TRIAL DESIGN BRIDGE DESCRIPTION

State: <u>Tennessee</u>

Trial Design Designation: <u>*TN-2*</u>

Bridge Name: <u>SR-385 over Bailey Station Road</u>

Superstructure Type: <u>Continuous, steel welded plate girders, composite concrete deck</u>

Span Length(s): <u>Three spans @ 105ft.-216ft.-105ft.</u>

Substructure Type: <u>Three 3.5ft. dia. concrete columns per bent</u>

Foundation: Prestressed concrete friction piles

Abutments: Integral on prestressed friction piles

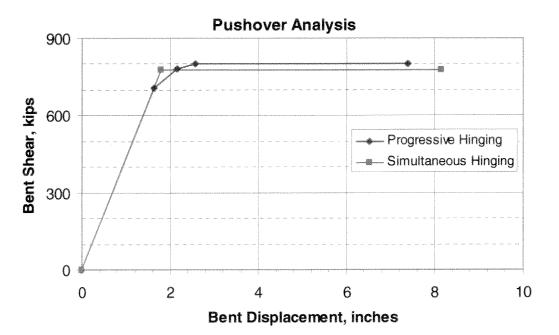
Seismic Design Category (SDC):<u>"C"</u>

Additional Description (Optional): <u>A pushover analysis was conducted on one of the</u> <u>bents of this bridge</u>. <u>The pushover analysis included structure stiffness</u> <u>modifications to account for P-Delta effects</u>.

TRIAL DESIGN BRIDGE DESCRIPTION

Pushover Analysis Example Tennessee DOT

A pushover analysis was performed on a bridge bent. Section analysis of members was accomplished using KSU_RC for the columns and RESPONSE2000 for the beams. All other calculations were done by hand.


P-Delta effects were considered by modifying the structure stiffness accordingly.

Two separate conditions were studied:

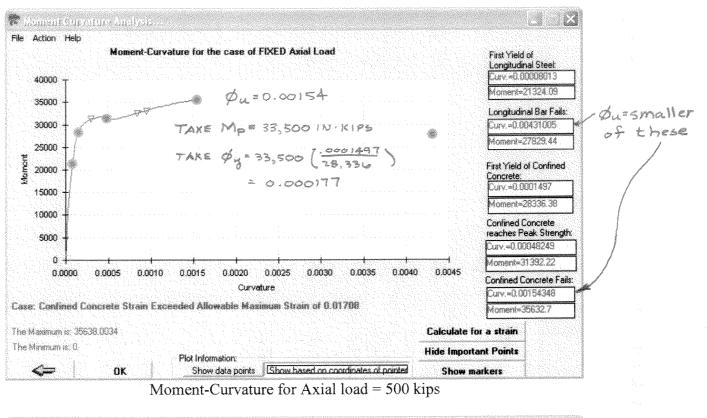
- 1. Simultaneous hinging of all 3 bent columns
- 2. Progressive hinging of the 3 bent columns

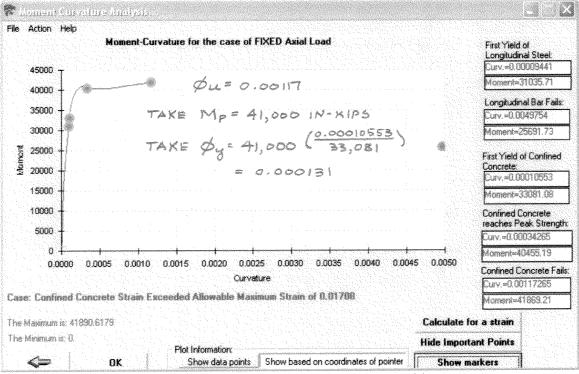
The results are summarized below.

Condition	Simultaneous	Hinging	Progressive Hi	nging
	Bent V, kips	Bent δ , in.	Bent V, kips	Bent δ, in.
Hinging at leeward column	780	1.80	709	1.64
Hinging at center column	780	1.80	782	2.18
Hinging at windward column	780	1.80	800	2.58
Collapse	780	8.14	800	7.39

NOTES **CROSSING:** COUNTY: PUSHOVER ANALYSIS 51 DW 51 PW 51 K DW 51 DW 380 × DC 380 × DC 360^KDC 360^KDC 3.375 X4F CAP WT. 1.44 KLF COLUMN WT. 21.5 5' 17.5 17.5 COLUMNS -42 DIAMETER 30 NO. 8 BARS NO.5 SPIRALS 00 5 54" CAP: 0 0 d 16#8 o o o o d o o d No. 500 8 BARS NOT 60" DESIGNATED ARE # 5: 00 0.0 8#8 FOUNDATION SPRINGS: 12 PILES × 20K/IN /PILE DESIGNDATE 240 K/1N PER COLUMN CHECK DATE SUPERSTRUCTURE C.G. IS LOCATED 70 ABOVE TOP OF CAP = 100" ABOYE CHECK DATE CAP \$. PAGE /

COUNTY: NOTES **CROSSING:** FOR SDC "D, ATOG REBAR IS RED'D: 8.4.2 Esu = 0.120 , No. 8 BARS E ... = 0.015 No. 8 BARS Esu = 0.06 fue = 1.1×60 = 66 KSi fue = 1.4 × 66 = 92.4 xsi KSUL-RC WILL BE USED FOR SECTION ANALYSIS. $K_{1} = \frac{E_{SH}}{E_{y}} = \frac{E_{y} - \frac{66}{29,000}}{E_{y}} = 0.002276$ K,= 0.015/0.002276= 6.59 K2 = Esu Ey Kz = 0.06/0.002276= 26.4 K3 5 Esu State K3 = 0.120/0.002276= 52.7 K4 = fue / fue K4= 1.4 8.4.4 USE MANDER'S CONCRETE MODEL fee= max & 1.3×3, 5 } = max & 3.9, 5 } fee = 5KSi DESIGNDATE DATE CHECK COLUMN AXIAL LOAD RANGE: 200 TO 2,000 (APPROXIMATE) CHECK DATE PAGE 2 DT-1420 (Structures Design Form 3)


