# AASHTO T-3 TRIAL DESIGN BRIDGE DESCRIPTION

State: Illinois

Trial Design Designation: <u>*IL-4*</u>

Bridge Name:

Superstructure Type: <u>Simply supported PPC-I beam composite with concrete deck</u>

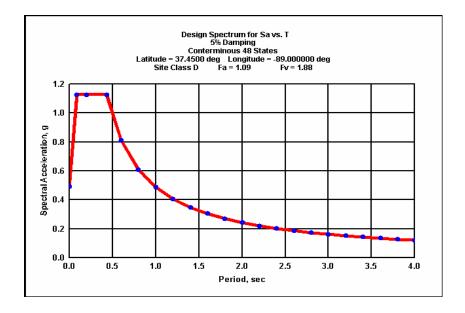
Span Length(s): <u>4@43.5 ft. (total 174.0 ft.)</u>

Substructure Type: <u>*Pier wall supported on pile cap at bents*</u>

Foundation: <u>Steel piles at abutments and bents</u>

Abutments: <u>Seat type supported on steel piles</u>

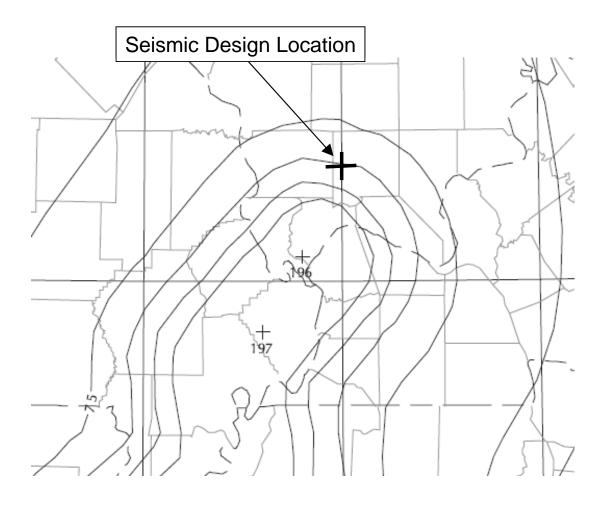
Seismic Design Category (SDC): <u>"C"</u>


Seismic Design Strategy (Type 1, 2 or 3): <u>Type 1</u>

Design Spectral Acceleration at 1-second Period (S<sub>D1</sub>):  $\underline{0.487g}$ 

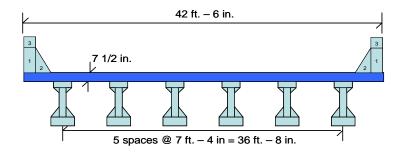
Additional Description (Optional):

Bridge No.: 4 Transverse Seismic Calculations Description: 4-Span PPC-I Beam with Wall Piers and Steel Piles at Piers and Abutments (No Skew) (Pile Design Method Similar for Imbsen and LRFD, therefore not shown - See Bridge No. 2) (Pile Design Method Similar for Imbsen and LRFD, therefore not shown - See Bridge No. 2) (Pile Design Method Similar for Imbsen and LRFD, therefore not shown - See Bridge No. 2) (Pile Design Method Similar for Imbsen and LRFD, therefore not shown - See Bridge No. 2) (Pile Design Method Similar for Imbsen and LRFD, therefore not shown - See Bridge No. 2) (Pile Design Method Similar for Imbsen and LRFD, therefore not shown - See Bridge No. 2) (Pile Design Method Similar for Imbsen and LRFD, therefore not shown - See Bridge No. 2) (Pile Design Method Similar for Imbsen and LRFD, therefore not shown - See Bridge No. 2) (Pile Design Method Similar for Imbsen and LRFD, therefore not shown - See Bridge No. 2) (Pile Design Method Similar for Imbsen and LRFD, therefore not shown - See Bridge No. 2) (Pile Design Method Similar for Imbsen and LRFD, therefore not shown - See Bridge No. 2) (Pile Design Method Similar for Imbsen and LRFD, therefore not shown - See Bridge No. 2) (Pile Design Method Similar for Imbsen and LRFD, therefore not shown - See Bridge No. 2) (Pile Design Method Similar for Imbsen and LRFD, therefore not shown - See Bridge No. 2) (Pile Design Method Similar for Imbsen and LRFD, therefore not shown - See Bridge No. 2) (Pile Design Method Similar for Imbsen and LRFD, therefore not shown - See Bridge No. 2) (Pile Design Method Similar for Imbsen and LRFD, therefore not shown - See Bridge No. 2) (Pile Design Method Similar for Imbsen and LRFD, therefore not shown - See Bridge No. 2) (Pile Design Method Similar for Imbsen and LRFD, therefore not shown - See Bridge No. 2) (Pile Design Method Similar for Imbsen and LRFD, therefore not shown - See Bridge No. 2) (Pile Design Method Similar for Imbsen and LRFD, therefore not shown - See Bridge No. 2) (Pile Desig

