A User-Friendly Interface for Pile Analysis Using OpenSees

Jinchi Lu University of California, San Diego

Zhaohui Yang URS Corporation, Oakland Office

Ahmed Elgamal *University of California, San Diego*

Single Pile in a Layered Half-Space

🚺 OpenSeesPL - Untitled	
File Meshing Analyze Display View Help	
Model Input Image: Constraint of the second sec	Finite Element Mesh FE Mesh Viewer

Circular pile in level ground: filled view of ¹/₂ mesh due to symmetry

Problems could be Studies by the GUI

- Seismic Excitation: Linear and nonlinear (incremental plasticity based) 3D ground seismic response with capabilities for 3 dimensional excitation, and multilayered soil strata.
- Pushover Analysis: Inclusion of a pile or shaft in the the 3D ground mesh (circular or square pile in a soil island).
- Ground Modification: Various ground modification scenarios may be studied by appropriate specification of the material within the pile zone.

Seismic Excitation

Pushover Analysis

Force Based or Displacement Based Monotonic or Cyclic

Pushover					×	
Type C Monotonic Pushover C Cyclic Pushover (Sine Wave) C U-Push Define U-Push			Method Force-Based Method Displacement-Based M	ethod		
- Force Increment (Per	Step)		Displacement Increment (P	er Step)		
Logitudinal (X) Force Transverse (Y) Force	0	[kN] [kN]	Transverse Displacement	0	[m] [m]	
Vertical (Z) Force	0	[kN]	Vertical Displacement	0	[m]	
Moment of Y	0	[kN-m]	Rotation around Y	0	[rad]	
Moment of Z	0	[kN-m]	Rotation around Z	0	[rad]	
Sine Wave Frequency (Hz)	1		Time Total Number of Steps	200		

U-Push							
- Ourrent Liser Defined Pushover (Li-Push) File							
JE: V=rogram Files(UpenSeesPL(motions)upush1.dat	_						
Select/Change Pushover File							
E:\Program Files\OpenSeesPL\motions\upush1.dat							
Detail Information							
Number of Steps 201							
Step Value							
Starting Point 1 0							
Ending Point 201 -4.28718e-007							
Max. Value Point 128 1.25999							
Min. Value Point 177 -1.75653							
View Pushover History							
Horizontal axis: Step Vertical axis: Load (kN)	_						
60							
set0 •							
-0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0							
x10 ²							

User-Defined Pushover

Pile Element Types

- Linear pile element (elasticBeamColumn)
- Nonlinear pile elements (nonlinearBeamColumn)
 - Aggregator section
 - Fiber section

		Fib	er Sect	ion
er Section		7/		
Material				
		Core	Cover	
	Concrete Compressive Strength	-29000	-22332	[kPa]
Concrete01:	Concrete Strain at Maximum Strength	-0.014	-0.006	
	Concrete Crushing Strength	-22332		[kPa]
	Concrete Strain at Crushing Strength	-0.004	-0.002	
	Yield Strength	1860000	[kPa]	
Steel01:	Initial Elastic Tangent	200000000	- [kPa]	
Strain-hardening Ratio		0.01		
Circular Shap	e			
	Number of Subdivisions (fibers) in the	Lore	Lover	
	Number of Subdivisions (fibers) in the	4	- 4	
Patch:	Radial Direction	9	0.457	[m]
	Internal Radius	0.457	0.957	[m]
	External Radius	0.457	10.01	[m]
	Number of Reinforcing Bars along Layer	16		
Layer:	Area of Individual Reinforcing Bar	0.00014	[m2]	
	Radius of Reinforcing Layer	0.457	[m]	

Soil Materials

Ground Modification Scenarios

- Material within the pile zone (e.g., gravel permeability)
- Materials outside the pile zone (e.g., multi-layered soil strata with sand or silt permeability)

Other Features

Bridge Deck

Pile in Sloping Ground

Mesh	×	
General Definition Horizontal Meshing Vertical Meshing Mesh Scaling	General Definition Mesh Scale Half mesh File Num of Slices 48 Section Above 48 64 80 96 112 128	

Straightforward and fast mesh definition/ refinement

Output: Deformed Mesh

Output: Excess Pore Pressure Contour

Output: Pile Response Profiles

Displacement Profile

Output: Pile Response Histories

Displacement History

Output: Pile Response Relationships

Moment-Curvature Relationship (at Different Locations of Pile)

Output: Soil Acceleration Time Histories

Output: Excess Pore Pressure Time Histories

Output: Shear Stress vs. Strain & Effective Confinement

Comparison with PLAXIS

Soil, linear elastic	Е	ν	Compact elastic	E	ν	Diameter	Ι
chubtic	100 MPa 0.35 (K/G=	0.35 (K/G=3)	concrete pile	20 GPa	0.25	1 m	0.049 m ⁴

The pile is 6m above terrain, 6m into soil. The soil layer is 10m thick. The load is 100kN at pile head.

PLAXIS Mesh (S. Nordal, 2006)

OpenSees Mesh

Deflection Comparison

Bending Moment Comparison

- A user interface for pile analysis using OpenSees was developed.
- Analysis options available include seismic excitation, pushover analysis and ground modification.
- Features include automatic meshing of soil and pile configurations, available libraries of already calibrated soil models, and structural models for seismic response.
- > Future work includes option for pile group.
- > OpenSeesPL can be downloaded from:

http://cyclic.ucsd.edu/OpenSeesPL/