
XX Jornadas Nacionales de Ingeniería Estructural  
 

 
INELASTIC  DEFORMATION  RESPONSE  OF  SDOF  SYSTEMS  

SUBJECTED  TO  EARTHQUAKES 
  

Rafael  Riddell1 and Enrique García2 
 
 

1 Department of Structural and Geotechnical Engineering, Universidad Católica de Chile. 
2 Department of Civil Engineering, Universidad de Cuenca, Ecuador. 

 
 
 

SUMMARY 
 

Performance-based seismic design requires reliable methods to predict earthquake demands 
on structures, and particularly inelastic deformations, to ensure that specific damage-based criteria 
are met. Several methods based on the response of equivalent linear single-degree-of-freedom 
(SDOF) systems have been proposed.  These methods do not offer advantages over the traditional 
Newmark-Hall (NH) procedure, and have been shown to be inaccurate. In this study, the NH 
method is revised, considering the inelastic response of elastoplastic, bilinear, and stiffness-
degrading systems with 5% damping subjected to two sets of earthquake motions. One set is an 
ensemble of 51 records in the Circumpacific Belt, and the other is a group of 44 records in 
California. A statistical analysis of the response data provides factors for constructing inelastic 
spectra.  Such factors show that the “equal-displacement” and “equal-energy” rules to relate elastic 
and inelastic responses are unconservative for high ductilities in the acceleration- and velocity-
sensitive regions of the spectrum.  It is also shown that, on the average, the effect of the type of 
force-deformation relationship of nonlinear systems is not significant, and responses can be 
conservatively predicted using the simple elastoplastic model. 
 

RESUMEN 
 

El diseño sísmico enfocado al desempeño requiere métodos confiables para predecir las 
demandas de los terremotos, particularmente en cuanto a deformaciones inelásticas, para asegurar 
que se satisfagan  niveles de daño prescritos.  Para estimar la respuesta de estructuras de varios 
grados de libertad se han propuesto varios métodos basados en la respuesta de sistemas elásticos 
equivalentes. Dichos métodos no ofrecen ventajas sobre el procedimiento tradicional de Newmark-
Hall (NH), e incluso se ha comprobado su imprecisión. En este estudio se revisa el método de NH 
considerando la respuesta de sistemas elastoplásticos, bilineales y con degradación de rigidez, con 
5% de amortiguamiento, sometidos a dos grupos de terremotos. El primero comprende 51 registros 
en el Anillo del Pacífico, y él otro 44 registros en California. Del análisis estadístico de los 
resultados se obtienen factores para construir espectros inelásticos. Estos factores muestran que las 
reglas simples de preservación de energía y deformación que relacionan la respuesta inelástica con 
la elástica, no son conservadoras en las regiones de aceleración y velocidad del espectro. Se 
demuestra también que el efecto de la relación fuerza deformación no es significativo y las 
respuestas pueden conservadoramente predecirse utilizando el simple modelo elastoplástico. 
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INTRODUCTION 
 
This paper summarizes the findings of a recently published study (Riddell and García, Ref. 

1) where the reader is referred for the complete contents.  
 

  After the great deal of damage caused by earthquakes in the last 10 or 15 years, there seems 
to be agreement that changes in the seismic design process are necessary to build structures with 
predictable seismic performance. For this purpose, advanced techniques will have to be incorporated 
in future design procedures. Verification of the structure by means of nonlinear 3-D response-
history analysis is possible today, however, significant improvement and standardization of this 
procedure, and the software required, are necessary before general use by the profession. A 
simplified nonlinear analysis procedure is the push-over method, in which the structure is subjected 
to a monotonically increasing lateral load of prescribed pattern; the structure progressively degrades, 
as structural members sequentially plastify, until it reaches a limit state or collapse condition.  The 
incremental static analysis permits to determine the global force-displacement relationship of the 
building, or capacity curve (ATC, Ref. 2), in terms of the total lateral force (base shear) and the 
lateral deflection of the roof.  
 