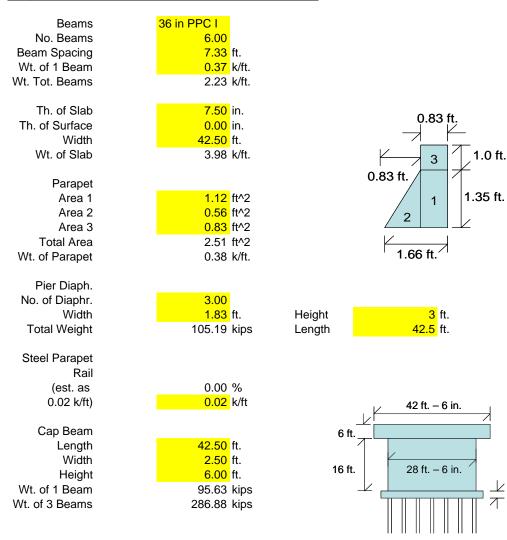

#### Design Response Specturm



# SDC and Other Pertinent Design Spectrum Information


| S <sub>D1</sub> = | 0.487 g       | Seismic Des | ign Category C | ;       |
|-------------------|---------------|-------------|----------------|---------|
| S <sub>DS</sub> = | 1.128 g       | 0.3g <=     | 0.487g         | < 0.5 g |
| End               |               | (Imbsen Tab | le 3.5-1)      |         |
| Plateau           | 0.432 Seconds |             |                |         |

# Chosen Location for Bridge Study and 0.2 Second 1000 year Accleration Map (2006 Map)




 $\frac{1}{\sqrt{2}}$  2 ft. – 3 in.

### Simple Cross Section of Deck

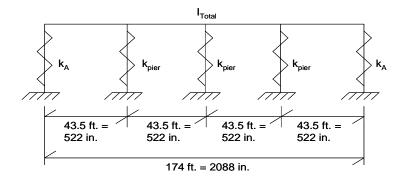


#### Weight of Super and Sub Structure for Seismic Calculations



# Weight of Super and Sub Structure for Seismic Calculations (Cont.)

| 3 ft. of walls<br>Width<br>Height<br>Wt. of 1Wall<br>No. of Walls<br>Wt. of 3 Walls                                                                                        | 28.50 ft. Thickness 2.50 ft.<br>3.00 ft.<br>32.06 kips<br>3<br>96.19 kips                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total Wt.<br>for Seismic<br>Calculations<br>Super Length<br>Total Weight<br><u>Transverse Period</u>                                                                       | 174 ft.<br>1704 kips<br>alculation                                                                                                                                                                                                             |
| Pier Piles<br>Stiffness<br>(Wall is Rigid)<br>Pile Type<br>E <sub>s</sub><br>I <sub>s</sub><br>No. Piles<br>h <sub>c</sub><br>k <sub>p</sub><br>k <sub>pier</sub>          | $k_{p} = \frac{12 \times E_{s} \times I_{s}}{h_{c}^{3}}$ HP 8 x 36 29000 ksi 40 in <sup>4</sup> 14 61.2 inches (depth of fixity) 61 k/in 852 k/in                                                                                              |
| I of Super-<br>structure<br>Transverse                                                                                                                                     |                                                                                                                                                                                                                                                |
| Ec <sub>Prestressed</sub><br>f' <sub>c</sub><br>E <sub>c</sub><br>n (mod. Ratio)<br>I <sub>slab</sub><br>Area <sub>Parapet</sub><br>Area 1 Beam<br>Area <sub>Conc Bm</sub> | 4031 ksi<br>3500 psi<br>3372 ksi<br>1.20 Area <sub>ConcBm</sub> = $\frac{n \times Area}{2}$ Transf. Area with 50% Shear Lag<br>82906875 in <sup>4</sup><br>361.4 in <sup>2</sup><br>357 in <sup>2</sup><br>213.4 in <sup>2</sup> (Transformed) |


