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Flexural Strength and Ductility of Extended Pile-Shafts.
I: Analytical Model

Y. H. Chai, M.ASCE1

Abstract: An analytical model, based on the commonly used equivalent cantilever concept, is developed for assessing the loca
demand of a yielding pile-shaft when subjected to lateral loading. For elastic response of the pile-shaft, an equivalent depth-to
assumed, which can be derived by equating the lateral stiffness of the cantilever to that of the elastic soil-pile system. In ada
equivalent cantilever model to yielding pile-shafts, however, the depth-to-maximum-moment is assumed to occur at a depth a
depth-to-fixity. The lateral strength, which depends on the depth-to-maximum-moment, is determined using the flexural streng
pile and the ultimate pressure distribution of the soil. By assuming a concentrated plastic hinge rotation at the depth-of-m
moment, a kinematic model relating the local curvature ductility demand to global displacement ductility demand is develop
kinematic relation is shown to depend on the aboveground height, depth-to-maximum-moment, depth-to-fixity, and equivalen
hinge length. The model is illustrated using a pile-shaft embedded in cohesive and cohesionless soils.
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Introduction

Current seismic design of bridge structures is based on an
sumed ductile response of the structure. A capacity design p
ciple is generally followed to ensure that regions of inelastic
formation are carefully detailed to provide adequate structu
ductility. Nonductile failure modes are suppressed by providin
differential strength between the ductile and nonductile fail
modes. Regions outside of those with special detailings are
tected from inelastic actions and hence prevented from pote
brittle failures.

For most bridges, the foundation system may be strategic
designed to remain elastic while the pier portion of the substr
ture is detailed for inelastic deformation and energy dissipat
This approach is intended to avoid the difficulty of post ear
quake inspection and the high cost associated with repair of
damaged foundation. Elastic response of the foundation ca
ensured by increasing the strength of the foundation above th
the bridge pier so that plastic hinging occurs in the pier instea
the foundation. However, many design situations arise wh
plastic hinging cannot be avoided in members of the founda
during a severe earthquake. A good example of such design i
extended pile-shaft, as shown in Fig. 1~a or b!, where the column
is continued below the ground level as a pile-shaft of appro
mately the same diameter. Such foundation design is c
effective when compared to the column/pile-cap/pile combinat
since the construction of an expensive pile-cap can be elimina
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Under seismic loading, the maximum bending moment occur
the pile at some distance below the ground level, depending
the relative stiffness between the pile and surrounding soil.
magnitude of the bending moment under the design level ea
quake is often sufficiently large to cause plastic hinging of
pile. Consequently, the design of such foundation requires car
considerations of the flexural strength and ductility capacity of
pile.

In addition to the difficulty of damage inspection after a
earthquake, extensive yielding of the pile below the ground le
might result in an unacceptable level of residual displacem
which may render the structure unserviceable after an earthqu
In order to limit the yielding of the pile, and hence damage in
pile, the lateral strength of these members is currently prescr
at a level higher than that of an equivalent column. This appro
attempts to ensure that the full ductility capacity of the pile w
not be developed under the design level earthquake, even th
full detailing requirements are imposed on the design of th
members. Such structures have been termed asLimited Ductility
Structuresby ATC-32 ~1996!, where a displacement ductility fac
tor of 3 has been implicitly prescribed for design. A similar a
proach of prescribing higher lateral strength for piles has b
adopted for seismic design of highway bridges in New Zeala
For plastic hinges expected at a depth less than 2 m below the
ground level but not below the mean water level, the design
placement ductility factor is limited tomD<4. For plastic hinges
expected at a depth greater than 2 m below the ground level o
below the mean water level, the design displacement duct
factor is reduced tomD<3 ~Chapman 1995; Park 1998!.