NOTES **CROSSING:** COUNTY: KSU.RC WILL BE USED TO OBTAIN VALUES OF . Dy - YIELD CURVATURE Du - ULTIMATE CURVATURE Mp - PLASTIC MOMENT EI - STIFFNESS A BANGE OF AXIAL LOADS WILL BE ANALYZED. THE DATA WILL BE FIT TO A STRAIGHT LINE (LEAST SQUARES FIT) OVER THE BANGE OF AXIAL LOADS. NOTE THAT THE STIFFNESS, EI, FROM ZEBO LOAD TO YIELD, IS GIVEN BY. (EI)= Mp/du THIS VALUE WILL BE REDUCED TO ALCOUNT FOR P-DELTA EFFECTS AS FOLLOWS. RIGID-FRAME : 1,= VH3/12(ET), 1ST-DRDER A Mrop= MBorr = VH/2 => $\Delta_1 = \frac{MH^2}{6(EI)}$, FOR 2^{NP} -DRDER, SET $M = VH/2 + P\Delta_2/2$ $\Delta_2 = \frac{(\gamma H_2 + P \Delta_2 / z)H^2}{(\omega L \in I)} = \frac{(\gamma H + P \Delta_2)H^2}{(z \in I)},$ $\Delta_2\left(1-\frac{P\mu^2}{I2(EI)}\right) = \frac{\gamma\mu^3}{I2(EI)}$ DESIGNDATE $\Delta_{2}\left(\frac{12(EI)_{i}-PH^{2}}{12(EI)_{i}}\right)=\frac{VH^{2}}{12(EI)_{i}},$ DATE CHECK $\Delta_{2} = \frac{\gamma H^{3}}{12(EI), -PH^{2}} = \frac{\gamma H^{3}}{12(EI)_{EFF}}$ (EI) = 12(EI), - PH2 CHECK DATE


PAGE 3

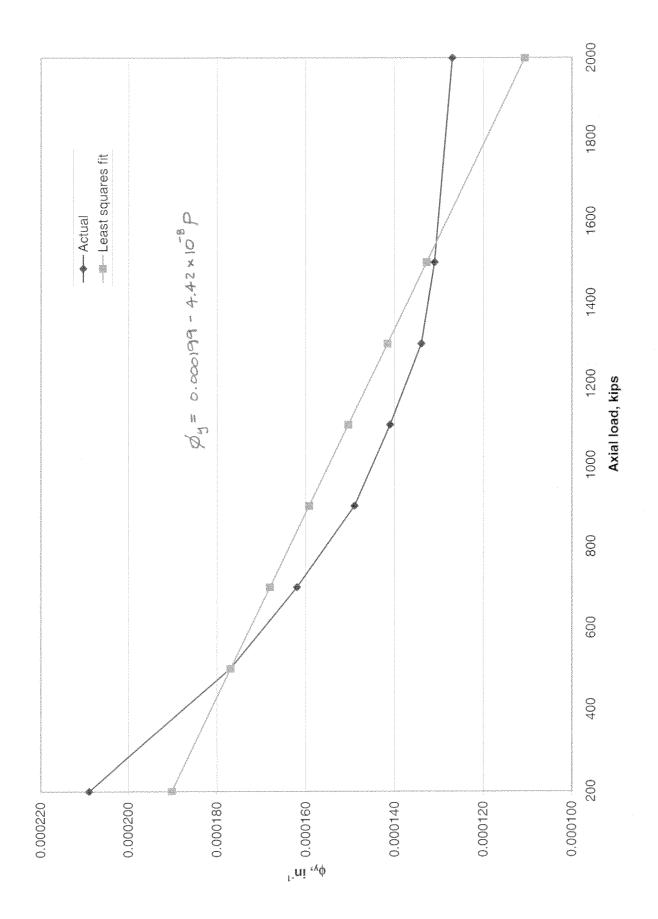
CROSSING:

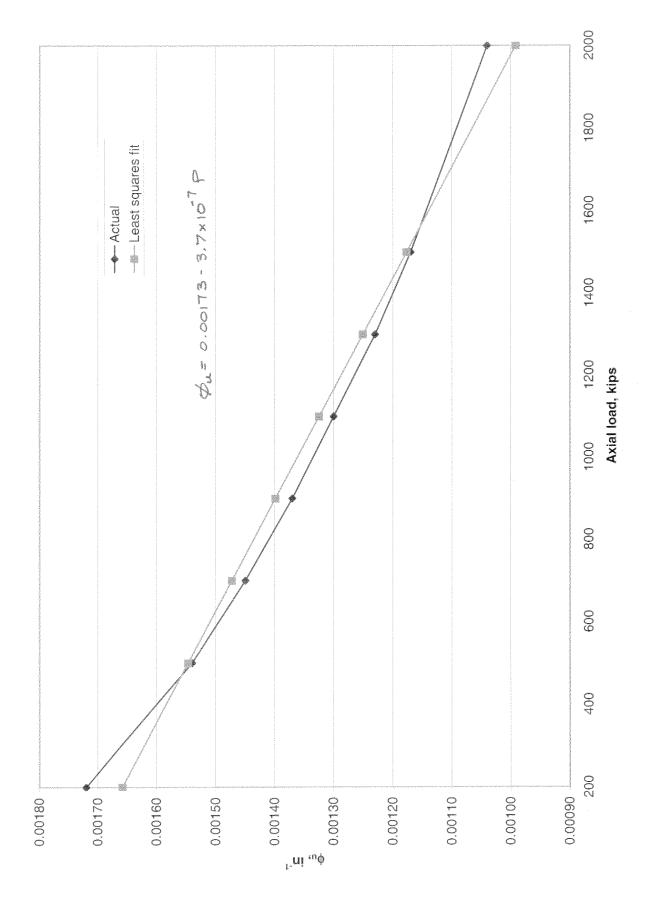
Ø4 Mp, IN.K Øy U. KIPS 0.000177 0.00154 33,500 500 35,500 700 0,000162 0.00/45 0.00137 37,000 900 0.000149 38,000 1,100 0.00130 0.000141 1,300 0.000134 0.00123 39,500 1,500 0.000/3/ 0.00117 41,000 KOU BC OUTPUT FOR THE 500 AXIAL LOAD AND THE 1,500" AXIAL LOAD 15 SHOWN ON PAGE 5. CASES PLOTS OF THE ABOVE DATA ARE SHOWN 6-10. ON PAGES FORCE - DEFLECTION CURVES ARE GENERATED FOR THE FIRST & LAST CASES AS WELL. THESE ARE TO BE FOUND ON PAGES 11-12. KSU-RC IS NOT PARTICULARLY WELL-SUITED FOR ANALYSIS OF THE CAP, 50 RESPONSE_ 2000 WILL BE USED. THIS 15 FINE SINCE WE ARE NOT INTERESTED IN M-Q EURVES FOR THE CAP, ONLY MOMENT CAPACITIES FOR POSITIVE AND NEGATIVE FLEXURE. SEE PAGES 14-16 FOR RESPONSE. 2000 CAP ANALYSIS. DESIGNDATE CHECK DATE CHECK DATE PAGE 4

