Advanced Geotechnical Simulations with OpenSees Framework

Boris Jeremić

Department of Civil and Environmental Engineering University of California, Davis

OpenSees Developer Symposium, RFS, August 2006 http://sokocalo.engr.ucdavis.edu/~jeremic/

Outline

Verification and Validation

2 Recent Work at the UCD CompGeomech Group

3 Selected Examples

Boris Jeremić, University of California, Davis Advanced Geotechnical Simulations with OpenSees Framework

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Symposium

Etymology: Latin, from Greek *symposion*, from *sympinein* to drink together, from *syn-* + *pinein* to drink

- a convivial party (as after a banquet in ancient Greece) with music and conversation
- a social gathering at which there is free interchange of ideas
- a formal meeting at which several specialists deliver short addresses on a topic or on related topics
- a collection of opinions on a subject; especially one published by a periodical

Fundamentals

Fundamentals of Verification and Validation

Fundamentals

Verification: Model is solved correctly (Mathematics)

Verification: The process of determining that a model implementation accurately represents the developer's conceptual description and specification.

- Identify and remove errors in computer coding
 - Numerical algorithm verification
 - Software quality assurance practice
- Quantification of the numerical errors in computed solution

Advanced Geotechnical Simulations with OpenSees Framework

Fundamentals

Validation: Correct model is solved (Physics)

Validation: The process of determining the degree to which a model is accurate representation of the real world from the perspective of the intended uses of the model.

• Tactical goal:

Identification and minimization of uncertainties and errors in the computational model

 Strategic goal: Increase confidence in the quantitative predictive capability of the computational model

Elastic Material Models Elastic-Plastic Continuum Models Single Phase Multi Phase FE, Coupled Computational Procedures HPC Simulations: PDD PDD: Current Status

Elastic Material Models

- Small deformation elasticity
 - linear isotropic
 - nonlinear isotropic
 - cross anisotropic

- Large deformation hyperelasticity
 - Neo–Hookean
 - Ogden
 - Logarithmic
 - Mooney–Rivlin
 - Simo–Pister

Boris Jeremić, University of California, Davis Advanced Geotechnical Simulations with OpenSees Framework

Elastic Material Models Elastic-Plastic Continuum Models Single Phase Multi Phase FE, Coupled Computational Procedures HPC Simulations: PDD PDD: Current Status

Elastic–Plastic Continuum Models: Small Deformations

- Yield surfaces:
 - von Mises
 - Drucker–Prager
 - Cam–Clay
 - Rounded Mohr–Coulomb
 - Parabolic Leon
- Plastic flow directions (plastic potential functions):
 - von Mises
 - Drucker–Prager
 - Cam–Clay
 - Rounded Mohr–Coulomb
 - Parabolic Leon
 - Dafalias Manzari

Advanced Geotechnical Simulations with OpenSees Framework

Elastic Material Models Elastic-Plastic Continuum Models Single Phase Multi Phase FE, Coupled Computational Procedures HPC Simulations: PDD PDD: Current Status

Elastic–Plastic Continuum Models: Small Deformations (continued)

• Evolution Laws (hardening and/or softening laws):

- linear scalar,
- nonlinear scalar (Cam–Clay type),
- linear tensorial (kinematic hardening/softening: translational and/or rotational)
- nonlinear tensorial (kinematic hardening/softening: translational and/or rotational)
 - Armstrong–Frederick hardening
 - bounding surface hardening/softening

Elastic Material Models Elastic-Plastic Continuum Models Single Phase Multi Phase FE, Coupled Computational Procedures HPC Simulations: PDD PDD: Current Status

Hyperelastic–Plastic Continuum Models: Large Deformations

- Yield surfaces
 - von Mises,
 - Drucker–Prager...
- Plastic flow directions (plastic potential functions):
 - Drucker–Prager,
 - von Mises,
- Evolution Laws:
 - linear and nonlinear scalar,
 - nonlinear scalar
 - linear and nonlinear (AF) tensorial (kinematic hardening/softening: translational and/or rotational)

Elastic Material Models Elastic-Plastic Continuum Models Single Phase Multi Phase FE, Coupled Computational Procedures HPC Simulations: PDD PDD: Current Status

Single Phase FE Formulations

- Small deformation solid elements, bricks (8, 20, 21, 27, 8-20 variable node bricks)
- Large deformation (total Lagrangian) solid elements, bricks (20 node brick)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Elastic Material Models Elastic–Plastic Continuum Models Single Phase Multi Phase FE, Coupled Computational Procedures HPC Simulations: PDD PDD: Current Status

Multi Phase Formulations

- Fully coupled, u-p-U elements (3D) for small deformations
- Fully coupled, u-p (3D) elements for small deformations
- Fully coupled u-p (3D) elements for large deformations

Degrees of freedom (DOFs) are:

- $u \rightarrow$ solid displacements,
- $p \rightarrow$ pore fluid pressures,
- $U \rightarrow$ pore fluid displacements

Elastic Material Models Elastic-Plastic Continuum Models Single Phase Multi Phase FE, Coupled Computational Procedures HPC Simulations: PDD PDD: Current Status