The lateral stiffness, strength, and ductility capacity of the p
depend on the amount and details of the longitudinal and tra
verse reinforcement, and to a lesser extent, the compres
strength of the concrete. The lateral force-deformation charac
istics of the pile also depend on the interaction between the
and surrounding soil. For most bridges, however, the inertial fo
from the superstructure tends to dominate the inelastic defor
tion of the pile. Consequently, the inelastic deformation of t

-
e



Fig. 1. Formation of subgrade plastic hinge due to inertial loading of superstructure
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pile frequently occurs at a depth very close to the ground sur
~typically less than three or four pile diameters below the grou
surface!. Exceptions to such shallow inelastic deformation
clude piles embedded in liquefiable soils or piles embedde
soil layers with large stiffness contrast where the pile may
subjected to a large local deformation due to kinematic load
or in situations where the lateral spread of an adjacent soil m
may impose a large deformation on the pile. In this paper, o
the inelastic response dominated by inertial loading is conside
An analytical model, based on an extension of the equiva
cantilever method, is developed for assessing the flexural stre
and ductility capacity of reinforced concrete piles embedded
cohesive and cohesionless soils. Comparisons of the model
experimental test results are presented in a companion p
~Chai and Hutchinson 2002!.

Equivalent Cantilever Model

Elastic Soil-Pile System

A common approach for structural design of a pile foundat
assumes that the soil-pile system can be replaced by an equiv
cantilever that is fully restrained against lateral translation a
rotation at the base, as shown in Fig. 2~Caltrans 1986; Dorwick
1987!. The equivalent depth-to-fixity, typically in the range

Fig. 2. Representation of soil-pile system by equivalent fixed-b
cantilever
s

.

h
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3–6 pile diameters below the ground level, is used to accoun
the flexibility of the embedded pile. The equivalent depth-to-fix
depends on the relative stiffness between the pile and surroun
soil and may be determined by equating the lateral stiffness of
soil-pile system to that of an equivalent fixed-base cantilever.

The elastic lateral stiffness of a prismatic equivalent fixed-b
cantilever is given by

Kc[
V

D
5

3EIe

~L f1La!3 (1)

where V5lateral force applied at the top of the cantileve
D5lateral displacement at the top of the cantileve
EIe5effective flexural rigidity of the equivalent cantilever~as-
sumed to be the same as that of the pile!; La5aboveground
height; andL f5equivalent depth-to-fixity. For concrete piles, th
flexural rigidity in Eq.~1! should account for the possible redu
tion of stiffness due to cracking of the concrete. In this case,
effective flexural rigidityEIe may be taken as the secant stiffne
of the pile section at first yield of the reinforcement. The equiv
lent depth-to-fixityL f may be determined by equating the later
stiffness of the equivalent cantilever to the lateral stiffness of
soil-pile system using known solutions for elastic piles embed
in an elastic Winkler foundation. The lateral stiffness of the so
pile system and the equivalent depth-to-fixity will be determin
separately for cohesive and cohesionless soils.

Equivalent Depth-to-Fixity: Cohesive Soils
For an elastic pile embedded in a cohesive soil, the lateral s
ness of the soil is commonly modeled with an elastic Wink
foundation with a constant modulus of horizontal subgrade re
tion. The solution for an elastic pile embedded in a soil with
constant modulus of horizontal subgrade reaction is well kno
~Poulos and Davis 1980; Pender 1993!. For a long pile, i.e., em-
beddment length greater than 3.5 times the characteristic le
Rc @defined later in Eq.~4!#, the lateral displacementDg and
rotation ug of the pile at the ground level are given by~Poulos
and Davis 1980!

Dg5
V~La1A2Rc!

khRc
2 (2)

ug5
V~A2La1Rc!

khRc
3 (3)
JOURNAL OF STRUCTURAL ENGINEERING / MAY 2002 / 587
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where kh5constant modulus of horizontal subgrade reaction
unit of force/length2, and the characteristic lengthRc is given by

Rc5A4 EIe

kh
(4)

Note that the influence of axial force on ground level displa
ment and rotation of the pile has been ignored in Eqs.~2! and~3!.
The lateral displacement at the top of the pile consists of con
butions from the lateral displacement and rotation of the pile
the ground level and the flexural deformation of the pile above
ground

D5Dg1ugLa1DLa
(5)

whereDLa
corresponds to the flexural deflection of the pile abo

the ground and is given by

DLa
5

VLa
3

3EIe
(6)

