AASHTO T-3 TRIAL DESIGN BRIDGE DESCRIPTION

State: *<u>Illinois</u>*

Trial Design Designation: <u>IL-3</u>

Bridge Name:

Superstructure Type: <u>Simply supported steel plate girder composite with a concrete</u> <u>deck</u>

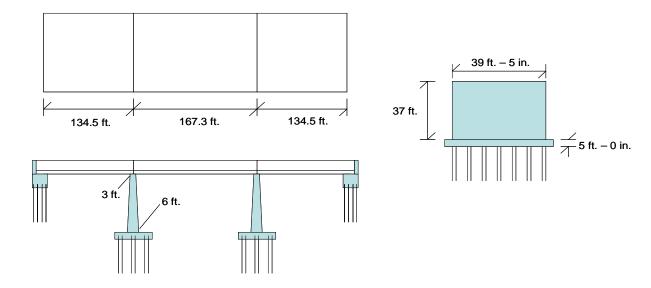
Span Length(s): <u>134.5 ft. – 167.3 ft. – 134.5 ft. (total 436.3 ft.)</u>

Substructure Type: <u>Tapered concrete pier wall supported on a pile cap at the bents</u>

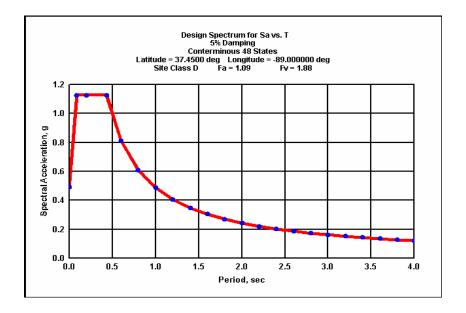
Foundation: <u>Steel piles at abutments and bents</u>

Abutments: <u>Seat type supported on steel piles</u>

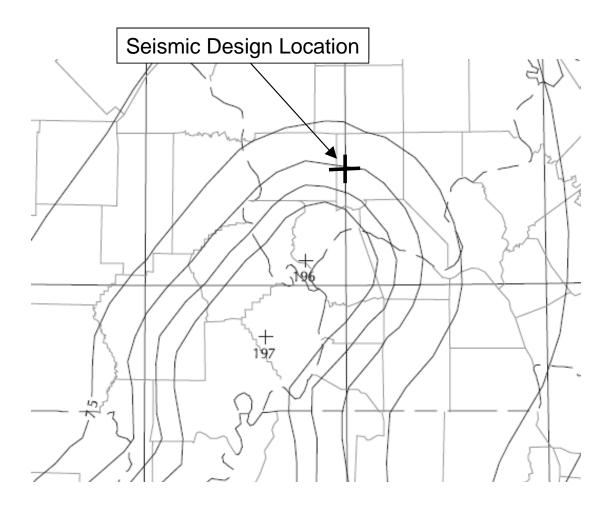
Seismic Design Category (SDC): <u>"C"</u>

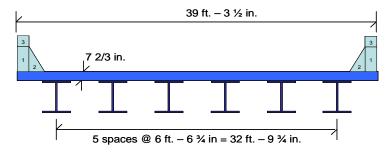

Seismic Design Strategy (Type 1, 2 or 3): <u>Type 1</u>

Design Spectral Acceleration at 1-second Period (S_{D1}): $\underline{0.487g}$


Additional Description (Optional):

3 Transverse Seismic Calculations 3-Span Plate Girder with Solid Wall Piers and Steel Piles at Piers and Abutments (Skew Simplified to 0 degrees) (Pile Design Method Similar for Imbsen and LRFD, therefore not shown - See Bridge No. 2)

