

Overturning of Foundation-Tower System of Akashi Straight Bridge

•Static Analysis on Overturning of Foundation-Tower System was eliminated from seismic design

•It was decided that the static overturning analysis is unrealistic

•Decision of design was made based on nonlinear dynamic response analysis and a preliminary static design based on critical velocity which results in overturning

Seismic Rocking Isolation Rion Antirion Bridge, Greece

Courtesy of Dr. Alain Pecker

Concept of Rocking Isolation of Rion Anti-Rion Bridge

- •Fault dislocation as large as 2 m is anticipated although the location of fault is not known.
- •Rocking isolation reduces bridge response.