By defining the aboveground heightLa and equivalent depth-to
fixity L f in terms of the characteristic lengthRc , i.e., La[jaRc

andL f[j fRc , whereja andj f5coefficients for the abovegroun
height and equivalent depth-to-fixity, respectively, the lateral s
ness of the soil-pile system can be written as

Ksp[
V

D
5

3khRc

3A216ja13A2ja
21ja

3
(7)

The coefficient for equivalent depth-to-fixityj f can be obtained
by equating the lateral stiffness of the soil-pile systemKsp from
Eq. ~7! to the lateral stiffness of the equivalent cantileverKc from
Eq. ~1!

j f5A3 4.2416ja14.24ja
21ja

32ja (8)

Note that the coefficient for equivalent depth-to-fixityj f is only a
function of the coefficient for aboveground heightja in Eq. ~8!.
The coefficient for equivalent depth-to-fixity, however, is not ve
sensitive to the aboveground height, particularly for large val
of ja . Fig. 3 shows the variation of the coefficient for equivale
depth-to-fixity for 0<ja<6. For ja50, i.e., lateral load applied
at the ground level, the coefficient for equivalent depth-to-fixity
j f51.62. Forja.0, the coefficient for equivalent depth-to-fixit
decreases rapidly with increase in the coefficient for abovegro
height. For aboveground height in the range 1,ja,6, the coef-
ficient for equivalent depth-to-fixity varies between 1.42 and 1.
The relative insensitivity ofj f led to an approximate expressio
for the equivalent depth-to-fixity~Dorwick 1987; Scarlat 1996!.
For a free-head pile embedded in a cohesive soil and loaded

Fig. 3. Coefficient for equivalent depth-to-fixity of cohesive soil
588 / JOURNAL OF STRUCTURAL ENGINEERING / MAY 2002
h

a horizontal force at an aboveground height ofLa , the equivalent
depth-to-fixity has been given by Scarlat~1996! as

L f51.4Rc if La /Rc>2 (9)

51.6Rc if La /Rc,2 (10)

Eq. ~9! was suggested by Davisson~1970! earlier forLa /Rc>2.
The equivalent depth-to-fixityL f can be calculated if the

modulus of horizontal subgrade reactionkh is known. An expres-
sion has been proposed by Davisson~1970!, and adopted by
Prakash and Sharma~1990!, for the estimation of the modulus o
horizontal subgrade reaction

kh567su (11)

wheresu5undrained shear strength of the cohesive soil. The
drained shear strength may be determined from laboratory tes
of soil samples, or estimated from in situ tests such as cone
etrometer tests. As a guide, however, Table 1 provides a cor
tion between the consistency and undrained shear strength o
cohesive soil~Das 1990!. It should also be noted that the modulu
of horizontal subgrade reaction, as estimated using Eq.~11! and
Table 1, corresponds to the working load level. Such a value te
to overestimate the lateral stiffness of the soil-pile system w
evaluating the yield displacement of the extended pile-shaft.
argument for reducing the modulus of horizontal subgrade re
tion is presented together with the cohesionless soil in the n
section.

Equivalent Depth-to-Fixity: Cohesionless Soils
For an elastic pile embedded in a cohesionless soil, the la
stiffness of the soil is commonly modeled with an elastic Wink
foundation with a linearly increasing modulus of horizontal su
grade reaction. For a long pile, i.e., embedment length gre
than four times the characteristic lengthRn @defined later in Eq.
~14!#, the lateral displacementDg and rotationug of the pile at the
ground level are given by~Poulos and Davis 1980!