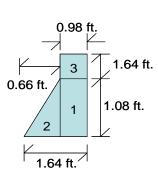

Design Response Specturm


SDC and Other Pertinent Design Spectrum Information

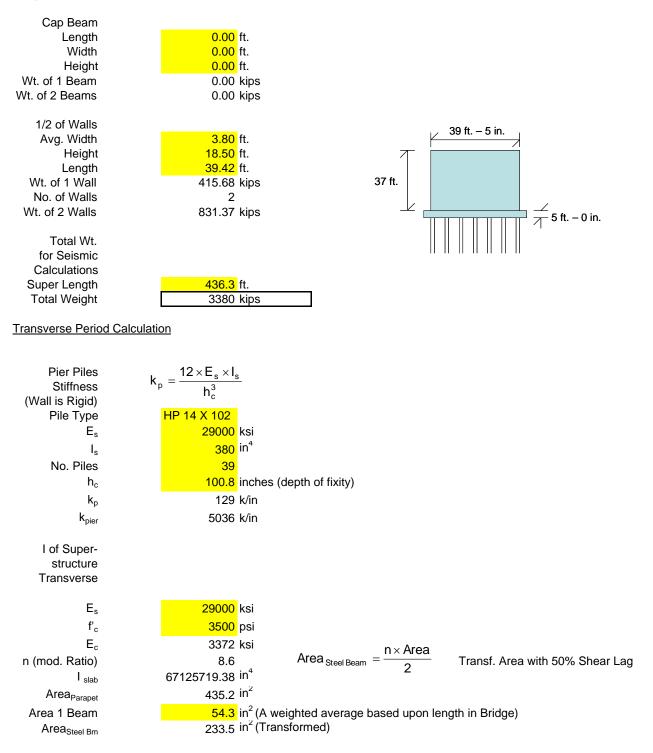
S _{D1} =	0.487 g	Seismic Des	sign Category (2
S _{DS} =	1.128 g	0.3g <=	0.487g	< 0.5 g
End		(Imbsen Tab	ole 3.5-1)	
Plateau	0.432 Seconds			

Chosen Location for Bridge Study and 0.2 Second 1000 year Accleration Map (2006 Map)

Simple Cross Section of Deck


Weight of Super and Sub Structure for Seismic Calculations

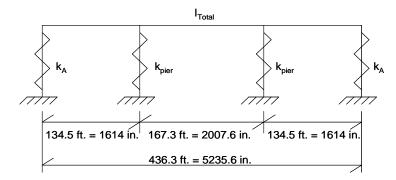
Beams No. Beams Beam Spacing 4 Plate Girder Sections Alor	Plate Girder 6.00 6.56 ft. ng 3 Spans	Girder Section 1 2 3 2 4 2 3 2 1 -
Girder Section	1	Abut Pier Pier Abut
bf top	<mark>11.81</mark> in	
tf top	<mark>0.79</mark> in	Girder Section Lengths
bf bot	<mark>11.81</mark> in	Circler Decelon Lengins
tf bot	0.98 in	1: 105 ft. (Spans 1 and 3)
d	56.10 in	2: 19.7 ft. (Spans 1 and 3)
tw	0.43 in	3: 19.6 ft. (Spans 1-2, and Spans 2-3 Over Piers
Area	45.22 in ²	2: 27.9 ft. (Span 2)
1 Bm. Weight	0.15 k/ft	4: 91.9 ft. (Span 2)
6 Bm. Weight	0.92 k/ft	
5		
Girder Section	2	bf top
bf top	11.81 in	tf top
tf top	1.57 in	
bf bot	11.81 in	
tf bot	1.57 in	
d	56.10 in	tw d
tw	0.55 in	
Area	68.12 in ²	
1 Bm. Weight	0.23 k/ft	
6 Bm. Weight	1.39 k/ft	
		tf bot
		bf bot


bf bot

Girder Section	3
bf top	11.81 in
tf top	2.76 in
bf bot	11.81 in
tf bot	2.76 in
d	56.10 in
tw	0.55 in
Area	96.02 in ²
1 Bm. Weight	0.33 k/ft
6 Bm. Weight	1.96 k/ft
Girder Section	4
bf top	11.81 in
tf top	0.79 in
bf bot	11.81 in
tf bot	0.79 in
d	56.10 in
	0.43 in
tw	
Area	42.90 in ²
1 Bm. Weight	0.15 k/ft
6 Bm. Weight	0.88 k/ft
Total Weight of	
Beams	
Tot. Len. Sec. 1	210 ft
Tot. Len. Sec. 2	95.2 ft
Tot. Len. Sec. 3	39.2 ft
Tot. Len. Sec. 4	91.9 ft
Tot. Weight	484 kips
C C	
Th. of Slab	<mark>7.68</mark> in.
Th. of Surface	0.00 in.
Width	39.30 ft.
Wt. of Slab	3.77 k/ft.
Parapet Area 1	1.06 ft^2
Area 2	0.36 ft^2
Area 3	1.61 ft^2
Total Area	3.02 ft^2
Wt. of Parapet	0.45 k/ft.
Cross Frames	
And Bracing	
(est. as 5%	5.00 %
of Steel)	24.18 kips
	24.10 Np3
Steel Parapet	
Rail	
(est. as 0%	0.00 %
of Steel)	0.00 k/ft

Weight of Super and Sub Structure for Seismic Calculations (Cont.)