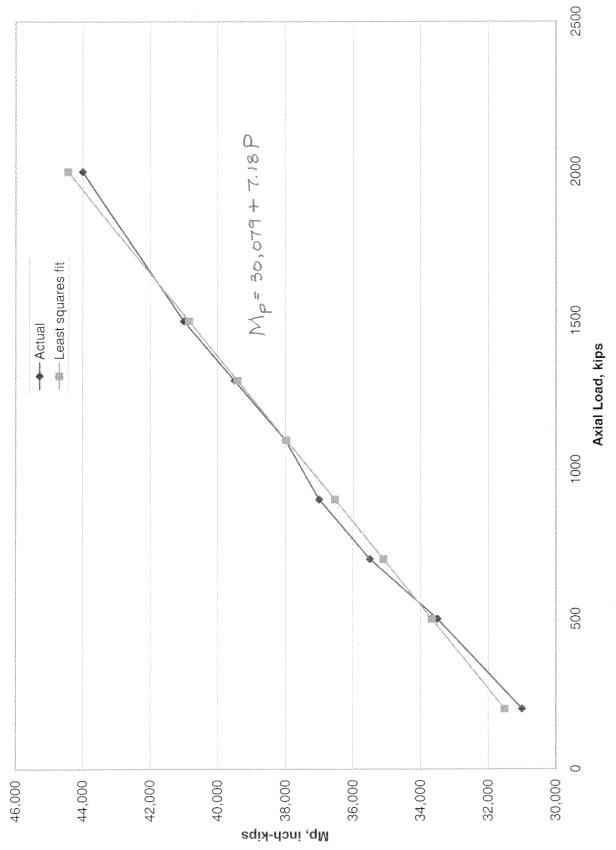
NOTES

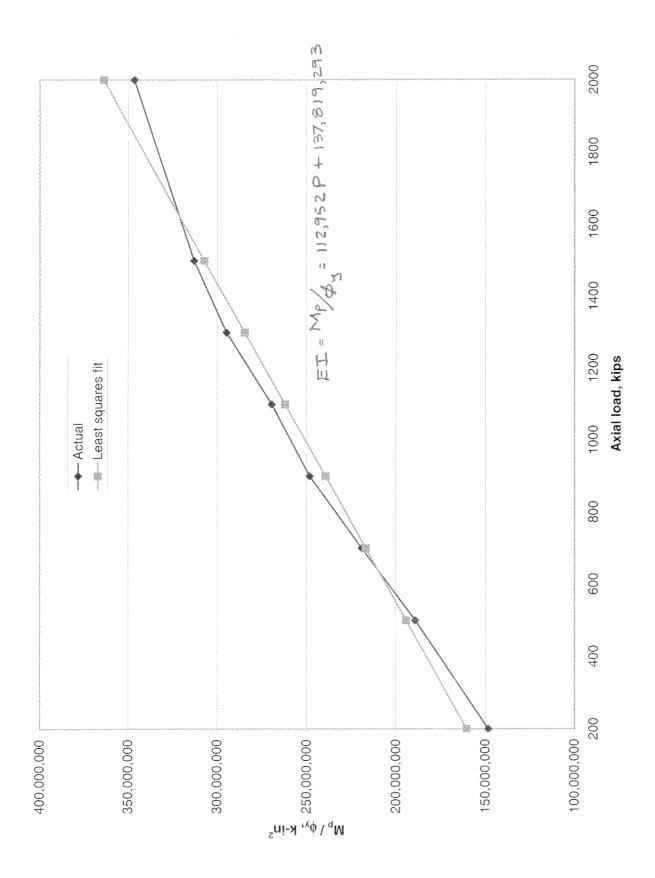
Moment-Curvature for Axial load = 1500 kips

		Fitted
Р	M _p	Mp
200	31,000	31,515
500	33,500	33,669
700	35,500	35,104
900	37,000	36,540
1100	38,000	37,976
1300	39,500	39,412
1500	41,000	40,847
2000	44,000	44,437
7.18	30,079	


		Fitted
 Ρ	M_p / ϕ_y	M_p / ϕ_y
200	148,325,359	160,409,731
500	189,265,537	194,295,388
700	219,135,802	216,885,826
900	248,322,148	239,476,264
1100	269,503,546	262,066,702
1300	294,776,119	284,657,140
1500	312,977,099	307,247,578
2000	346,456,693	363,723,673


112952.19 137,819,293

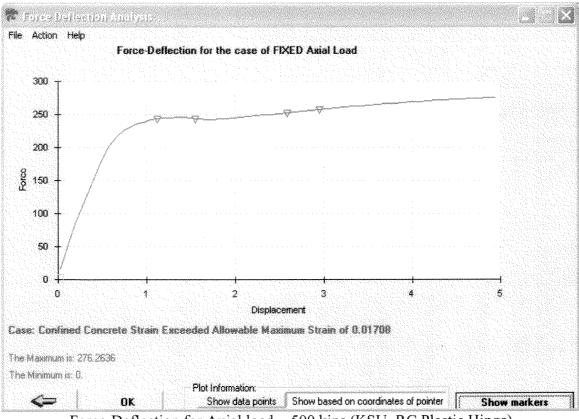

Ρ	φ _y	Fitted _{\$\phi_y}
200	0.000209	0.000190
500	0.000177	0.000177
700	0.000162	0.000168
900	0.000149	0.000159
1100	0.000141	0.000150
1300	0.000134	0.000142
1500	0.000131	0.000133
2000	0.000127	0.000111

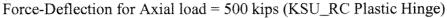

-4.418E-08 0.000199

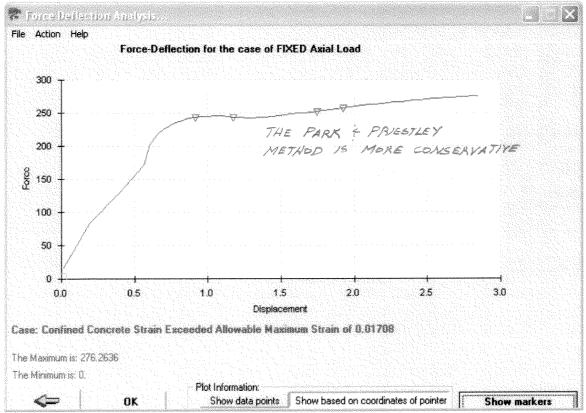
-3.702E-07 0.00173

KSU_RC Input screen

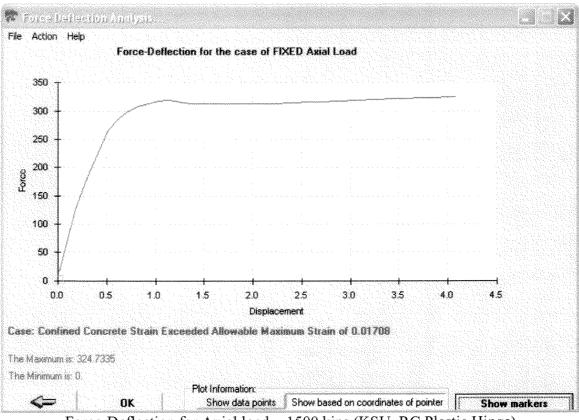
1 8	- II) # c	ѷӏѥ	j 🤣 🗐				Ş
KŠU R	and Reinfo	Curvature, For Interaction An Inced Concrete Ing Hysteretic F	alysis of Members.	Steel Properties: Longitudinal Steel Modulus of Elasticity: 29000 KSI	Diffen	h to (Custo ent Sizes) on for each	for custon	
		-mait asad@ksu	edu	Yield Strength:	Evenly	Distributed,	equal Size	
System	ter/kg/kN/sec.)	Imperial	(inch/kips/sec.)	Steel Size:	Case Non	litter 4 frei Sa of berg	er Erans dive Namiber	<u>E. oc</u> i
Selecting S	iection Specifical	ions		8 Total Number of Bars:	at at	ter Javer	aranas T	
		1	-	30	(daal is ni	ovided in ten	ne of	ere) statut non statut des catalité
	i 📚 uurud			Bar Size in its			ection Area	
Diameter:		Analysis Wit	h Respect To:	Transverse Steel	. Jacori			
42	Inch	X-Axis	Y-Axis	Modulus of Elasticity:		generation and a	Strength:	
		Tarikasat		29000 K	31	66	anassanai.	KSI
	Inch		Inch	Steel Size: 5		Transve 5	rse Spacin <u>c</u>	r Inch
Clear Cove	# .	Length:						
1.5	Inch	129	Inch	Steel Behavior Hardening Coef:				
				No Hardening	K1:	6.59	K3.	52.7
Concrete				With Hardening	K2	26.4	K4	1.4
Unconfine concrete	d 5	Tensile Strength:	0.5	Steel Hysteresis Parame			, 27 T T	
	ndel for			P1= 0.3333 P2	antania (presidente presidente	. 영상 영상		