Dg5
V

EIe
@2.40Rn

311.60Rn
2La# (12)

ug5
V

EIe
@1.60Rn

211.74RnLa# (13)

whereRn5characteristic length of the pile and is given by

Rn5A5 EIe

nh
(14)

andnh5rate of increase of modulus of horizontal subgrade re
tion in unit of force/length.3

nh5
kh

z
(15)

Table 1. Undrained Shear Strength of Cohesive Soils@adapted from
Das ~1990!#

Estimated consistency Undrained shear strengthsu (kN/m2)

Very soft ,12
Soft 12–25
Firm 25–50
Stiff 50–100
Very Stiff 100–200
Hard .200



ve-

be

th-
d

s
es
of

ve-

ela-
n
ss

-
soil
ori
n
5,

e o
ad
he
sed
t

of
d
tha
-
Ex-

to-

the
, a
tal
ntal

sing
g-
the
pth-
of

gth
-
soil
pa-
ons.

the
ile.
d to
e-

irly

.5

n,
s
in-

is
a-

ils

n-
Similar to the approach taken for cohesive soils, the abo
ground heightLa and equivalent depth-to-fixityL f can be defined
in terms of the characteristic lengthRn , i.e., La[jaRn and L f

[j fRn . The lateral stiffness of the soil-pile system can thus
written as

Ksp[
V

D
5

EIe

Rn
3

1

@2.413.2ja11.74ja
21ja

3/3#
(16)

By equating the lateral stiffness of the soil-pile systemKsp from
Eq. ~16! to the lateral stiffness of the equivalent cantileverKc

from Eq. ~1!, the coefficient for equivalent depth-to-fixity is

j f5A3 7.219.6ja15.22ja
21ja

32ja (17)

Fig. 4 shows the variation of the coefficient for equivalent dep
to-fixity for 0<ja<6. For a lateral force applied at the groun
level, i.e.,ja50, the coefficient for equivalent depth-to-fixity i
j f51.93. The coefficient for equivalent depth-to-fixity decreas
rapidly with increase in aboveground height for small values
ja , similar to that observed for cohesive soils. For an abo
ground height in the range of 2,ja,6, the coefficient for
equivalent depth-to-fixity varies between 1.81 and 1.77. The r
tively small variation ofj f also led to an approximate expressio
by Scarlat~1996! for free-head piles embedded in cohesionle
soils

L f51.8Rn if La /Rn>1 (18)

52.2Rn if La /Rn,1 (19)

Eq. ~18! was also suggested by Davisson~1970! earlier for
La /Rn>1.

The equivalent depth-to-fixityL f for piles embedded in a co
hesionless soil can be determined if the lateral stiffness of the
as characterized by the rate of increase of the modulus of h
zontal subgrade reactionnh , is known. Guidance for the selectio
of nh is currently available in the literature. For example, Fig.
which has been reproduced from ATC-32~1996!, provides a plot
of nh and effective friction anglef̄ as a function of the relative
density of the soil for both dry and submerged sands. The valu
nh in Fig. 5, however, is typically estimated at the working lo
level, which may be as low as 1/4 of the ultimate load. T
definition of yield limit state, on the other hand, should be ba
on first yielding of the longitudinal reinforcement of the pile. A
the first-yield limit state of the pile, the inelastic deformation
the soil will be significantly larger than that at the working loa
level, resulting in a much smaller secant stiffness. This means
the appropriate value ofnh for lateral strength and ductility as
sessment of piles is much smaller than that given in Fig. 5.

Fig. 4. Coefficient for equivalent depth-to-fixity of cohesionless so
,
-

f

t

perimental results presented in the companion paper~Chai and
Hutchinson 2002! indicated that the value ofnh could be as low
as 1/5 of that shown in Fig. 5. Although the equivalent depth-
fixity is not very sensitive to the variation of largenh , a smaller
value ofnh nonetheless results in a 20% or more increase in
equivalent depth-to-fixity. As noted in the previous section
similar reduction should be made for the modulus of horizon
subgrade reaction of cohesive soils, even though experime
results are currently not available for such soils.

Inelastic Soil-Pile System

In using the equivalent fixed-base cantilever model for asses
the ductility capacity of a yielding pile-shaft, it must be reco
nized that the maximum bending moment does not occur at
base of the cantilever but at a depth above the equivalent de
to-fixity. The depth-to-maximum-moment defines the location
the in-ground plastic hinge and will influence the lateral stren
and ductility capacity of the pile. The depth-to-maximum
moment, however, depends on the ultimate resistance of the
and the flexural strength of the pile, and will be considered se
rately for cohesive and cohesionless soils in the next two secti