#### Transverse Period Calculation (Cont.)

#### Momen of Inertia of Superstructure Table

|         | No. | $I_0(ln^4)$ | A (in <sup>2</sup> ) | x bar (in) | A (x bar) <sup>2</sup> (in <sup>4</sup> ) | I (in⁴)    |
|---------|-----|-------------|----------------------|------------|-------------------------------------------|------------|
| Parapet | 2   |             | 361.44               | 243        | 21342670.56                               | 42685341.1 |
| Slab    | 1   | 82906875    |                      |            | 82906875                                  | 82906875   |
| Steel 1 | 2   |             | 213.4                | 44         | 413092.6747                               | 826185.349 |
| Steel 2 | 2   |             | 213.4                | 132        | 3717834.072                               | 7435668.14 |
| Steel 3 | 2   |             | 213.4                | 220        | 10327316.87                               | 20654633.7 |

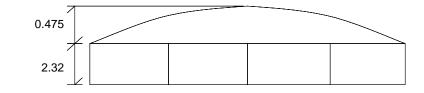
 $\begin{array}{c} I_{Total} & 1.545E{+}08 \hspace{0.1 cm} \text{in}^4 \\ A_{Total} & 5828 \hspace{0.1 cm} \text{in}^2 \end{array}$ 

Model the Bridge Transversely with Itotal of the Superstr. and Springs for the Abutment Piles and Pier Cols.



Estimate the Abutment Pile Transverse Stiffness

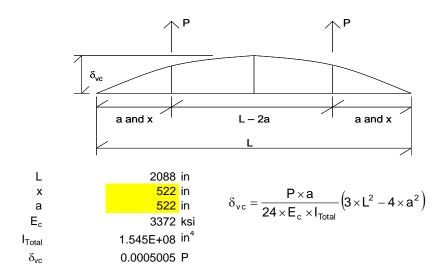
k<sub>A</sub> 450 k/in


Solve for the Displacement from Simple Model Above as Outlined Below for a 1 k/in Uniform Load

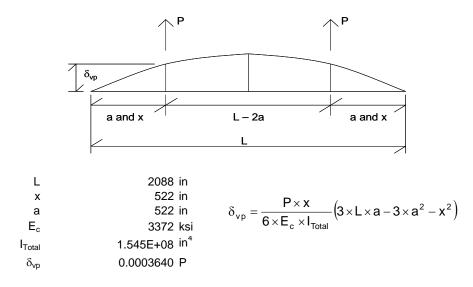
Find the Deflection at the Center of the Bridge Assuming No Piers and Infinitely Stiff Abutments

$$\begin{array}{c|cccc} w & & & 1 \ k/in \\ L & & 2088 \ in \\ E_c & & 3372 \ ksi \\ I_{Total} & & 1.545E+08 \ in^4 \\ \delta_c & & 0.475 \ in \end{array} \delta_C = \frac{5 \times w \times L^4}{384 \times E_c \times I_{Total}} \\ \end{array}$$

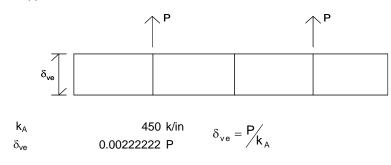
Find the Deflection Along the Bridge Assuming an Infinitely Stiff Superstr., No Piers, and Abut. Springs



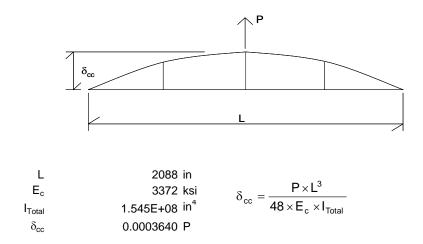




Find the Total Estimated Displacement Without the Piers

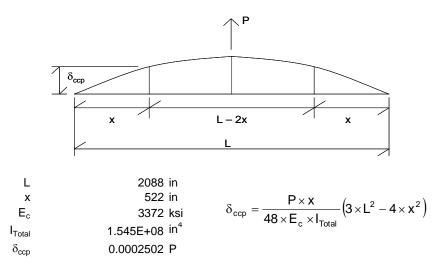
 $\delta_{\rm T} = \delta_{\rm c} + \delta_{\rm e} \qquad \qquad 2.795 \ {\rm in}$ 


Find the Estimated Deflection at the Center of the Bridge for a Two Point Load at Piers with Infinitely Stiff Abuts. In Terms of an Applied Load "P".

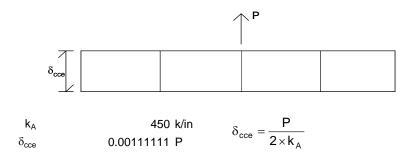



Find the Estimated Deflection at the Pier of the Bridge for a Two Point Load at Piers with Infinitely Stiff Abuts. In Terms of an Applied Load "P".




Find the Estimated Uniform Deflection for a 2 Point Load at Piers with Springs at Abuts. In Terms of an Applied Load "P".