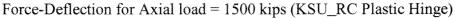

Note that the input Length is 129":

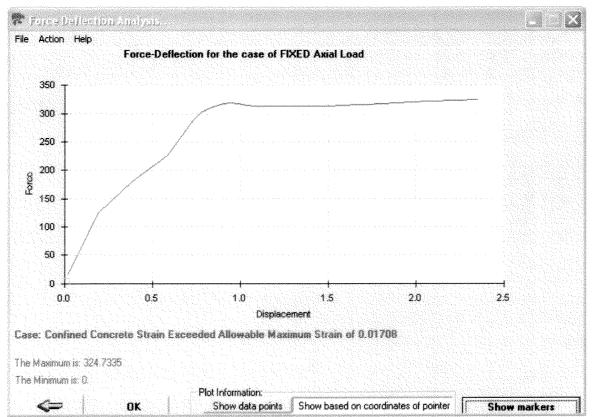

$$L = \frac{21.5 \times 12}{2} = 129"$$

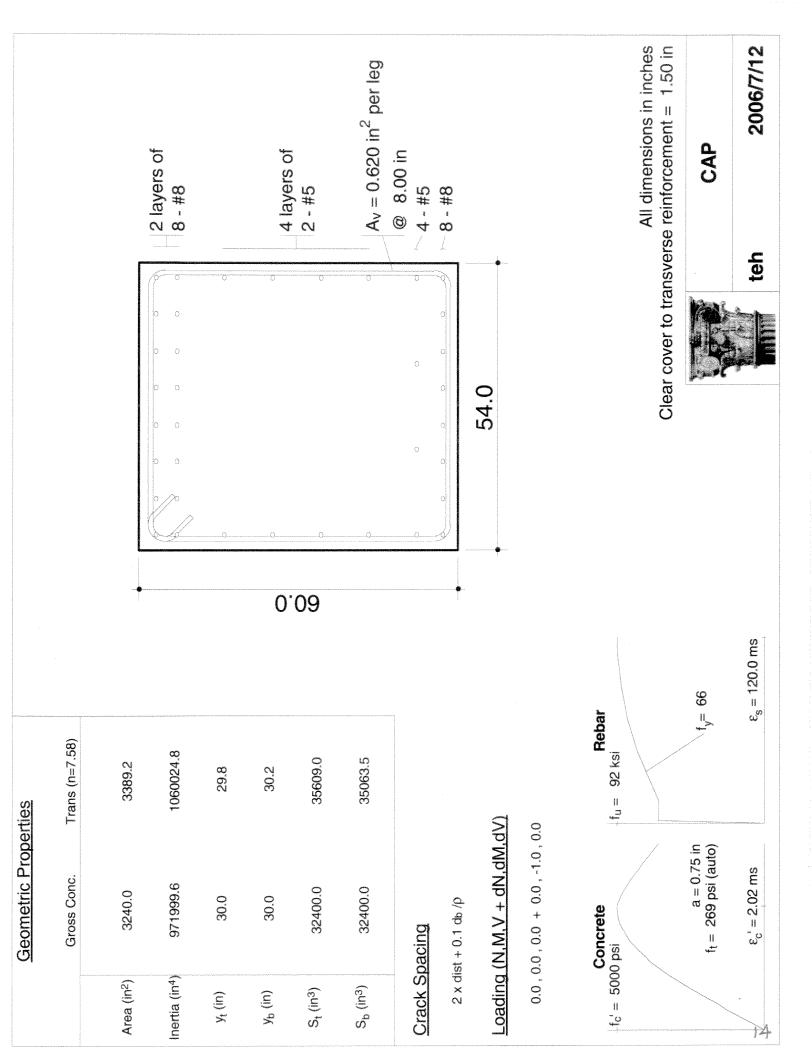

This will be the case whenever rigid-frame behavior is assumed with contra-flexure at mid-height of the columns. Essentially, this will be our assumption for transverse analysis of multi-post bents.

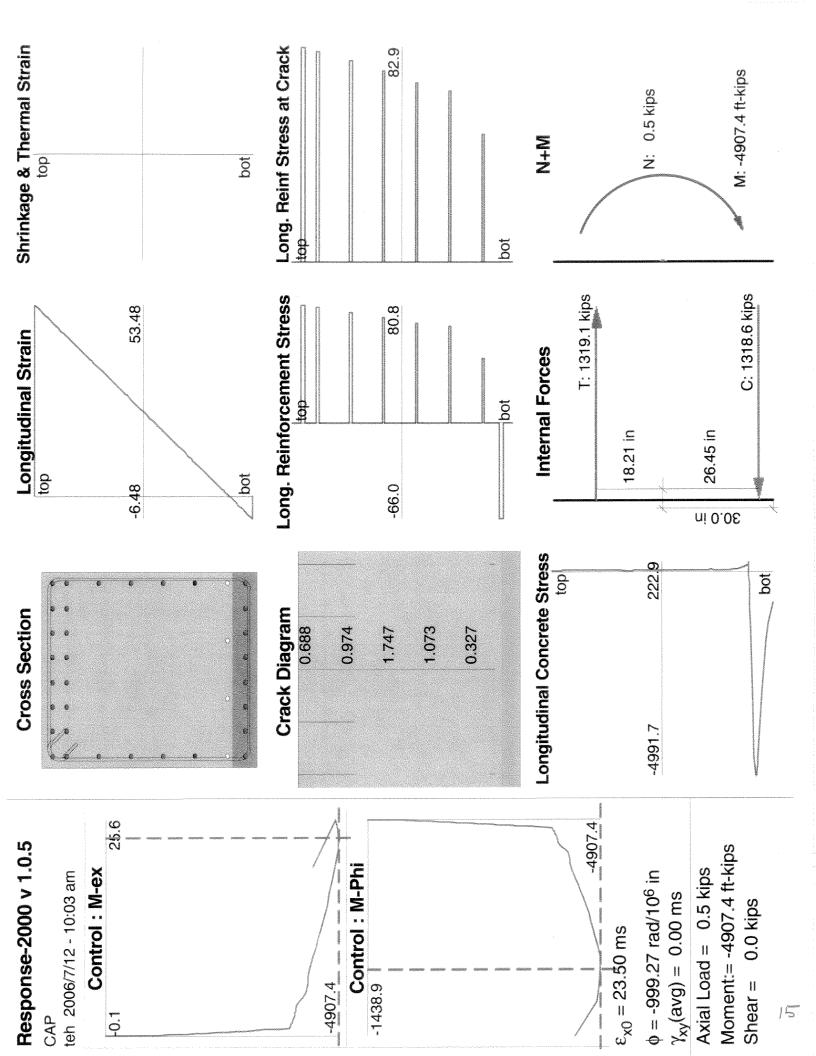
As a result, the calculated deflections should be multiplies by 2 to obtain yield displacements and ultimate displacements. This is true since what we are calculating is the deflection between the contra-flexure point and the maximum point. For rigid frame behavior with contra-flexure at mid-height, we have this much deflection (a) between the column base and mid-height and (b) between mid-height and the top of the column. This gives a total displacement of twice the calculated deflection.