Depth-to-Maximum-Moment: Cohesive Soils
Extensive studies have been conducted in the past to quantify
ultimate soil pressure distribution acting on a laterally loaded p
For a purely cohesive soil, the ultimate soil pressure was foun
increase from about 2su at the ground level to a stress level b
tween 8 and 12su at a depth of about 3D ~Broms 1964a!, where
su5undrained shear strength of the cohesive soil andD5pile di-
ameter. The ultimate soil pressure was found to remain fa
constant beyond a depth of 3D. A simplified soil pressure was
subsequently proposed by Broms~1964a! where zero soil pres-
sure was assumed between the ground level and depth of 1D,
followed by a constant soil pressure of 9su to the depth-of-
maximum-moment. The simplified soil pressure distributio
which is shown in Fig. 6~a!, is similar to the rectangular stres
block used for calculating the ultimate flexural strength of re
forced concrete sections~ACI 1999!.

For stiff cohesive soils, however, large lateral resistance
developed in the upper region of the soil, resulting in the form

Fig. 5. Subgrade coefficient and effective friction angle of cohesio
less soils~ATC-32 1996!
JOURNAL OF STRUCTURAL ENGINEERING / MAY 2002 / 589



Fig. 6. Ultimate soil pressure distributions of laterally loaded piles
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tion of the plastic hinge close to the ground surface. The sim
fied soil pressure distribution by Broms~1964a!, on the other
hand, does not lend itself to the formation of a plastic hinge fo
depth less than 1.5D. Consequently, the rectangular soil pressu
distribution tends to underestimate the lateral strength of the s
pile system for stiff cohesive soils. In this paper, a parabolic d
tribution of ultimate soil pressure is assumed for the upper reg
followed by a constant soil pressure at greater depth. In equa
form, the ultimate soil pressure distribution is given by

pu~z!5H 1

27
suF54184

z

D
27S z

D D 2G for z<6D

11.3su for z.6D
(20)

wherez5depth below the ground surface. Eq.~20! assumes an
ultimate soil pressure of 2su at the ground level, a soil pressure
9su and 11.3su at depths of 3D and 6D, respectively, and a
constant pressure of 11.3su for a depth greater than 6D. For most
cases, however, the depth-to-maximum-moment is less thanD
except for very soft clay, which means that the constant soil p
sure of 11.3su for z.6D is often not needed for the calculatio

The depth-to-maximum-moment as well as the ultimate late
force resisted by the pile can be determined using the parab
soil pressure distribution. The equilibrium of horizontal forc
and bending moments requires

Vu5E
0

Lm

pu~z!Ddz (21)

Mmax5Vu~La1Lm!2E
0

Lm

pu~z!D~Lm2z!dz (22)

whereVu5ultimate lateral force andMmax5flexural strength of
the pile. Eqs.~21! and~22! can be integrated and rearranged in

Mmax* 52La* Lm* 1~11 14
9 La* !Lm*

21 7
81~122La* !Lm*

3

2 7
108Lm*

4 for Lm* <6 (23)

Vu* 52Lm* 1 14
9 Lm*

22 7
81Lm*

3 for Lm* <6 (24)

whereVu* 5Vu /suD25normalized lateral strength of the soil-pil
system;Mmax* 5Mmax/suD

35normalized flexural strength of th
pile; La* 5La /D5normalized aboveground height; andLm*
5Lm /D5normalized depth-to-maximum-moment. The norm
ized depth-to-maximum-moment, as given by the solution of
~23!, is shown in Fig. 7 forMmax* 50–300 and forLa* 50 – 10. It
can be seen from Fig. 7 that for very stiff cohesive soils, i
small value ofMmax* , the normalized depth-to-maximum-mome
590 / JOURNAL OF STRUCTURAL ENGINEERING / MAY 2002
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c

may be less than 1.5. Thus the simplified soil pressure distr
tion by Broms~1964a! is inappropriate for stiff cohesive soils.