Weight of Super and Sub Structure for Seismic Calculations (Cont.)

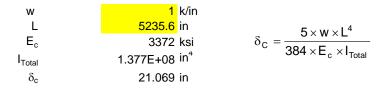

Transverse Period Calculation (Cont.)

Momen of Inertia of Superstructure Table

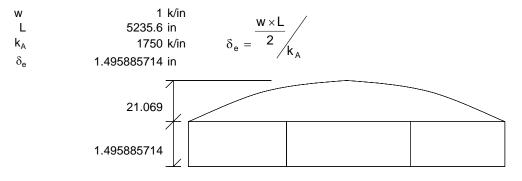
	No.	$I_0 (ln^4)$	A (in ²)	x bar (in)	A (x bar) ² (in ⁴)	I (in⁴)
Parapet	2		435.168	228	22621773.31	45243546.6
Slab	1	67125719.38			67125719.38	67125719.4
Steel 1	2		233.5	39.4	362405.769	724811.538
Steel 2	2		233.5	118.1	3256135.386	6512270.77
Steel 3	2		233.5	196.9	9050948.443	18101896.9

1.377E+08 in4 I_{Total} 5892 in2 A_{Total}

Model the Bridge Transversely with Itotal of the Superstr. and Springs for the Abutment Piles and Pier Piles



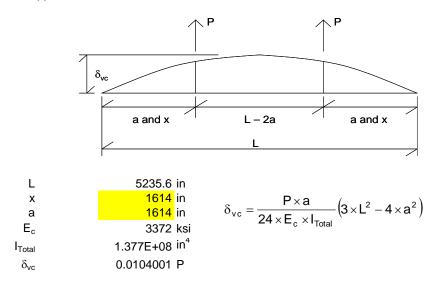
Estimate the Abutment Pile Transverse Stiffness k_A


1750 k/in

Solve for the Displacement from Simple Model Above as Outlined Below for a 1 k/in Uniform Load

Find the Deflection at the Center of the Bridge Assuming No Piers and Infinitely Stiff Abutments

Find the Deflection Along the Bridge Assuming an Infinitely Stiff Superstr., No Piers, and Abut. Springs



Transverse Period Calculation (Cont.)


Find the Total Estimated Displacement Without the Piers

 $\delta_{\rm T} = \delta_{\rm c} + \delta_{\rm e}$ 22.564 in

Find the Estimated Deflection at the Center of the Bridge for a Two Point Load at Piers with Infinitely Stiff Abuts. In Terms of an Applied Load "P".

Find the Estimated Deflection at the Pier of the Bridge for a Two Point Load at Piers with Infinitely Stiff Abuts. In Terms of an Applied Load "P".

Transverse Period Calculation (Cont.)

Find the Estimated Uniform Deflection for a Two Point Load at Piers with Springs at Abuts. In Terms of an Applied Load "P".

Find the Fraction of the Estimated Pier Deflection at the Piers Versus that at Center Span

δ_{vc}	0.0104001 P	$\delta_{uu} + \delta_{uu}$
δ_{vp}	0.0086490 P	$fr = \frac{\delta_{ve} + \delta_{vp}}{\delta_{ve} + \delta_{vc}}$
δ_{ve}	0.000571429 P	ve vc
fr	0.840	

Find the Pier Reactions (V_0) in Terms of δ_{max} , the Actual Estimated Deflection of the Bridge

fr	0.840	
k _{pier}	5036 k/in	$V_0 = fr \times \delta_{max} \times k_{pier}$
V ₀	4231.9 δ _{max}	

Solve for δ_{max} :

$\delta_{\text{ve}} + \delta_{\text{vc}}$	=	0.010971 F	þ			
Set: P = V ₀	=	4231.9 δ	max			
Therefore: δ_{ve} + δ_{vc}	=	0.010971	x	4231.9	x	δ_{max}