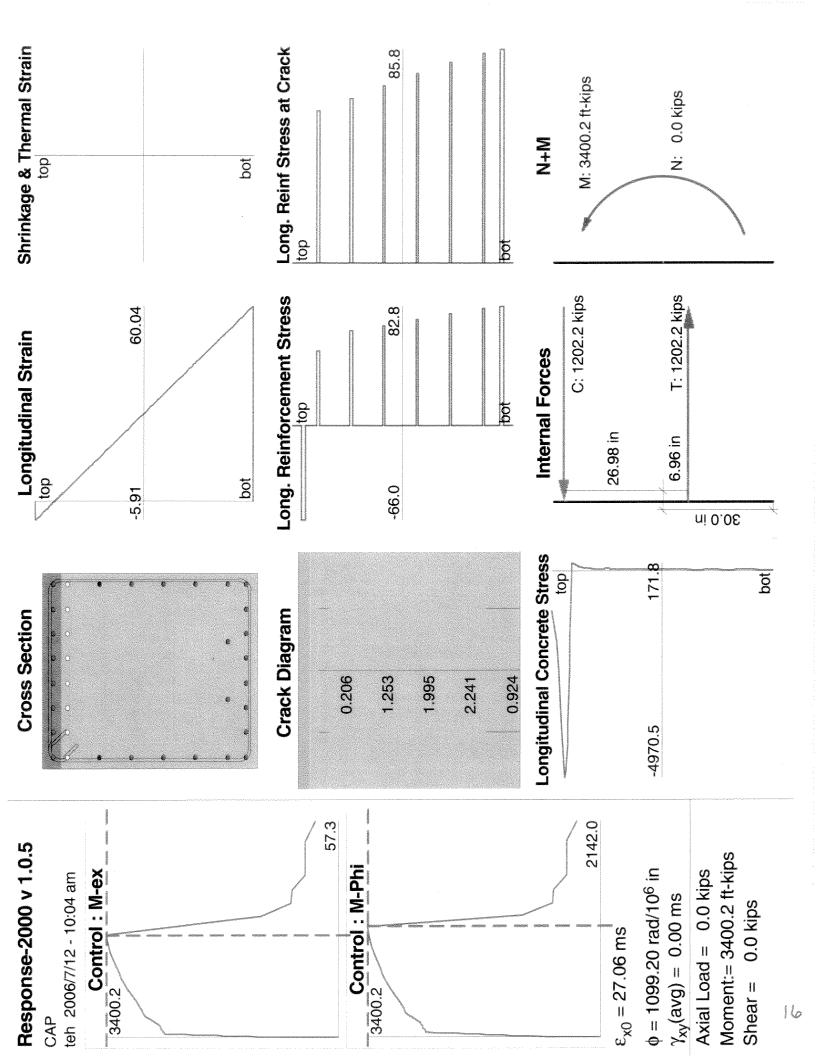







Force-Deflection for Axial load = 500 kips (Park & Priestley Plastic Hinge)





Force-Deflection for Axial load = 1500 kips (Park & Priestley Plastic Hinge)

NOTES **CROSSING:** COUNTY: INITIAL STIFFNESS VALUES ? P= (380+51)(4)/2= 575K/col SUPERSTRUCT. 3.375× 45FT/3 = 51K/col CAP WT. 1.440 × 21.5 Ft 2 = 15 K/ COL 1/2 COL. WT. 641×105 \$ = 0.000168 IN-1 PAGE 7 Mp = 34,800 IN.K PAGE 9 (EI) = Mp = 34,800 = 207,142,857x IN² By .000168 $K_i = \frac{12 \times EI}{1215 \times 123^3} = 145 \times /iN / coluMN$ APPROXIMATE YIELD DISPLACEMENT Dy = Vp/(3×Ki) Vp (21.5×12/2)= 34,800×3 Vp= 809 KIPS/BENT $\Delta_{3} \approx \frac{809}{2000} => \Delta_{3} \approx 1.86''$ PLASTIC HINGE LENGTH . 4.11.6 Lp= 0.081 + 0.15 fye dig > 0.3 fye dig L = LENGTH OF COLUMN FROM MMAX TO CONTRA-FLEXURE = 129" PAGE 11 fue = 66x51 PAGE 2 dbx = DIAMETER OF LONGITUDINAL BEBAR IN COLUMN DESIGNDATE $L_{p} = 0.08 \times 129 \pm 0.15 \times 66 \times 1$ = 10.32" ± 9.9" = 20.22" > .3 \times 66 \times 1 = 19.8" CHECK DATE CHECK DATE Lp= 20.22" PAGE 17

DT-1420 (Structures Design Form 3)

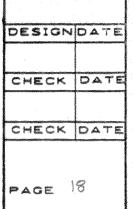
PAGE

CROSSING:

DEFLECTION EQUATIONS

 $A_y = \phi_y L^2/3$

 $\Delta u = \Delta u + \Delta p$


NOTE THAT THESE EQUATIONS GIVE THE DISPLACEMENT BETWEEN POINTS OF ZERD-MOMENT AND MAXIMUM MOMENT IN THE COLUMN, NOT NECESSARILY

 $\Delta p = (\phi_u - \phi_y)(L_p)(L - L_p/2)$

NOTES

SLIDES 7-12 \$ 7-13 OF "SEISMIC DESIGN \$ RETROFIT OF HIGHWAY BRIPGES PARTICIPANT WB, IMBSEN \$ ASSOC, APRIL 2002.