Depth-to-Maximum-Moment: Cohesionless Soils
The depth-to-maximum-moment for piles embedded in a co
sionless soil can be determined in a manner similar to that
cohesive soils by assuming an ultimate soil pressure distribut
In this paper, the depth-to-maximum-moment and ultimate lat
force resisted by the pile will be derived using the ultimate s
pressure distribution proposed by Broms~1964b! for cohesionless
soils, which assumes that~i! the lateral displacement of the pile i
large enough to fully mobilize the lateral resistance of the soil,~ii !
the net soil pressure distribution on the pile is equal toC times the
Rankine passive pressure, and~iii ! the shape of the pile sectio
does not influence the distribution of the ultimate soil resistan
Thus, according to assumption~ii !, the net soil pressure acting o
the pile may be assumed to be a linear function of the depthz and
be written as

pu~z!5Csv8~z!Kp (25)

wheresv85vertical effective overburden stress and may be tak
as the effective unit weight of the soilg8 times the depthz and
Kp5passive soil pressure coefficient of the cohesionless soil
is given by

Kp5
11sin~f̄ !

12sin~f̄ !
(26)

Fig. 7. Normalized depth-to-maximum-moment of cohesive soi
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where f̄5effective friction angle. Using the condition of zer
shear force at the section of maximum bending moment, the e
librium of horizontal forces requires

Lm5A 2Vu

CKpg8D
(27)

The summation of bending moments about the section of m
mum bending moment requires

Mmax5VuLa1A 8Vu
3

9CKpg8D
(28)

Eqs.~27! and ~28! can be solved simultaneously to give the no
malized depth-to-maximum-moment

Lm* 5
1

2 F ~La* !2

p
2La* 1pG (29)

where

p5A3 12

C
Mmax* 2~La* !31A24

C
Mmax* S 6

C
Mmax* 2~La* !3D

(30)

and the normalized lateral strength of the soil-pile system

Vu* 5
C

2
~Lm* !2 (31)

where Mmax* 5Mmax/Kpg8D45normalized flexural strength an
Vu* 5Vu /Kpg8D35normalized lateral strength. In the origin
work by Broms~1964b! the coefficientC was assumed to be 3
and this value may be adopted for the flexural strength and d
tility assessment of a yielding pile-shaft. Note that care must
taken when evaluating Eqs.~29! and ~30!, as the parameterp in
Eq. ~30! may be a complex number depending on the values
Mmax* andLa* . The normalized depth-to-maximum-momentLm* in
Eq. ~29!, however, should be a real number. For the special c
of Mmax* 50, there are three roots for the parameterp, namely
2La* , (0.510.866i )La* , and (0.520.866i )La* , wherei 5A21.
The use of the first root, i.e.,p52La* , results in a negative valu
of Lm* 523/2La* , which is incorrect. However, the choice of th
second or third roots, i.e.,p5(0.560.866i )La* , gives rise to
Lm* 50, and hence the correct value for the normalized late
strength, i.e.,Vu* 50, according to Eq.~31!. Even though the spe
cial case ofMmax* 50 has no practical significance, it nonethele
illustrates the need to pay attention to the selection of roots for
solution.

Kinematic Relation for Ductility Demand

The equivalent fixed-base cantilever model may be used to
mate the local curvature ductility demand of a yielding pile-sh
A kinematic relation between the displacement ductility factormD

and curvature ductility factormf can be developed by assuming
concentrated plastic hinge rotation at the location of maxim
bending moment as shown in Fig. 2. The plastic displacemenDp

at the top of the pile can be written as

Dp5up~La1Lm! (32)

whereup5plastic hinge rotation. Since the plastic rotation can
replaced by

up5~f2fy!Lp for f>fy (33)
-

-

-

wheref, fy5curvature and equivalent elastoplastic yield curv
ture, respectively, andLp5equivalent plastic hinge length, th
plastic displacement in Eq.~32! becomes

Dp5Lp~f2fy!~La1Lm! (34)

By defining the normalized length as before, i.e.,La* [La /D and
Lm* [Lm /D, and the normalized plastic hinge lengthlp[Lp /D,
Eq. ~34! becomes

Dp5lp~f2fy!~La* 1Lm* !D2 (35)

For an idealized elastoplastic response shown in Fig. 8, the
mate lateral forceVu is related to the equivalent elastoplast
yield displacementDy by