The capacity curve is then converted to a capacity diagram or force-deformation relationship 
of a simplified SDOF model of the multi-degree building.  In order to determine compliance with a 
given performance level, the displacement response of the building due to a given earthquake 
demand must be determined. The ATC-40 document proposes approximate methods to estimate the 
nonlinear response of SDOF systems on the basis of the response of equivalently damped linear 
systems. Chopra and Goel (Ref. 3) have pointed out several deficiencies of the ATC-40 procedures, 
and have shown that deformations can be significantly underestimated.   
 

In the traditional NH inelastic spectrum (Newmark and Hall, Ref. 4; Riddell and Newmark, 
Ref. 5), the response of a nonlinear SDOF system is directly read without iterations.  In turn, the 
spectral ordinates are associated to known degrees of uncertainty, depending on the probability of 
exceedance of the factors selected to construct the spectrum. The earthquake demand (seismic 
hazard) is simply represented by the peak ground motion parameters: acceleration A, velocity V, and 
displacement D.  Inelastic spectra can be constructed for a variety of situations and conditions, the 
only limitation being the quality and quantity of the ground motion data available to derive the 
factors for constructing the spectrum. Summaries of the statistical procedure to obtain such factors 
have been presented by Riddell (Ref. 6) and Riddell et al. (Ref. 1). 

 
A simple SDOF system was used in the study, with force-deformation relationship given by 

three nonlinear models: elastoplastic, bilinear, and stiffness degrading.  These models cover a broad 
range of structural behavior; they are intended to represent over all generic behavior, rather than 
specific characteristics of individual systems (Riddell and Newmark, Refs. 5, 7). A damping factor 
of five percent of critical was used.  The Circumpacific Belt and California groups of earthquake 
records used are listed, and their characteristics commented, in Riddell et al. (Ref. 1).  
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RESPONSE  CALCULATIONS  AND  STATISTICAL  ANALYSIS  OF  THE  DATA 
 
Responses were calculated for 250 different frequencies for each record, following an iterative 

procedure to obtain inelastic responses associated with desired target ductility values of 1 (elastic), 1.5, 
2, 3, 5 and 10.  The results were presented in the form of tripartite logarithmic plots, as the spectra 
shown in Figure 1.  In this case the abscissa is frequency (f=ω/2π), but period (T=1/f) may be 
simultaneously read as well since a plot with T as abscissa is a mirror image of the former.  This 
type of plot, named Inelastic Yield Spectrum (IYS), or Constant Ductility Spectrum, features in the 
displacement axis the yield deformation uy necessary to limit the maximum deformation umax of the 
system so that the target ductility μ is not exceeded. The acceleration axis, at 90o clockwise from the 
displacement axis, features the quantity ω2uy, which multiplied by the mass of the system gives the 
yield strength Ry.  In the tripartite logarithmic plot the spectral quantities in the displacement, velocity, 
and acceleration axes are interrelated; indeed, denoting them by Sd, Sv and Sa respectively the 
relationship Sa=ωSv=ω2Sd holds. 

 
The purpose of the statistical analysis is to determine factors for constructing demand spectra 

when estimates can be made of the possible peak ground motion parameters for future earthquakes 
affecting a site.  The parameters A, V and D control the response over three regions of the spectrum 
and provide a better basis for characterizing design spectra than using only one.  In summary, the 
statistical analysis consists in determining factors ψμ which, applied to the ground motion estimates 
pg, give the spectral ordinates Sμ for each of the three characteristic regions of the spectrum, i.e., 
Sμ=ψμpg, where pg represents A, V or D depending on the spectral region under consideration.  
Alternatively, the inelastic spectrum Sμ can be obtained by deamplifying the elastic spectrum Se, so that 
Sμ=φμSe, where the deamplification factor φμ obviously corresponds to the ratio ψμ/ψμ=1 and Se 
corresponds to the particular case of Sμ=1.   