THE DISPLACEMENT BETWEEN THE TOP BOTTOM OF THE COLUMN. AND >Vp 100" 17.5'= 210" 17.5' = 210" ~Z__ 3 = 129" $V_2 \leftarrow$ $\forall_{i_1} \ll$ $P_2 = 641^{\times}$ $P_3 = 641 + SP$ P. = 641-5P Vp (229") = SP(210)(2) SP=0.545 Vp 2Δ -/29" H = 258" L = /29

CROSSING:

NOTES

PAGE 19

OBSERVE, ON PAGE 8. THAT A LINEAR RELATIONSHIP BETWEEN AXIAL LOAD, P. AND PLASTIC MOMENT, Mp, 15 NOT AN UNREASONABLE ASSUMPTION. THUS, THE GAIN IN Mp AT THE LEEWARD COLUMN WILL BE YERY NEARLY DEFEST BY AN EQUAL LOSS IN MO AT THE WINDWARD COLUMN ... PLASTIC SHEAR CALCULATION WILL THUS BE BASED ON 3× Mos Mpz = Mp as 641 * AXIAL LOAD = 34,681 IN: KIPS PAGE 9 3 Mpz = 104,044 in KIPS Yp= V,+Y2+V3 = 3Mp2 Vp = 104,0441N.K/1291N => Vp = 806 x1PS SP= 0.545 × 806 = 440 KIPS PI= 641-440= 201 × > Mpi= 31,522 P2= 641 -> Mp2= 34,681 P3 = 641 + 440 = 1,081 - Mp3 = 37,840 V,= 31,522/129 = 244 KIRS V2 = 34.681/129 = 269 KIPS DESIGNDATE V3 = 37,840/129 = 2931=1P5 CHECK DATE 2/V= 806" = Vp CHECKS CHECK DATE

CROSSING: NOTES COUNTY: Mor = Yp (100+129) = 806 (229)= 184, 574 IN.K MRES = (P8-P,)(210) = (1,081-201)(210) = 184,800 IN.K = MRES (WITHIN 0.12%) CHECKS AN ITERATIVE PROCEDURE WILL BE USED TO LOCATE THE SHEAR CAUSING THE FIRST HINGE AND THE LOCATION OF THE FIRST HINGE . SECOND- DRDER EFFECTS WILL BE INCLUDED AS DESCRIBED ON PAGE 3: STEP 1. ASSUME & VALUE OF YTOTAL STEP 2. COMPUTE P. = 641 - 545 YroTAL PAGE 18 Pz = 641 P3 = 641+.545 YTOTAL STEP. 3. COMPUTE: (EI)_EFF-2=112,952 P+137,819,293 - A(258)/2 6=1,2,3 STEP 4. COMPUTE $\Delta_2 = \frac{1}{2} V_{TOTAL} (258)^3$ $\overline{[3(E])_{EFF-2}} (12)$ STEP 5. COMPUTE VI = (EI)EFF.: X VTOTAL (EI)EFF.: + (EI)EFF.: + (EI)EFF.: + (EI)EFF.: DESIGNDATE CHECK DATE CHECK DATE PAGE 20

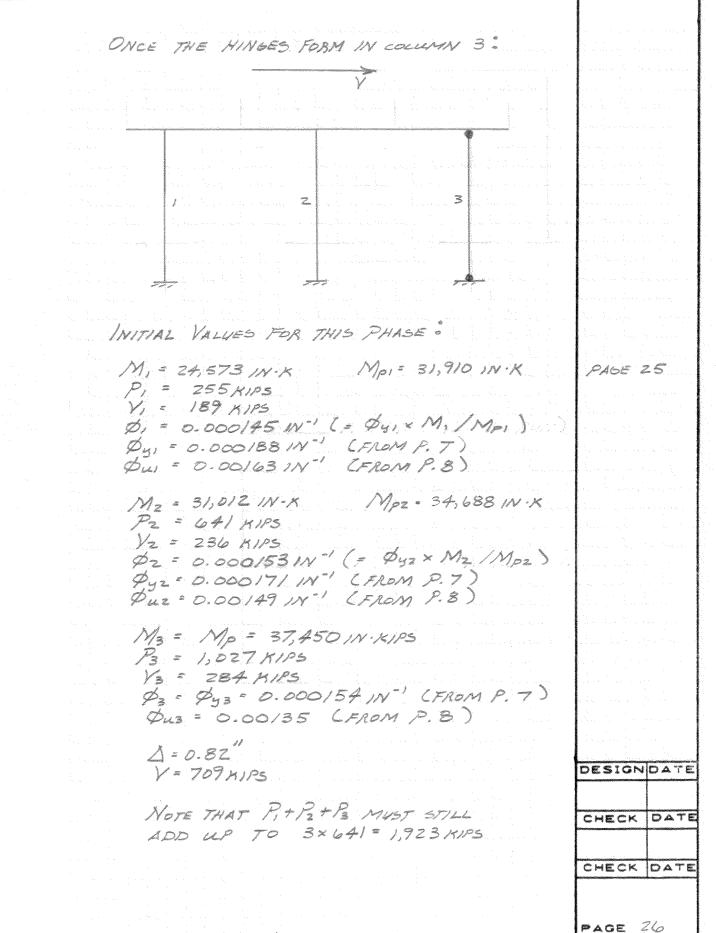
COUNTY: CROSSING:

NOTES

STEP 6. COMPUTE: Mpi = 30,079 + 7.18 P 6=1,2,3 STEP 7. COMPLITE : Mi= V: (129")+ Pi (Az) 2=1,2,3 STEP 8. COMPUTE: $\left(\frac{M_i}{M_{oi}}\right)$ i=1,2,3STEP 9. IF THE MAX (Mi) = 1.000, THE SOLUTION HAS CONVERGED AND THE COLUMN WITH THE YALKE OF 1.000 15 THE LOCATION OF THE HINGE. OTHERWISE, START OVER WITH A NEW YALVE OF (YTOTAL)NEW = VTOTAL)OLO MAX (Mi Moi) THIS WAS DONE WITH AN INITIAL VTOTAL = BOG KIPS. THE SEQUENCE OF ITERATIONS 15 SHOWN ON PAGES 22-25. NOTE: D2 15 THE DEFLECTION BETWEEN POINT OF ZERO MOMENT (MID-HEIGHT) AND MAXIMUM MOMENT. TOTAL DISPLACEMENT = 2× Az

DESIGN DATE CHECK DATE CHECK DATE PAGE 2/

Assumed V _{TOTAL} =	(806)	kips	
1 Not 6 7 13m		8	
$\Delta_2 =$	0.93	inches	
P ₁ =	202		
P ₂ =	641		
P ₃ =	1,080		
			٨
(EI) _{EFF-1}	159,486,104	0.257	
(EI) _{EFF-2}	206,665,898	0.333	
(EI) _{EFF-3}	253,845,692	0.409	
(EI) _{EFF-TOT}	619,997,694	1.000	
V ₁ =	207		
$V_2 =$	269		
V ₃ =	330		
V _{TOTAL} =	806	9664	
Column	M _p , in-kips	M, in-kips	M/M _P
1	31,529	26,934	0.854
2	34,688	35,254	1.016
3	37,846	43,575	(1.151)
		Revised V _{TOTAL} =	700