Computational Procedures

- Hyperspherical arc-length solution control
- Domain reduction method (Bielak et al.)
- Plastic Domain Decomposition (PDD) parallel simulations

Verification and Validation Recent Work at the UCD CompGeomech Group Selected Examples Discussion Topics Elastic Material Models Elastic-Plastic Continuum Models Single Phase Multi Phase FE, Coupled Computational Procedures HPC Simulations: PDD PDD: Current Status

PDD Method: Design Goals

- Graph partitioning → balance multiple phases simultaneously, while also minimizing the inter-processor communications costs
- It is a multi-objective optimization problem (minimize both the inter-processor communications, the data redistribution costs and create balanced partitions)
- Take into the account (deterministic or probabilistic):
 - heterogeneous element loads that change in each iteration
 - heterogeneous processor performance (multiple generations nodes)
 - inter-processor communications (LAN or WAN)
 - data redistribution costs

Verification and Validation Recent Work at the UCD CompGeomech Group Selected Examples Discussion Topics HPC Simulations: PDD PDD: Current Status

PDD Method: Implementation

- Perform global optimization for both internal state determination and system of equatons solution phases
- Adaptive partitioning done using ParMETIS
- Iterative system of equations solver PETSC
- OpenSees: standard interface and framework
- Works on SMPs, local DMPs, grids of computers

Elastic Material Models Elastic-Plastic Continuum Models Single Phase Multi Phase FE, Coupled Computational Procedures HPC Simulations: PDD PDD: Current Status

Features

- Initial domain partitioning
- Adaptive domain repartitioning depending on CPU imbalance, LAN and/or WAN performance
- Repartitioning works with loads, constraints..., all necessary movable objects
- Available for all elements (solid, structural) that provide the standard OpenSees interface (sendSelf, RecvSelf, timer or CL weight estimate)
- Scalable to a large number of CPUs
- Performance tuning (local cluster GeoWulf, SDSC, TACC)

Elastic Material Models Elastic-Plastic Continuum Models Single Phase Multi Phase FE, Coupled Computational Procedures HPC Simulations: PDD PDD: Current Status

Speedup Overview

Boris Jeremić, University of California, Davis

Soil Foundation Structure Interaction in Dry Soils Soil Foundation Structure Interaction in Liquefied Soils

Detailed 3D, FEM model

- Construction process
- Two types of soil: stiff soil (UT, UCD), soft soil (Bay Mud)
- Deconvolution of given surface ground motions
- Use of the DRM (Prof. Bielak et al.) for seismic input
- $\bullet~\mbox{Piles} \rightarrow \mbox{beam-column elements in soil holes}$
- Structural model developed at UCB (Prof. Fenves et al.)
- Element size issues (filtering of frequencies)

model size	el. size	f _{cutoff}	min. <i>G/Gmax</i>	γ	
12K	1.0 m	10 Hz	1.0	<0.5 %	
15K	0.9 m	>3 Hz	0.08	1.0 %	
150K	0.3 m	10 Hz	0.08	1.0 %	
500K	0.15 m	10 Hz	0.02	5.0 %	
리로 〈로〉〈로〉〈铅〉〈曰〉					= 990

Boris Jeremić, University of California, Davis

Soil Foundation Structure Interaction in Dry Soils Soil Foundation Structure Interaction in Liquefied Soils

FEM Mesh (one of)

Boris Jeremić, University of California, Davis

Advanced Geotechnical Simulations with OpenSees Framework

= 990

1

Soil Foundation Structure Interaction in Dry Soils Soil Foundation Structure Interaction in Liquefied Soils

Changes to the Free Field Input Motions: SFSI

Boris Jeremić, University of California, Davis

Soil Foundation Structure Interaction in Dry Soils Soil Foundation Structure Interaction in Liquefied Soils

The SFSI Liquefaction Model

- Construction process
- Piles \rightarrow beam-column elements in soil holes
- Impermeable pile concrete

Soil Foundation Structure Interaction in Dry Soils Soil Foundation Structure Interaction in Liquefied Soils

Pile Displacements and Pore Pressures

Boris Jeremić, University of California, Davis

Instead of Summary: Discussion Topics

- Development and use models:
 - Hollywood (subcontracting)
 - Ebay (flea market)
 - Open Source (goal driven, meritocracy)

- Developer's and user's dilemma:
 - Exploration of new possibilities
 - Exploitation of old certainties

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- W. OBERKAMPF, T. TRUCANO, AND C. HIRSCH. Verification, validation and predictive capability in computational engineering and physics. In *Proceedings of the Foundations for Verification and Validation on the 21st Century Workshop*, pages 1–74, Laurel, Maryland, October 22-23 2002. Johns Hopkins University / Applied Physics Laboratory.
- STEVEN WEBER *The Success of Open Source*. Harvard University Press, 2004. ISBN 0-674-01292-5.
- Material (reports, papers, presentations, documentation...) from my web site

http://sokocalo.engr.ucdavis.edu/~jeremic/.