Vu5
3EIe

~La* 1L f* !3D3 Dy (36)

The ultimate lateral forceVu , however, may be written in term
of the maximum momentMmax:

Vu5
Mmax

Mmax* D
Vu* (37)

whereVu* and Mmax* are the normalized lateral strength and no
malized flexural strength, respectively, which have been defi
earlier for cohesive and cohesionless soils. By equating Eqs.~36!
and ~37!, the equivalent elastoplastic yield displacement can
written as

Dy5
Mmax

EIe

~La* 1L f* !3Vu*

3Mmax*
D2 (38)

Since the equivalent elastoplastic yield curvaturefy is given by

fy5
Mmax

EIe
(39)

the equivalent elastoplastic yield displacementDy may be written
as

Dy5
fy

3

~La* 1L f* !3Vu* D2

Mmax*
(40)

By substituting the elastoplastic yield displacementDy from Eq.
~40! into Eq. ~32!, and by defining the displacement ductilit
factor mD as

mD[
Du

Dy
511

Dp

Dy
(41)

a kinematic relation between the displacement ductility factormD

and curvature ductility factormf may be obtained

Fig. 8. Actual and idealized elastoplastic lateral force-displacem
responses
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mD5113lp~mf21!
~La* 1Lm* )

~La* 1L f* !3

Mmax*

Vu*
(42)

where curvature ductility factormf[f/fy>1. It can be seen
from Eq. ~42! that the kinematic relation depends on the abo
ground height, the equivalent depth-to-fixity, the depth-
maximum-moment, and the plastic hinge length of the pile. T
accuracy of the kinematic model is compared with experime
data in the companion paper~Chai and Hutchinson 2002!.

The curvature ductility demand in the plastic hinge region o
yielding pile-shaft can be estimated if the equivalent plastic hin
length of the pile is known. A study by Budek et al.~2000! for
piles embedded in cohesionless soils, and adopted by Prie
et al. ~1996!, showed that the plastic hinge length varies with t
lateral stiffness of the soil and aboveground height of the p
Experimental results~Chai and Hutchinson 2002!, however,
showed that the plastic hinge length was rather insensitive to
lateral stiffness of the soil, and depends primarily on the abo
ground heightLa . Experimental plastic hinge lengths of abo
1.2D and 1.6D were obtained for aboveground heights ofLa

52D and 6D, respectively. In this paper, the equivalent plas
hinge length is assumed to increase linearly with the abovegro
height from 1.0D at the ground level to 1.6D at an aboveground
height ofLa56D. For an aboveground height greater than 6D, a
constant plastic hinge length ofLp51.6D is assumed. The pro
posed variation of plastic hinge length with aboveground heigh
shown in Fig. 9.

Examples

To illustrate the use of the proposed kinematic model, cons
the bridge structure shown in Fig. 10 for two different soil co
ditions: ~i! soft clay and~ii ! medium dry sand. The bridge struc
ture is supported on an extended pile-shaft with a diameter oD
51.83 m, an aboveground height ofLa58.89 m, and an embed
ded length ofL519.8 m. The following structural parameters a
assumed for the analysis:~i! expected concrete compressiv
strength, as suggested by ATC-32~1996!, f ce8 51.3f 8c
544.8 MPa,~ii ! expected yield strength of the longitudinal an
transverse steel, as suggested by ATC-32~1996!, f ye51.1f y

5455.1 MPa, ~iii ! elastic modulus of the concreteEc

531,685 MPa,~iv! axial force P54528 kN ~axial load ratio of
P/ f ce8 Ag50.038!, ~v! longitudinal reinforcement552F 36 ~db

536 mm; longitudinal area ratio ofr l50.02!, and~vi! transverse
reinforcement5F 19 spiral at a pitch of 76 mm~db519 mm;

Fig. 9. Assumed equivalent plastic hinge length of concrete pil
592 / JOURNAL OF STRUCTURAL ENGINEERING / MAY 2002
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confining steel ratio ofrs50.0089!. A concrete cover of 75 mm is
assumed for the transverse spiral of the pile. The flexural rigid
of the cracked pile section, estimated from a moment-curva
analysis using the first-yield limit state of the section, isEIe