 
Figure 2 shows the average spectra normalized to peak ground acceleration, displacement and 

velocity, from top to bottom respectively, for the two groups of records considered in the study. The 
average spectra feature segments that present approximately constant response amplification with 
respect to the corresponding peak ground motion parameters, thus making it possible to identify regions 
of spectral acceleration amplification, spectral velocity amplification, and spectral displacement 
amplification.  Henceforth these spectral regions will be simply referred to as acceleration, velocity and 
displacement regions. Incidentally, in Figure 2, the similarity of the average spectra for both groups of 
records is apparent (note that this comparison is to be made in the spectral region associated with the 
normalization parameter of the spectra).  Frequency-band statistics are computed within the determined 
spectral regions for the ensemble of normalized spectra; the mean values correspond to the 
aforementioned ψμ factors, the standard deviation is designated by σμ, and the coefficient of variation 
by Ωμ =σμ/ψμ. 
 
 The calculated frequency-band statistics for the Circumpacific Belt and California groups, and for 
different force-deformation relationships, are presented in several tables in Riddell et al. (Ref. 1), one of 
them is included here as Table 1.  It was found that the factors for elastoplastic systems were very 
similar to those of bilinear and stiffness-degrading systems. Indeed, comparing average spectra, it 
was found that differences occur mainly for intermediate frequencies and large ductilities, and, most 
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importantly, use of the elasto-plastic idealization provides essentially always a conservative estimate 
of the average response.  
 

Simple approximations for the φμ factors have been widely used after first introduced by 
Veletsos and Newmark (Ref. 8). They are based in the well-known “equal-displacement” and 
“equal-energy” rules that relate elastic and inelastic responses, which lead to the ratios 1/μ for the 
displacement and velocity regions, and 12/1 −μ  for the acceleration region. The study showed 
that the old rules were unconservative (underestimate inelastic displacements) in the velocity region 
for systems with response ductility larger than 3, and in the acceleration region for μ>2.  The 
following new rules, that present better fit to the computed φμ factors are recommended: φμ=μ–1.08 in 
the displacement region, φμ=(1.9μ–0.9)–0.7 in the velocity region and φμ=(4.2μ–3.2)–1/3 in the 
acceleration region. Nevertheless, in the displacement region, the 1/μ ratio can still be used since it 
is conservative, approximate enough, and attractive for its simplicity.  It was also shown that the φμ 
factors for the Circumpacific Belt and California groups were very similar, suggesting that these 
factors have certain generality that possibly makes them applicable regardless of the tectonic 
environment. 
 

 
DEMAND  SPECTRA  AND  ESTIMATION  OF  INELASTIC  DEFORMATIONS   

 
 The earthquake demand, or intensity of the ground shaking for the site under consideration, 
needs to be specified in terms of A, V, and D, the peak ground motion parameters.  These parameters 
may have been determined by a specific seismic hazard analysis, or may be consistent with a code 
design spectrum, or may have been specified for a particular facility with special design requirements.  
The parameters must take into account specific conditions such as near-field effects, nearness to active 
faults, and site geology.  The parameters may also be associated with various levels of the earthquake 
hazard: serviceability earthquake, design earthquake, and maximum earthquake (ATC, Ref. 2).  
Discussion of the criteria for specification of the seismic hazard is beyond the scope of this paper. 
 
 The construction of demand spectra is illustrated in Figure 3, using the factors given in Table 1.  A, 
V, and D are drawn in a tripartite logarithmic plot, and the segments JK, KL and LM of the elastic 
spectrum are determined by amplifying the ground motion parameters by the ψμ=1 factors 
corresponding to the three spectral regions.  The limiting frequencies fI, fJ, fM, and fN need to be set for 
each case. In this study, the following values were found appropriate for the data considered: fI=0.05, 
fJ=0.15, fM=10, and fN=30.  The elastic design spectrum is completed with the transition lines IJ and 
MN.  To construct inelastic spectra, factors ψμ for the desired ductility factor μ are applied to the 
ground motion maxima to determine segments J'K', K'L', and L'M' (conversely, the elastic design 
spectrum may be deamplified by the given factors φμ).  Point I' is determined by dividing the elastic 
ordinate at I by μ.  Point N' may be conservatively taken coincident with point N; however, based on 
actual response spectra, the factor μ-η may be used to pass from N to N', with η=0.11, 0.13, and 0.15 for 
elastoplastic, stiffness degrading, and bilinear systems respectively.  When the ordinate of point L' 
results lower than the design ground acceleration A, L' may be joined directly to N'. 
 