 δ_{ve} + δ_{vc} = 46.429854 δ_{max}

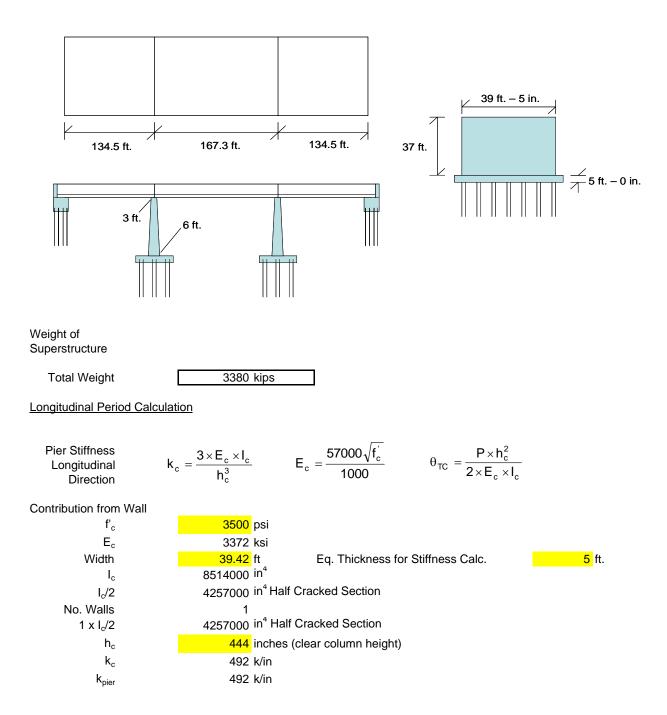
And:

The Actual Estimated Delfection of the Bridge is the Deflection Without Piers Minus the Contribution with the Piers

δ_{max}	=	δ_{T}	-	46.429854 δ_{max}
δ_{max}	=	22.564	/	47.429854
δ_{max}	=	0.476 in		

0.29 in.

=

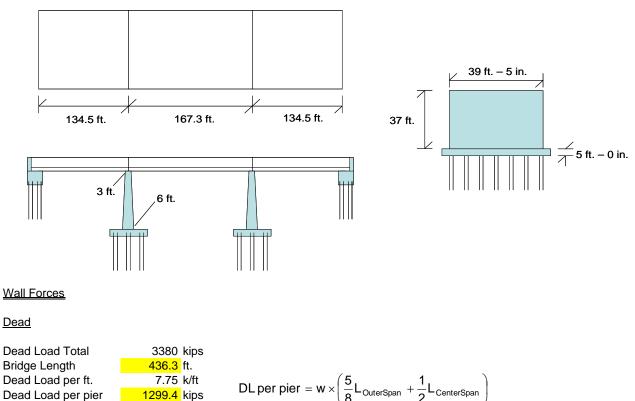

1 k/in w $k_{Bridge} = \frac{w \times L}{\delta_{max}}$ L 5235.6 in 0.476 in δ_{max} 11005 k/in k_{Bridge} Solve for the Period T Tot. Weight (W) 3380 kips $T = 2\pi \sqrt{\frac{W}{g \times k_{Bridge}}}$ 386.4 in/sec² g 11005.067 k/in k_{Bridge} Т 0.18 seconds Transverse Seismic Force On Superstructure (Base Shear) 0.18 0.432 seconds < Therefore: 112.8% of the Mass is "Effective" and the Total Seismic Load in the Transverse Direction is: 1.128 3380 3813 kips (Base Shear) х = or: 3813 1 5235.6 0.73 k/in (Base Shear) = Transverse Seismic Force on Pier (Base Shear) V_{Base Shear P} = 0.73 / 1 0.476 4231.9 х Х 1466 kips V_{Base Shear P} = Transverse Seismic Force on Abutments (Base Shear) 2 V_{Base Shear A} = 3813 1 1466 V_{Base Shear A} = 440 kips Transverse Seismic Displacement of Pier 1466 5036

Solve for the "Equivalent Stiffness" of the Bridge in the Transverse Direction

/

 δ_{PierT} =

Bridge No.: Description: 3 Longitudinal Seismic Calculations 3-Span Plate Girder with Solid Wall Piers and Steel Piles at Piers and Abutments (Skew Simplified to 0 degrees)



Long. Base Sh & Displ Pg. 2 Contribution from Cap Beam (Stiffness is infinite but it deflects as a rigid body and contributes to pier stiffness)

Find the estimated deflection at the top of column for a load "P"