Assun	ned	and an and a second sec		
V _{TOTA}	1	(700)	kips	
		And the second s		
Δ_2 :		0.81	inches	
P ₁ :		260		
P ₂ :		641		
P3 :		1,023		
(EI) _{EF}	-F-1 1 1	65,690,891	0.267	
(EI) _{EF}	-F-2 2	06,665,898	0.333	
(EI) _{EF}	F-3 24	47,640,906	0.399	
(EI) _{EFF}	-TOT 6	19,997,694	1.000	9997 1
V ₁ =		187		
V ₂ =		233		
V ₃ =		280		
V _{TOTA}	L	700	ar	
Colur	nn l	M _p , in-kips	M, in-kips	M/M _P
1		31,945	24,342	0.762
2		34,688	30,618	0.883
3		37,431	36,894	(0.986)
			Revised V _{TOTAL} =	= (710)

ĸ

	Assumed V _{TOTAL} =	710	kips	
	$\Delta_2 =$	0.82	inches	
	P ₁ =	254		
	$P_2 =$	641		
	P ₃ =	1,028		
	$(EI)_{EFF-1}$	165,105,533	0.266	
	(EI) _{EFF-2}	206,665,898	0.333	
	(EI) _{EFF-3}	248,226,263	0.400	
	(EI) _{EFF-TOT}	619,997,694	1.000	
	$V_1 =$	189		
	$V_2 =$	237		
	$V_3 =$	284		
. 99	V _{TOTAL} =	710	and o	
	Column	M _p , in-kips	M, in-kips	M/M _P
	1	31,906	24,599	0.771
	2	34,688	31,055	0.895
	3	37,470	37,512	(1.001)
			Revised $V_{TOTAL} =$	709

	Assumed V _{TOTAL} =	(709)	line		
	V TOTAL -	(109)	kips		
	$\Delta_2 =$	0.82	inches	TOTAL	S= 2×0.82= 1.64"
	P ₁ =	255			
	$P_2 =$	641			
	$P_3 =$	1,027			
	(EI) _{EFF-1}	165,164,069	0.266		
	(EI) _{EFF-2}	206,665,898	0.333		
	(EI) _{EFF-3}	248,167,727	0.400		
	(EI) _{EFF-TOT}	619,997,694	1.000		
	$V_1 =$	189			
	$V_2 =$	236			
	V ₃ =	284	86 .		
	V _{TOTAL} =	709			
	Column	M _p , in-kips	M, in-kips	M/M	P
-	1	31,910	24,573	0.77	
	2	34,688	31,012	0.89	4
	3	37,466	37,450	(1.00	9
			Povined V	- (700	
			Revised V _{TOTAL}	= (709	9
	autojan Bosto region				1000
	3.6	THE IST PL			
	AT CO	LUMN #3	WHEN TH	E TOTAL	
	-IIF&R	ON THE B	SENT 15 7	09 KIPS	e and a second s
	den and a second se				
	THE Y,	IELD DISPLA	LEMENT 1	5 1.64	
	1				

NOTES

CROSSING:

NOTES **CROSSING:** COUNTY: V+SY A+5A 210 210" 3 < 14.+5V, < Y2+5Y2 V3+5Y3 Pator P.+SP. Pa+SB 1. AssuME A VALUE FOR SA 2. AssuME A VALUE FOR SY3 (IT WILL BE NEGATIVE) 3. $(P_3 + \varsigma P_3) = M_{P3} - (V_3 + \varsigma V_3)(129)$ 4. (P,+SP,+P2+SP2)=1,923-(P3+SP3) 5. (Pi-2)AYG = = (Pi+SPi+P2+SP2) 6. (EI) EFF - TOTAL [137, 819, 293+112, 952 (R-2)ANG] × 2 - 1,923 × 258-7. $SV = 12(EI)_{EFF-TOTAL}(SA)$ 8. SUM MOMENTS ABOUT COL. 2 CONTRAFLEX. $(P_1 + SP_2) = -(V + SV)(229) + (P_3 + SP_3)(210)$ DESIGNIDATE 9. P2+5P2 - (P1+SP1+P2+SP2)-(P1+SP1) DATE CHECK 10. CALCULATE (EI) FFF-1 (EI)FFF-2 CHECK DATE USING (PitSPi) & (PitSPi) IN THE EQUATION IN STEP LO. PAGE 27 DT-1420 (Structures Design Form 3)

CROSSING:

NOTES

11. CALCULATE : $V_{i} + SV_{i} = \frac{12(EI)_{EFF-1}(SA)}{(258)^{3}} + V_{i}$ $V_{z} + SV_{z} = \frac{12(EI)_{EFF-2}(SA)}{(250)^{3}} + V_{z}$ (EI) = FF-3 = - (P3+SP3)(258)2/12 12. $5Y_3 = I_2(EI)_{EFF-3}(5\Delta)$ (258)³ IF THIS SY3 = SY3 ASSUMED IN STEP 2, PROCEED TO STEP 13. DTHERMOSE, REVISE SV3 & RETURN TO STEP 3. CALCULATE 13. M = (V, + SY,)(129) + (P, + SP,)(N + SA)My=(V2+SV2)(129)+(P2+SP2)(2+SA) Mp1 = 30,079 + 7.18 (P,+ AP,) Mpz= 30,079+7.18 (P2+AP2) IF X=MAX (Mi/Mpi, i=1,2)=1.00, -DNVERGENCE BEACHED. OTHERWISE BEYISE SA $(\Delta + S\Delta) = (\Delta + S\Delta)_{oLD}$ & RETURN TO STEP 2 ITERATION WAS CARRIED DUT. RESULTS SHOWN ON PAGE 29. ARE DESIGNDATE V+SV= 787 KIPS CHECK DATE A + SA = 1.09''TOTAL DISPLACEMENT WHEN CHECK DATE HINGE FORMS IN COLUMN 2 2×1.09 = 2.18". PAGE 28

nitial condi	tions:			
Column	M, in-k	P, kips	V, kips	, in⁻¹
1	24573	255	189	0.000145
2	31012	641	236	0.000153
3	37450	1027	284	0.000154
$\Delta =$	0.82	inches		
V =	709	kips	$\Sigma Fy =$	1,923

PHASE II: After hinges form in column #3

Assumed $\delta \Delta = 0.27$ inches

27
2.02

ROTATION OF PLASTIC HINGE AT COLUMN 3: Op3 = 0.27 1/29" = 0.00209 RADIANS FROM TIME HINGE FORMS IN COLUMN 3 TO TIME HINGE FORMS IN COLUMN 2.