 If a greater degree of conservatism is desired, factors associated with smaller probabilities of 
exceedance can be used.  In other words, one is interested in p–percentile ψpμ factors, so that the 
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probability that the response amplification will not exceed ψpμ is p. Assuming normal distribution, the 
percentile amplification factors are computed as ψpμ = ψμ + δpσμ, where the coefficient δp, which 
indicates the deviation from the mean, can be obtained from tables of standard normal probability.  For 
instance, δp is equal to 0, 1, and 2 for p equal to 0.5, 0.841, and 0.977 respectively, and the associated 
ψpμ factors correspond to the 50–percentile, 84.1–percentile and 97.7–percentile values.  Use of 84.1–
percentile factors, i.e., 0.159 probability of exceedance are recommended.  
 

 
EXAMPLES 

 
The examples presented in Section 8.3 of the ATC-40 report (ATC, Ref. 2) are solved next using the 
method and data presented herein.  The example building is a seven-story reinforced concrete frame 
located in seismic zone 4 in California.  Its fundamental period of vibration is 0.88 seconds.  The 
capacity curve obtained from a push-over analysis of the building is shown in Figure 4a. The 
corresponding capacity diagram –representing the first mode response of the building– is the curve 
ABCD shown in Figure 4b (the term “capacity diagram” is used here instead of “capacity spectrum” 
employed in ATC-40 since the latter is considered inappropriate). Figures 4a and 4b are adapted from 
the ATC-40 report.  The conversion from one curve to the other is done by means of the following 
formula (Chopra, Ref. 9; ATC, Ref. 2):  R/m=V/(α1W), α1=L1

2/M1, L1=φ1
Tmr, M1=φ1

Tmφ1, F1= L1/M1, 
u=Δr/(F1φ1,roof), where R is the resistance function of the equivalent SDOF system,  V is the base shear 
of the building, W is the total weight of the building, α1 is the effective modal mass associated with the 
fundamental mode shape φ1 (which can be interpreted as the part of the total mass responding to the 
earthquake in the first mode), M1 is the generalized mass corresponding to φ1, m is the mass matrix, r is 
the displacement transformation vector, F1 is the modal amplitude or participation factor associated with 
φ1,  φ1,roof  is the component of φ1 corresponding to the top story, Δr is the roof displacement, and u is 
the displacement of the equivalent SDOF system. 
 
The demand earthquake considered in the ATC-40 example is represented by the elastic design 
spectrum shown in Figure 4c.  Two sets of seismic coefficients (ICBO, Ref. 10) were used to illustrate 
the effect of different soil profiles: CA=0.4 and CV=0.4, and CA=0.44 and CV=0.64, the latter the softer.  
These two cases will be dealt with in Examples 1 and 2 respectively. CA represents the effective peak 
acceleration or design ground acceleration, i.e., is equivalent to A in this paper.  CV  is the ordinate of 
the 5%  damped elastic design spectrum at T=1 sec.  If the amplification factor ψμ=1.74 for μ=1 for the 
velocity region (Table 1) is assumed, the relation ωsCV=ωsψμV=2.5CA holds at T=Ts (Fig. 4c), with Ts= 
CV/2.5CA.  For the first soil type A= CA=0.4g, Ts= 0.4 sec and ωs=2π/Ts=15.7 rad/sec, then 
V=1g/(15.7·1.74)=35.9 cm/sec.  For the softer soil profile A=CA=0.44g, Ts=0.582 sec, ωs=10.8 rad/sec, 
and V=1.1g/(10.8·1.74)=57.4 cm/sec. 
 
