between 
a Column Plastic Hinge and a Foundation

Plastic deformation 
of a column

Rocking response 
of a foundation
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Plastic Hinge

Vertical 
Displacement

Subgrade Reaction

Compression

Tension

Uplift of Foundation

Analytical Idealization
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Column and Foundation  Interaction
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