Find the Estimated Deflection at the Center of the Bridge for a 1 Point Load at Piers with Infinitely Stiff Abuts. In Terms of an Applied Load "P".



Find the Estimated Deflection at the Outer Piers of the Bridge for a 1 Point Load at Center Pier with Infinitely Stiff Abuts. In Terms of an Applied Load "P".



Find the Estimated Uniform Deflection for a 1 Point Load at Piers with Springs at Abuts. In Terms of an Applied Load "P".



Find the Fraction of the Estimated Pier Deflection at the Outer Piers Versus that at Center Span

| $\begin{array}{lll} \delta_{vc} & 0.0005005 \ P \\ \delta_{vp} & 0.0003640 \ P \\ \delta_{cc} & 0.0003640 \ P \\ \delta_{ccp} & 0.0002502 \ P \\ \delta_{ve} & 0.00222222 \ P \\ \delta_{cce} & 0.00111111 \ P \\ fr & 0.940 \end{array}$ | $fr = \frac{\delta_{ve} + \delta_{cce} + \delta_{vp} + \delta_{ccp}}{\delta_{ve} + \delta_{cce} + \delta_{vc} + \delta_{cc}}$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|

Find the Outer Pier Reactions (V\_0) in Terms of  $\delta_{\text{max}}$ , the Actual Estimated Deflection of the Bridge

| fr                | 0.940                  |                                                    |
|-------------------|------------------------|----------------------------------------------------|
| k <sub>pier</sub> | 852.3 k/in             | $V_{00p} = fr \times \delta_{max} \times k_{pier}$ |
| V <sub>00p</sub>  | 801.5 δ <sub>max</sub> |                                                    |

Find the Center Pier Reaction (V\_0) in Terms of  $\delta_{\text{max}}$  the Actual Estimated Deflection of the Bridge

| k <sub>pier</sub> | 852.3 k/in             | V = S = k                                |
|-------------------|------------------------|------------------------------------------|
| V <sub>00c</sub>  | 852.3 δ <sub>max</sub> | $V_{00c} = \delta_{max} \times k_{pier}$ |

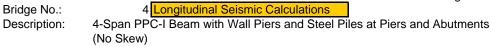
Solve for  $\delta_{\text{max}}$ :

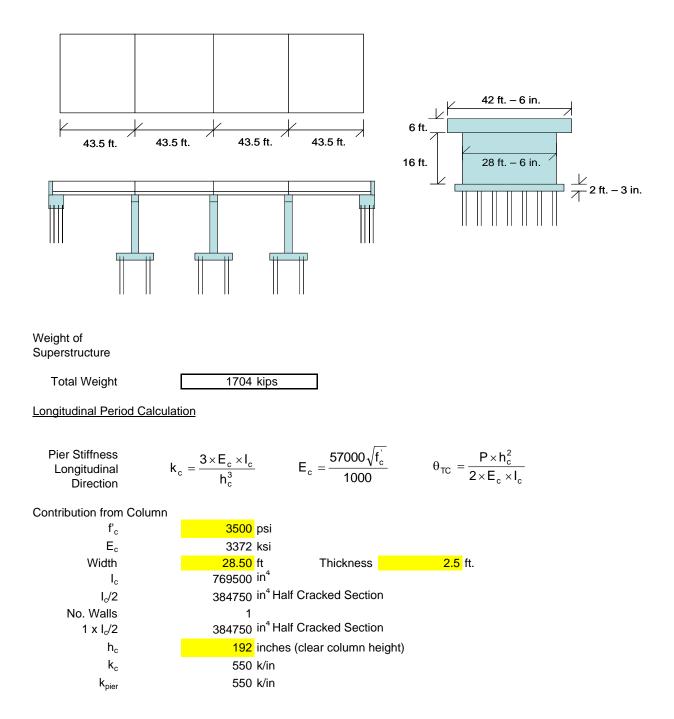
 $\delta_{vc} + \delta_{cc} + \delta_{ve} + \delta_{cce} = 0.004198 \text{ P}$ 