	δ_{TC} =	Р	/	492	in			
Find	the estimated	l rotation at the	e top of colu	umn for a l	oad "P"			
	θ_{TC} =	Р	/	145638.6	radians			
Сар	height	<mark>0.000001</mark> in						
Find	the added est	timated deflect	tion at the t	op of the p	bier			
	δ _A =	Cap hght	x	θ_{TC}	=	Ρ	/	1.5E+11 in
Find	the total estin	nated delfectio	n at the top	o of the pie	r			
	δ_{TD} =	δ_A	+	δ_{TC}	=	Р	/	492.0 in
So, t	he stiffness of	a pier is:						
	k _{pier} =	492 k/in						
Find	the Mass of the	he Superstruct	ure					
	M =	3380	/	386.4	=	8.75	5 k-sec²/in	
Find	the period T:				$T = 2\pi \sqrt{\frac{M}{2}}$			
	Τ=		0.59 s	sec.	$1 \sqrt{2 \times k}$	pier		
<u>Long</u>	itudinal Seism	nic Force On S	Superstruct	ure (Base	<u>Shear)</u>			
	0.59	>	0.432 S	Seconds				
	Therefore:	82% of th	ne Mass is	"Effective"	and the Total S	eismic Load	d in the Longitud	linal Direction is:
	0.82	x	3380	=	2779 kip	s (Base She	ear)	
Long	nitudinal Seism	nic Force On F	ach Pier a	ssumina th	ne abutments do	n't contribut	e (Base Shear)	
				<u></u>			<u>, 2000 enou.</u> ,	
	2779	/	2	=	1389 kip	s (Base She	ear)	
Long	Longitudinal Seismic Displacement of Pier							
δ_{PierL}	=	1389	/	492.0	=	2.82	2 in.	

3 Force Based Wall Design and Displacement Check Bridge No.: Description 3-Span Plate Girder with Solid Wall Piers and Steel Piles at Piers and Abutments (Skew Simplified to 0 degrees)

1299.4 kips 1 w = Dead Load per ft. 1299.4 kips

DL per pier = w ×
$$\left(\frac{5}{8}L_{\text{OuterSpan}} + \frac{1}{2}L_{\text{CenterSpan}}\right)$$

Transverse Shear and Moment (Simple Cantilever/Shear Wall Statics)

574.0 kips

1873.4 kips

S _P (Pier Base Shear)	1466 kips
Col arm (h)	37.00 ft.
M _{WallBot}	54252.0 k-ft.

No. of Walls

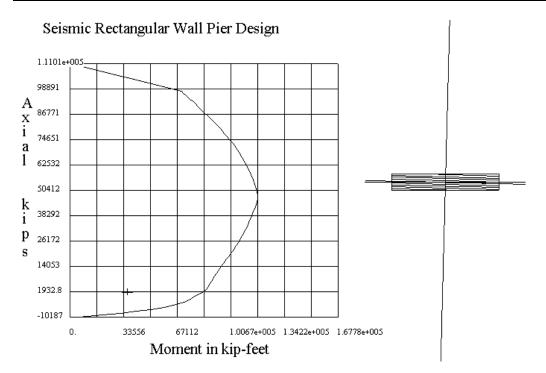
Plus 1/2 Wall

Design Dead

Dead Ld. Per Wall

Longitudinal Shear and Moment (Simple Cantilever Statics)

S_L (Pier Base Shear)	1389 kips
Col arm (h)	37.00 ft.
M _{WallBot}	51407.9 k-ft.


Orthogonally Combined Load Cases

Transverse Dominant - Load Case 1

P =	1873.4 kip	os					
M _T =	54252.0	/	1.5 (R-factor)			=	36168 k-ft
$M_L =$	51407.9	/	1.5 (R-factor)	х	0.3	=	10282 k-ft
M _{Combined}	=						37601 k-ft
$\lambda =$	tan ⁻¹ (M _T /M _L)					=	74.1 degrees
Longitudi P =	nal Dominant - L 1873.4 kir		ase 2 - Governs the	e Design			
M _T =	54252.0	/	1.5 (R-factor)	х	0.3	=	10850 k-ft
$M_L =$	51407.9	/	1.5 (R-factor)			=	34272 k-ft
M_{Combined}	=						35949 k-ft
$\lambda =$	tan⁻¹ (M _T /M _L)						17.6 degrees
$\theta \cong$							0.5 - 1.5 degrees

Wall Vertical Reinforcement Design - "Nominal Provided"

Pier is Adequate with or without R-Factors Applied (i.e. "not as a ductile or seismic column")