CROSSING:

NOTES

PAGE 30

FOR THE FINAL PHASE, WE WILL ASSUME THE ENTIRE INCREMENTAL SHEAR, SY, IS TAKEN BY THE ONLY REMAINING COLUMN WITHOUT PLASTIC HINGES , COLUMN 1. INITIAL CONDITIONS FOR PHASE III: V= 782 KIPS A= 1.09" VI= 215 KIPS Vz= 284 KIPS V3= 283 KIPS PI = OKIPS P2= 1,070 KIPS P3 = 853 KIPS M. = 27,736/N.K Mp1 = 30,080 IN.K SV= 30,080-27,736 = 18.2 KIPS (EI)_{EFF-TOTAL} = 137, 819, 293 + 112,952 (0) _ <u>1923 × 258²</u> 12 = 127,152,412 K.IN2 $5\Delta = \frac{18.2 (258)^3}{12 \times 127, 152, 412} = 0.20''$ A= 1.09+ 0.20= 1.29" V = 782 + 18 = 800 KIPS TOTAL DISPLACEMENT = 2×1.29" = 2.58" PAGE 29 Bp3 = 0.00209+ 0.2/129 = 0.00364 BADIANS THERE IS NO LONGER AN EXPLICIT DESIGNDATE CHECK OF ROTATION CAPACITY OF PLASTIC HINGES. BATHER, THE LOCAL DUCTILITY DEMAND 15 CHECK DATE COMPUTED. $\mathcal{M}_{\mathsf{D}} = 1 + \underline{\Delta_{\mathsf{Pd}}} \quad (\mathsf{SECT.} 4.9)$ $\underline{\Delta_{\mathsf{Y}}}$ CHECK DATE

HINGE ROTATION WILL BE TRACKED ANYWAY . ONCE THE FINAL COLUMN HAS HINGED, THE BENT WILL DISPLACE UNDER CONSTANT SHEAR UNTIL THE ULTIMATE CURVATURE IS REACHED IN COLUMN 3, WHICH WAS THE FIRST COLUMN TO HINGE. \$\phi_{U3} = 0.00135 IN^-1\$ \$\phi_{Y3} = 0.000154 IN^-1\$ PAGE 26 $\Delta_p = (\phi_u - \phi_y) (L_p) (L - L_p/2)$ PAGE 18 <u>Lp = 20.22</u> = 129 '' PAGE 17 PAGE 18 $\Delta_{p} = (0.00135 \cdot 0.000154)(20.22)(129 - 10.11)$ $\Delta p = 2.875'' \qquad \Delta_{TOT} = 0.82 + 2.875'' = 3.695''$ SUMMARY : STATE V 2D CAMMENT 1 709 K 0.82" 1.64" COLUMN 3 HINGES 2 782^K 1.09" 2.18" COLUMN Z HINGES 3 800K 1.29" 2.58" COLUMN 1 HINGES 800^K 3.70° 7.39" 4 COLLAPSE TOTAL BEQ'D ROTATION OF PLASTIC HINGES AT COLUMN 3, Opd $\Theta_{pd} = (3.70 - 0.82)/129''$ DESIGNDATE Opd = 0.0223 BADIANS CHECK DATE

ROTATION CAPACITY OF PLASTIC HINSE. $\Theta_{pc} = \phi_{u} \times L_{p} = 0.00135 \times 20.22^{\circ}$

0.0273 RADIANS

>0.0223 , OX

DT-1420 (Structures Design Form 3)

PAGE 31

CHECK DATE

NOTES

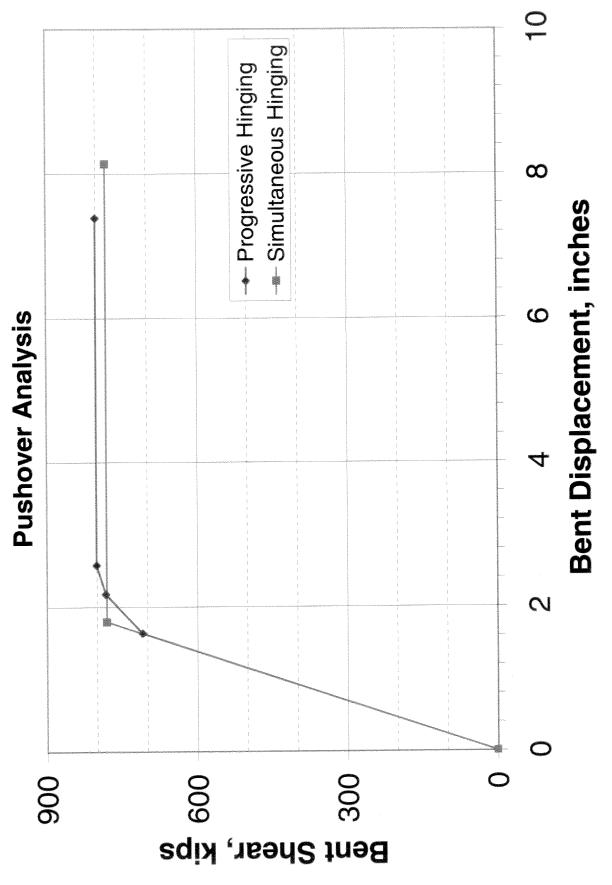
COUNTY:

CROSSING:

NOTES

PAGE 31

SE. 4.9


Der PLASTIC DISPLACEMENT DEHAND = ELASTIC DISPLACEMEN FROM SEISAB - Dy SEISAB BENT DISPLACEMENT = 2.93" DISPLACEMENT = 2.93"

 $\Delta_{pd} = 0.65''$ PLASTIC DISPLACEMENT CAPACITY $\Delta_{pc} = 2.875''$

 $M_{D} = 1 + \Delta_{pd} = 1 + \frac{D.65}{0.82} = 1.79$ 1.79 < 8 , OK

DESIGNDATE CHECK DATE CHECK DATE PAGE 32

NOTES **CROSSING:** COUNTY: USE PAYS IF WE HAD ASSUMED ALL HINGES FORM SIMULTANEOUSLY IN ALL COLUMNS: PAGES 3,10 (EI) === 137.819.293+112,952(641)-641(258)² = 206,665,898 K.IN2 PAGE 9 (Mp)AYG = 30,079+7.18(641) = 34,681 IN.K (\$y)AYG = 0.000199-4.42×108(641) PAGE 7 = 0.000171 IN-" (\$u)AY6 = 0.00173-3.7×107(641) PAGE 8 = 0.00149 IN-" Mpz = V2 (H/2) + P2 (dy) = (1/3)(129) + 641 (dy) $d_y = \frac{V_p (258)^3}{3U2 (206, 665, 898)} = \frac{V_p}{433.2}$ $V_{p}\left(\frac{129}{3}\right) + 641\left(\frac{V_{p}}{4332}\right) = 34,681$ => Vp = 780 KIPS dy=1.80" $\Delta p = (0.00149 - 0.000171)(20.22)(129 - 10.11)$ PAGES 17,18 DESIGNDATE Dy = dy/2 = 0.9" CHECK DATE $\Delta u = 0.9 + 3.17 = 4.07''$ du = ZAL = 8.14" CHECK DATE PAGE 33