Or (splitting up deflection components)

| $\delta_{vc}$ + $\delta_{ve}$<br>$\delta_{cc}$ + $\delta_{cce}$                                                                        |        |                                              | 0.002723 P<br>0.001475 P |       |   |                       |
|----------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------|--------------------------|-------|---|-----------------------|
| Set:<br>$P = V_{00p}$<br>$P = V_{00c}$                                                                                                 | =<br>= | 801.5 δ <sub>ι</sub><br>852.3 δ <sub>ι</sub> |                          |       |   |                       |
| $\begin{array}{l} \text{Therefore:} \\ \delta_{\text{vc}} + \delta_{\text{ve}} \\ \delta_{\text{vc}} + \delta_{\text{ve}} \end{array}$ | =<br>= | 0.002723<br>2.182253 δ <sub>ι</sub>          | X<br>max                 | 801.5 | x | $\delta_{\text{max}}$ |
| $\delta_{cc}$ + $\delta_{cce}$<br>$\delta_{cc}$ + $\delta_{cce}$                                                                       | =<br>= | 0.001475<br>1.257242 δ <sub>ι</sub>          | X                        | 852.3 | x | $\delta_{\text{max}}$ |

And:


The Actual Estimated Delfection of the Bridge is the Deflection Without Piers Minus the Contribution with the Piers


| $\delta_{\text{max}}$ | = | $\delta_{T}$ | - | <b>2.182253</b> δ <sub>max</sub> |
|-----------------------|---|--------------|---|----------------------------------|
|                       |   |              | - | 1.257242 δ <sub>max</sub>        |
|                       |   |              |   |                                  |
| $\delta_{\text{max}}$ | = | 2.795        | / | 4.439495                         |
| $\delta_{\text{max}}$ | = | 0.630 in     |   |                                  |

# Transverse Period Calculation (Cont.)

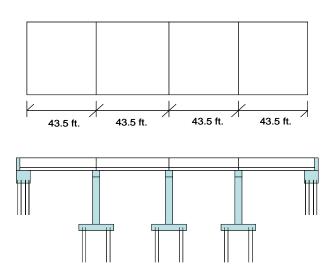
Solve for the "Equivalent Stiffness" of the Bridge in the Transverse Direction

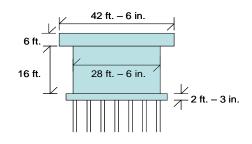
| W<br>L<br>δ <sub>max</sub><br>k <sub>Bridge</sub> |                        | 1<br>2088<br>0.630<br>3317 | in                  | k <sub>Bridge</sub> = | $\frac{w \times L}{\delta_{max}}$      |            |            |                  |
|---------------------------------------------------|------------------------|----------------------------|---------------------|-----------------------|----------------------------------------|------------|------------|------------------|
| Solve for the Period                              | Τb                     |                            |                     |                       |                                        |            |            |                  |
| Tot. Weight (W)<br>g<br>k <sub>Bridge</sub><br>T  |                        | 3316.510                   | in/sec <sup>2</sup> | $T = 2\pi$            | $\sqrt{\frac{W}{g \times k_{Bridge}}}$ |            |            |                  |
| Transverse Seismi                                 | c Force On S           | Superstructu               | ure (Base           | <u>Shear)</u>         |                                        |            |            |                  |
| 0.23                                              | <                      | 0.432                      | seconds             |                       |                                        |            |            |                  |
| Therefore:                                        | <mark>112.8%</mark> of | the Mass is                | s "Effectiv         | e" and the            | Total Seismic L                        | oad in the | e Transver | se Direction is: |
| 1.128                                             | x                      | 1704                       | =                   | 1                     | 923 kips (Base                         | Shear)     |            |                  |
| or:<br>1923                                       | /                      | 2088                       | =                   |                       | 0.92 k/in (Base                        | Shear)     |            |                  |
| Transverse Seismi                                 | c Force on O           | uter Piers (               | Base She            | ear)                  |                                        |            |            |                  |
| V <sub>Base Shear P</sub> =                       | 0.92                   | /                          | 1                   | x                     | 0.630                                  |            | x          | 801.5            |
| V <sub>Base Shear P</sub> =                       |                        | 465                        | kips                |                       |                                        |            |            |                  |
| Transverse Seismi                                 | <u>c Force on C</u>    | enter Pier (               | Base She            | <u>ear)</u>           |                                        |            |            |                  |
| V <sub>Base Shear P</sub> =                       | 0.92                   | /                          | 1                   | x                     | 0.630                                  |            | x          | 852.3            |
| V <sub>Base Shear P</sub> =                       |                        | 494                        | kips                |                       |                                        |            |            |                  |
| Transverse Seismi                                 | <u>c Force on A</u>    | butments (I                | Base She            | <u>ar)</u>            |                                        |            |            |                  |
| V <sub>Base Shear A</sub> =                       | 1923                   | -                          | 929.252             | 48 -                  |                                        | 494        | / 2        |                  |
| V <sub>Base Shear A</sub> =                       |                        | 250                        | kips                |                       |                                        |            |            |                  |
| Transverse Seismi                                 | c Displaceme           | ent of Cente               | er Pier             |                       |                                        |            |            |                  |
| $\delta_{PierT}$ =                                | 494                    | /                          | 8                   | 52 =                  |                                        | 0.58 in.   |            |                  |





is:


Long. Base Sh & Displ Pg. 2 Contribution from Cap Beam (Stiffness is infinite but it deflects as a rigid body and contributes to pier stiffness)


Find the estimated deflection at the top of column for a load "P"

| $\delta_{TC}$ =           | Р                   | /                 | 550                  | in                            |                          |                         |                   |
|---------------------------|---------------------|-------------------|----------------------|-------------------------------|--------------------------|-------------------------|-------------------|
| Find the estim            | nated rotation at t | the top of co     | lumn for a l         | oad "P"                       |                          |                         |                   |
| $\theta_{TC} =$           | Р                   | /                 | 70390.7              | radians                       |                          |                         |                   |
| Cap height                | <mark>72</mark> in  | I                 |                      |                               |                          |                         |                   |
| Find the adde             | ed estimated defle  | ection at the     | top of the p         | bier                          |                          |                         |                   |
| $\delta_A =$              | Cap hght            | x                 | $\theta_{\text{TC}}$ | =                             | Р                        | /                       | 977.6 in          |
| Find the total            | estimated delfec    | tion at the to    | p of the pie         | er                            |                          |                         |                   |
| $\delta_{\text{TD}}$ =    | $\delta_{A}$        | +                 | $\delta_{\text{TC}}$ | =                             | Р                        | /                       | 352.0 in          |
| So, the stiffne           | ess of a pier is:   |                   |                      |                               |                          |                         |                   |
| k <sub>pier</sub> =       | 352 k               | ⁄in               |                      |                               |                          |                         |                   |
| Find the Mass             | s of the Superstru  | ucture            |                      |                               |                          |                         |                   |
| M =                       | 1704                | /                 | 386.4                | =                             | 4.4                      | 1 k-sec²/in             |                   |
| Find the perio            | od T:               |                   |                      |                               |                          |                         |                   |
| T =                       |                     | 0.41              | sec.                 | $T = 2\pi \sqrt{\frac{3}{3}}$ | M<br>< k <sub>pier</sub> |                         |                   |
| Longitudinal S            | Seismic Force Or    | <u>Superstruc</u> | ture <u>(Base</u>    | <u>Shear)</u>                 |                          |                         |                   |
| 0.                        | .41 <               | 0.432             | Seconds              |                               |                          |                         |                   |
| Therefo                   | ore: 112.8% o       | f the Mass is     | "Effective"          | and the Tota                  | I Seismic Loa            | d in the Longitud       | dinal Direction i |
| 1.128                     | x                   | 1704              | =                    | 1923                          | kips (Base Sh            | ear)                    |                   |
|                           | Seismic Force Or    | Each Pier a       | esumina th           | na ahutmanta                  | don't contribu           | te (Base Shear)         |                   |
| Longitudinare             |                     |                   | <u>issunnig ti</u>   |                               |                          | <u>te (Dase Offear)</u> |                   |
| 1923                      | /                   | 3                 | =                    | 641                           | kips (Base Sh            | ear)                    |                   |
| Longitudinal S            | Seismic Displace    | ment of Pier      |                      |                               |                          |                         |                   |
| $\delta_{\text{PierL}}$ = | 641                 | /                 | 352.0                | ) =                           | 1.82                     | 2 in.                   |                   |

Wall Design & Displ Chk Pg. 1

Bridge No.: 4 Force Based Wall Design and Displacement Check Description 4-Span PPC-I Beam with Wall Piers and Steel Piles at Piers and Abutments (No Skew)





#### Center Wall Forces

#### Dead

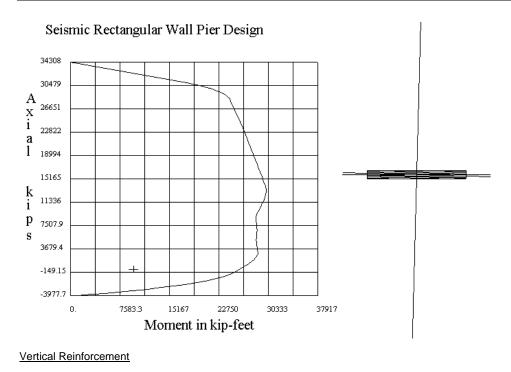
| Dead Load Total     | 1704  |      |
|---------------------|-------|------|
| Bridge Length       | 436.3 | ft.  |
| Dead Load per ft.   | 3.91  | k/ft |
| Dead Load Ctr. pier | 169.9 | kips |
| No. of Walls        | 1     |      |
| Dead Ld. Ctr. Wall  | 169.9 | kips |
| Plus Remaining Wall | 138.9 | kips |
| Design Dead         | 308.9 | kips |