Wall Design & Displ Ch

Vertical Reinforcement

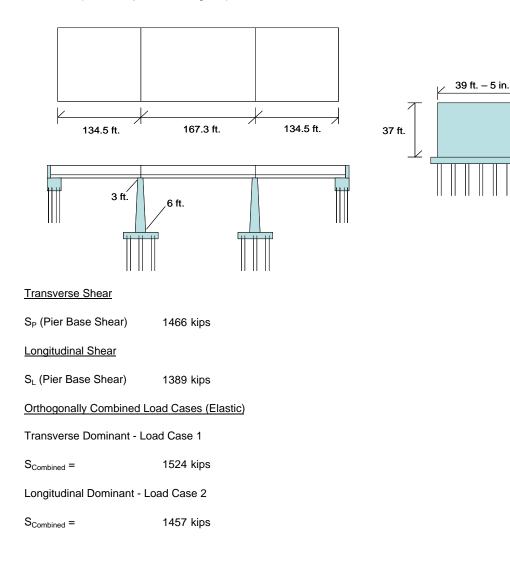
Bars:	#9
No.	170
No. Transverse Faces	75
No. Longitudial Faces	10
ρν	0.0053 > 0.0025 (LRFD 5.10.11.4.2 and Imbsen 8.17 -
	Provisions are Identical)

Displacement Check

We interpret this as a way to check deflections for walls. Imbsen provsions are either somewhat incomplete or unclear on this.

Scratch Calculation Table

Imbsen Section 4.8


Wall	Wall	H/100	х	Delta	Delta
Height	Width		Fixed-	Calc.	Allow.
			Pinned	Fixed -	Fixed -
				Pinned	Pinned
(ft)	(ft)	(in)		(in)	(in)
37	5.00	4.44	0.14	15.20	15.20

Longitudinal Direction

	Imbsen F	ig. 5.4			
					Long.
Wall	Steel	Fraction	Long.	Long.	Allowable
Height	Ratio	of Ig	Period	Deflection	Deflection
(ft.)	(Ast/Ag)	-	(Sec.)	(in)	(in)
37	0.005	?	0.59	2.82	15.20

〗 <u>_____</u>5 ft. – 0 in.

Bridge No. 3 Design for Shear Descriptior 3-Span Plate Girder with Solid Wall Piers and Steel Piles at Piers and Abutments (Skew Simplified to 0 degrees)

Shear Strength

LRFD 5.10.11.4.2 and Imbsen 8.8.3 are Identical Check to see that Minimum Shear Reinforcement is Adequate Take the Lesser of: $V_r = 0.253 \sqrt{f_c^{'}} bd =$ 13291 kips or $V_{r} = 0.9 \bigg[0.063 \sqrt{f_{c}^{'}} + \rho_{h} f_{y} \bigg] bd =$ 6769 kips Minimum reinforcement is Adequate. minimun of 0.0025 ρ_h set to: b set to 60 in d set to 468 in f'c 3.5 ksi 60 ksi fy

A "short" spacing of bars may be used near the base of wall if confinement or plastic hinging is a potential concern in the longitudinal direction. Wall Shear Reinf. Design Pg. 2

Seat Widths Pg. 1

Bridge No.: 3 Seat Width Requirements Description 3-Span Plate Girder with Solid Wall Piers and Steel Piles at Piers and Abutments (Skew Simplified to 0 degrees)

Seat Width Requirements

Compare Imbsen with NCHRP 12-49 and the Current LRFD Code LRFD calibrated for 500 years and 12-49 calibrated to 1.0 Sec. Accel. with improved Soil Coef. so it is "return period independent".

NCHRP 12-49
$$N = \left[0.10 + 0.0017L + 0.007H + 0.05\sqrt{H}\sqrt{1 + \left(2\frac{B}{L}\right)^2} \right] (1 + 1.25F_vS_1) \quad \text{(metric)}$$

L =	436.3 ft	or	132.98 meters
FvS1 =			0.487 g
H =	37 ft	or	11.28 meters
B =	39.29 ft	or	11.98 meters

Imbsen 4.12.2 $N = (4 + \Delta_{ot} + 1.65\Delta_{eq}) \ge 12$

∆ot =	0.01L =	4.363 inches
$\Delta eq =$		2.82 inches

LRFD 4.7.4.4

N = 8 + 0.02L + 0.08H

L = 436.3 ft %N for Cat. C = 150 H = 37 ft

Summary of Seat Width Requirements (NCHRP 12-49, Imbsen and LRFD) for 16 Cases

	Imbsen Fig. 5.4			Imbsen	Imbsen	NCHRP	Current
				4.12.2	4.12.2	12-49	LRFD
Wall	Steel	Fraction	Long.	Calc.	Req.	Req.	Req.
Height	Ratio	of Ig	Deflection	Seat	Seat	Seat	Seat
(ft.)	(Ast/Ag)		(in)	(in)	(in)	(in)	(in)
37	0.005	?	2.82	10.7	12.0	36.5	29.5