Example 1: 
a) First, the same elastic spectrum considered in ATC-40 will be used.  The corresponding ground 

motion, A=0.4g and V= 35.9 cm/sec, is plotted in Figure 11d.  The spectral regions of acceleration 
amplification (LM in Figure 3) and velocity amplification (KL in Figure 3) correspond in this case 
to 2.5A=1g and ψμV=1.74·35.9=62.4 cm/sec as shown in Figure 4d. 

b) A bilinear model will be used. The model parameters must be selected to fit the capacity diagram 
(Figure 4b) up to the expected maximum response umax, so that the total area under the bilinear 
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representation is equal to the area under the capacity diagram, i.e. equal energy is associated with 
both.  In this case, a bilinear model with yield point Y with coordinates (0.342, 2.75) is chosen 
(Figure 4b).   

c) The chosen model has an elastic frequency k/m=ω = m/uR yy = 50.342g/2.7 =6.93 rad/sec, 

or T=2π/ω=0.907 sec (very close to the actual fundamental period of the building), or f=1.1 cps.  
The model is represented in Figure 4d by point Y with tripartite coordinates: (f=1.1, 
uy=2.75”=6.98 cm, ωuy=6.93·6.98=48.3 cm/sec). 

d) The system is in the velocity region, and its ordinate features a reduction φμ=48.3/62.4 =0.774 
with respect to the elastic spectrum. Using the relationship φμ=(1.9μ–0.9)–0.7 a ductility response 
μ=1.23 is obtained. 

e) The maximum displacement of the equivalent system is umax=μuy=1.23·2.75=3.38”=8.6 cm. This 
result is in very good agreement with the maximum displacement of 3.4” calculated in the ATC-40 
report.  The observation can be made however that the inelastic spectrum procedure is considerably 
simpler than the ATC-40 method. 

f) The last step of the solution is to go back to estimate the displacement of the roof of the building.  
This is done using the above relation between u and Δr.  According to the ATC-40 report 
calculations F1φ1,roof=1.31, therefore Δr=1.31umax =4.43”=11.3 cm. 

g) In order to have an indication of the uncertainty underlying estimated deformations and structural 
performance, it is recommended to consider a demand spectrum associated to a 0.159 probability of 
exceedance (response amplification associated to mean plus one standard deviation probability 
level).  It is worth noting that for this verification the ground motion parameters that define the 
seismic hazard do not change, but the earthquake demand does change as a result of other ground 
motion characteristics that influence the response, like the power, frequency content, and the 
duration of motion.  Then, amplification factors ψμ + σμ  shall be used.  In this case, factors of 2.84 
and 2.39 are obtained from Table 1 for the acceleration and velocity regions respectively.  The 
ordinates of the demand spectrum become 2.84A=2.84·0.4g=1.136g and 2.39V=2.39·35.9=85.8 
cm/sec, as shown by the dashed line K”L”M” in Figure 4d.  

h) The system is in the velocity region and features a reduction φμ=48.3/85.8=0.563 from the elastic 
ordinate K”L”. Using the relationship φμ=(1.9μ–0.9)–0.7 a ductility response μ=1.67 is obtained. 
The maximum displacement of the system, for a probability of exceedance of 0.16, is 
umax=μuy=1.67·2.75=4.6”=11.67 cm. Note that this displacement is 36% larger than that obtained in 
item (e) above.   

i) Similarly to item (f) above, the roof displacement is Δr=1.31·11.67=15.3 cm.  Finally it is of 
interest to note that the example building is rather robust (3000 kips capacity for a total weight 
of 10540 kips); therefore, it experiences a mild inelastic response (low ductility) for the 
earthquake demands considered. 

 
Example 2: 
a) This example will be solved analytically without the aid of a figure. The ground motion in this case 

is A=0.44g and V=57.4 cm/sec, as calculated above.  The elastic spectrum ordinates are 2.5A=1.1g 
in the acceleration region and ψμV=1.74·57.4=99.9 cm/sec in velocity region.  

b) The system is represented by the same point determined above for Example 1 (point Y), with 
tripartite coordinates: (f=1.1, uy=2.75”=6.98 cm, ωuy=6.93·6.98=48.3 cm/sec). 
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c) The system is in the velocity region and presents a reduction φμ=48.3/99.9=0.484 with respect to 
the elastic spectrum.  Then, the corresponding ductility is μ=1.96.  