Transverse Shear and Moment (Simple Cantilever/Shear Wall Statics)

| S <sub>P</sub> (Pier Base Shear) | 494 kips      |
|----------------------------------|---------------|
| Col arm (h)                      | 22.00 ft.     |
| M <sub>WallBot</sub>             | 10869.8 k-ft. |

Longitudinal Shear and Moment (Simple Cantilever Statics)

| $S_L$ (Pier Base Shear) | 641 kips      |
|-------------------------|---------------|
| Col arm (h)             | 22.00 ft.     |
| M <sub>WallBot</sub>    | 14098.8 k-ft. |


#### Orthogonally Combined Load Cases

Transverse Dominant - Load Case 1

| P =                                                           | 308.9 kip                                           | os           |                                  |           |     |        |                        |
|---------------------------------------------------------------|-----------------------------------------------------|--------------|----------------------------------|-----------|-----|--------|------------------------|
| M⊤ =                                                          | 10869.8                                             | /            | 1.5 (R-factor)                   |           |     | =      | 7247 k-ft              |
| $M_L =$                                                       | 14098.8                                             | /            | 1.5 (R-facto                     | x         | 0.3 | =      | 2820 k-ft              |
| M <sub>Combined</sub>                                         | =                                                   |              |                                  |           |     |        | 7776 k-ft              |
| $\lambda =$                                                   | tan <sup>-1</sup> (M <sub>T</sub> /M <sub>L</sub> ) |              |                                  |           |     | =      | 68.7 degrees           |
| Longitud                                                      | inal Dominant - L                                   | .oad C       | ase 2 - Governs tł               | ne Design |     |        |                        |
|                                                               |                                                     |              |                                  |           |     |        |                        |
| P =                                                           | 308.9 kir                                           | os           |                                  |           |     |        |                        |
| P =<br>M <sub>T</sub> =                                       | 308.9 kij<br>10869.8                                | os<br>/      | 1.5 (R-facto                     | x         | 0.3 | =      | 2174 k-ft              |
| -                                                             |                                                     | os<br>/<br>/ | 1.5 (R-factor)<br>1.5 (R-factor) | x         | 0.3 | =<br>= | 2174 k-ft<br>9399 k-ft |
| M <sub>T</sub> =                                              | 10869.8<br>14098.8                                  | os<br>/<br>/ | ,                                | x         | 0.3 |        |                        |
| M <sub>T</sub> =<br>M <sub>L</sub> =                          | 10869.8<br>14098.8                                  | os<br>/<br>/ | ,                                | x         | 0.3 |        | 9399 k-ft              |
| M <sub>T</sub> =<br>M <sub>L</sub> =<br>M <sub>Combined</sub> | 10869.8<br>14098.8<br>=                             | os<br>/<br>/ | ,                                | x         | 0.3 |        | 9399 k-ft<br>9647 k-ft |

Wall Vertical Reinforcement Design - "Nominal Provided"

Pier is Adequate with or without R-Factors Applied (i.e. "not as a ductile or seismic column")

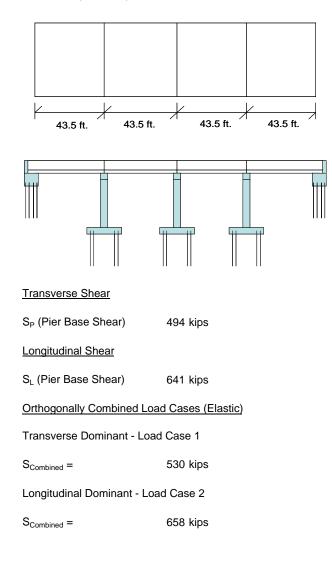


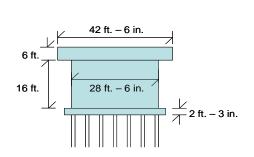
| Bars:                 | #8                                                  |
|-----------------------|-----------------------------------------------------|
| No.                   | 84                                                  |
| No. Transverse Faces  | 39                                                  |
| No. Longitudial Faces | 5                                                   |
| ρν                    | 0.0072 > 0.0025 (LRFD 5.10.11.4.2 and Imbsen 8.17 - |
|                       | Provisions are Identical)                           |

### Displacement Check

We interpret this as a way to check deflections for walls. Imbsen provsions are either somewhat incomplete or unclear on this.

## Scratch Calculation Table


| Imbsen Se | ction 4.8 |       |        |         |         |
|-----------|-----------|-------|--------|---------|---------|
| Wall      | Wall      | H/100 | х      | Delta   | Delta   |
| Height    | Width     |       | Fixed- | Calc.   | Allow.  |
| _         |           |       | Pinned | Fixed - | Fixed - |
|           |           |       |        | Pinned  | Pinned  |
| (ft)      | (ft)      | (in)  |        | (in)    | (in)    |
| 22        | 2.50      | 2.64  | 0.11   | 10.10   | 10.10   |


Longitudinal Direction

|        | Imbsen Fig. 5.4 |          |        |            |            |
|--------|-----------------|----------|--------|------------|------------|
|        |                 |          |        |            | Long.      |
| Wall   | Steel           | Fraction | Long.  | Long.      | Allowable  |
| Height | Ratio           | of Ig    | Period | Deflection | Deflection |
| (ft.)  | (Ast/Ag)        | •        | (Sec.) | (in)       | (in)       |
| 22     | 0.0072          | ?        | 0.41   | 1.82*      | 10.10      |

\*Even Amplified per Imbsen 4.3.3 will be OK

#### Bridge No. 4 Design for Shear Descriptior 4-Span PPC-I Beam with Wall Piers and Steel Piles at Piers and Abutments (No Skew)





# Shear Strength

|                                                             | and Imbsen 8.8.3 are Ider<br>Minimum Shear Reinforce      |           |
|-------------------------------------------------------------|-----------------------------------------------------------|-----------|
| Take the Lesser of                                          | :                                                         |           |
| $V_r = 0.253 \sqrt{f_c^{'}} bd$                             | =                                                         | 4771 kips |
| or                                                          |                                                           |           |
| $V_r = 0.9 \bigg[ 0.063 \sqrt{f}$                           | 2430 kips                                                 |           |
| Minimum reinforce                                           | ment is Adequate.                                         |           |
| ρ <sub>h</sub> set to:<br>b set to<br>d set to<br>f'c<br>fy | minimun of 0.0025<br>30 in<br>336 in<br>3.5 ksi<br>60 ksi |           |

A "short" spacing of bars may be used near the base of wall if confinement or plastic hinging is a potential concern in the longitudinal direction. Wall Shear Reinf Design Pg. 2

Bridge No.: 4 Seat Width Requirements Description 4-Span PPC-I Beam with Wall Piers and Steel Piles at Piers and Abutments (No Skew)

# Seat Width Requirements

Compare Imbsen with NCHRP 12-49 and the Current LRFD Code LRFD calibrated for 500 years and 12-49 calibrated to 1.0 Sec. Accel. with improved Soil Coef. so it is "return period independent".

NCHRP 12-49 
$$N = \left[ 0.10 + 0.0017L + 0.007H + 0.05\sqrt{H}\sqrt{1 + \left(2\frac{B}{L}\right)^2} \right] (1 + 1.25F_vS_1) \quad \text{(metric)}$$

| L =    | 174 ft  | or | 53.04 meters |
|--------|---------|----|--------------|
| FvS1 = |         |    | 0.487 g      |
| H =    | 22 ft   | or | 6.71 meters  |
| B =    | 42.5 ft | or | 12.95 meters |

Imbsen 4.12.2  $N = (4 + \Delta_{ot} + 1.65\Delta_{eq}) \ge 12$ 

| $\Delta ot =$ | 0.01L = | 1.74 inches          |
|---------------|---------|----------------------|
| ∆eq =         |         | 3* inches            |
|               |         | *Estimated Amplified |

LRFD 4.7.4.4

N = 8 + 0.02L + 0.08H

L = 174 ft %N for Cat. C = 150 H = 22 ft

Summary of Seat Width Requirements (NCHRP 12-49, Imbsen and LRFD) for 16 Cases

|        | Imbsen F | ig. 5.4  |            | Imbsen | Imbsen | NCHRP | Current |
|--------|----------|----------|------------|--------|--------|-------|---------|
|        |          |          |            | 4.12.2 | 4.12.2 | 12-49 | LRFD    |
| Wall   | Steel    | Fraction | Long.      | Calc.  | Req.   | Req.  | Req.    |
| Height | Ratio    | of Ig    | Deflection | Seat   | Seat   | Seat  | Seat    |
| (ft.)  | (Ast/Ag) |          | (in)       | (in)   | (in)   | (in)  | (in)    |
| 22     | 0.0072   | ?        | 3.00       | 11.0   | 12.0   | 24.1  | 19.9    |