d) The maximum displacement of the equivalent system is umax=μuy=1.96·2.75=5.4”=13.7 cm. In 
this case, the various ATC-40 procedures give maximum displacements from 5.5” to 6”. 

e) The ordinates of the mean plus one standard deviation spectrum are in this case 2.84A=1.25g in 
the acceleration region and 2.39V=2.39·57.4=137 cm/sec in velocity region. The system is in the 
velocity region and presents a reduction factor φμ=48.3/137=0.3526.  The corresponding 
ductility response is μ=2.81, and the maximum displacement of the equivalent system is 
umax=μuy=2.81·2.75=7.72”=19.6 cm, i.e., 43% larger than the displacement obtained for the 
spectrum shown in Figure 4c. 

CONCLUDING  REMARKS 
 
  Performance-based seismic design requires explicit assessment of earthquake demands on 
structures, particularly inelastic deformations, to ensure they are within acceptable limits. Since 
methods for nonlinear response history analysis of multi-degree-of-freedom buildings have not 
reached yet a stage of development to permit generalized use, simple approaches based on the 
response of single-degree-of-freedom (SDOF) systems have been proposed.  The inelastic response 
of SDOF systems subjected to earthquakes can be directly and reliably estimated by means of the 
traditional Newmark-Hall procedure. This method may be considered to have a number of 
advantages, as pointed out by Riddell et al. (Ref. 1).  
 

New factors for constructing demand spectra in the Newmark-Hall format were obtained for 
two large ensembles of earthquake records: Circumpacific Belt and California.  With regard to 
specific issues addressed in this study, the following conclusions were drawn:  a) the effect of the 
type of force-deformation relationship on the average response of nonlinear systems is not 
significant, and responses can be conservatively predicted using the simple elastoplastic model,  b) 
the well known “equal-displacement” and “equal-energy” rules to relate elastic and inelastic 
responses are, on the average, unconservative for systems with moderate to large ductility.  
Improved rules are recommended.  An example shows that inelastic deformations of SDOF systems 
can be directly obtained from a demand spectrum without consideration of the sequence of 
equivalent linear systems required by the ATC-40 procedures.  
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Table 1:  Factors for constructing elastic and inelastic demand spectra for elastoplastic 
systems with 5% damping.  Californian records. 

 
Spectral 
Region  

Ductility     
μ ψμ σμ COV φμ 

 1.0 1.705 0.647 0.380 1.000 
 1.5 1.051 0.387 0.368 0.617 

Displacement 2.0 0.753 0.268 0.356 0.441 
 3.0 0.490 0.188 0.383 0.288 
 5.0 0.293 0.120 0.407 0.172 
 10.0 0.142 0.060 0.421 0.084 
 1.0 1.738 0.650 0.374 1.000 
 1.5 1.078 0.341 0.317 0.620 

Velocity 2.0 0.803 0.247 0.307 0.462 
 3.0 0.551 0.170 0.308 0.317 
 5.0 0.368 0.113 0.306 0.212 
 10.0 0.222 0.066 0.295 0.128 
 1.0 2.159 0.682 0.316 1.000 
 1.5 1.490 0.394 0.265 0.690 

Acceleration 2.0 1.227 0.279 0.227 0.568 
 3.0 0.997 0.191 0.191 0.462 
 5.0 0.813 0.139 0.171 0.377 
 10.0 0.643 0.119 0.185 0.298 
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Figure 1.  Inelastic Yield Spectra for stiffness-degrading systems with 5% damping subjected to the 

Sylmar, Northridge record, component N00E, January 17, 1994. 
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Figure 2.  Average spectra normalized to peak ground acceleration, displacement, and velocity (from 

top to bottom), for elastic systems with 5% damping 



XX Jornadas Nacionales de Ingeniería Estructural  
 

 

 
 

Figure 3.  Construction of demand spectra 
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Figure 4.  Example 1:  a) Push-over curve, b) capacity diagram, c) demand earthquake, d)demand 

spectra 