56.973106 kN m2. The simulated and idealized elastoplas
moment-curvature responses of the pile section are shown in
11. The idealized elastoplastic response has been obtaine
equating the area under the nonlinear moment-curvature curv
the area under the idealized elastoplastic curve. In this case
ultimate moment of the idealized elastoplastic response isMmax

521,320 kN m while the equivalent elastoplastic yield curvatu
is fy50.00306 rad/m. The ultimate curvature of the pile secti
based on the ultimate compressive strain of the confined conc
is fu50.04467 rad/m. Thus the elastoplastic curvature ducti
capacity of the pile section is (mf)cap514.6. The curvature duc
tility demand will be determined for a displacement ductility fa
tor of mD53, as assumed by ATC-32~1996! for seismic design of
extended pile-shafts.

Case (i): Soft Clay

It is assumed that the undrained shear strength of the soft cla
estimated from Table 1, issu520 kN/m2. The modulus of hori-
zontal subgrade reaction iskh51340 kN/m2 from Eq. ~11!. Even
though it was noted earlier that the modulus of horizontal s
grade reaction should be reduced when assessing the fle
strength and ductility of piles, the value ofkh is not reduced in
this example due to a lack of experimental data for cohesive s
The characteristic length of the pile isRc58.49 m from Eq.~4!.
Substituting the coefficient for aboveground heightja

Fig. 10. Example bridge structure supported on extended pile-sh

Fig. 11. Moment-curvature response of pile-shaft
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58.89/8.4951.05 into Eq. ~8!, the coefficient for equivalen
depth-to-fixity is j f51.49, giving the equivalent depth-to-fixit
L f512.65 m or corresponding to a normalized equivalent dep
to-fixity of L f* 512.65/1.8356.9.

The depth-to-maximum-moment, which is smaller than
equivalent depth-to-fixity, is estimated from the normalized fle
ural strength of the pile, i.e.,Mmax* 5Mmax/suD

35173.9. Substitut-
ing Mmax* 5173.9 andLa* 58.89/1.8354.86 into Eq.~23!, the nor-
malized depth-to-maximum-moment is Lm* 53.72, or
corresponding to a depth-to-maximum-moment ofLm56.81 m.
The normalized lateral strength from Eq.~24! is Vu* 524.55, giv-
ing a lateral strength ofVu51642 kN.

The curvature ductility demand in the plastic hinge is calc
lated using the plastic hinge length interpolated from Fig.
Using La* 54.86, the normalized plastic hinge length is estima
to belp51.48, or corresponding to a plastic hinge length ofLp

52.71 m. SubstitutingmD53, L f* 56.9, Lm* 53.72, La* 54.86,
lp51.48, Mmax* 5173.9, andVu* 524.55 into Eq.~42!, the local
curvature ductility demand is (mf)dem513.1, which is close to the
curvature ductility capacity of the pile (mf)cap514.6. Note that
the local curvature ductility demand is sensitive to the late
stiffness of the soil. A reduction of the modulus of horizon
subgrade reaction by a factor of 2 would increase the curva
ductility demand to 17.8, which then exceeds the ductility cap
ity of the pile. The relative sensitivity of local ductility demand
soil stiffness illustrates to need to better quantify the appropr
level of reduction forkh of cohesive soils.

Case (ii): Medium Dry Sand

The same bridge structure is analyzed for a medium dry s
where the rate of increase of modulus of horizontal subgr
reaction for an effective friction angle off̄533° is nh

56,000 kN/m3 ~estimated from Fig. 5!. However, based on pile
tests in cohesionless soils~Chai and Hutchinson 2002!, the value
of nh is reduced by a factor of 4 to 1,500 kN/m3 in this example.
An effective unit weight ofg8517.5 kN/m3 is assumed for the dry
sand. The characteristic length of the pile isRn55.41 m from Eq.
~14!. Substituting the coefficient for aboveground heightja

58.89/5.4151.64 into Eq.~17!, the coefficient for depth-to-fixity
is j f51.82 giving an equivalent depth-to-fixityL f59.85 m, or
corresponding to a normalized equivalent depth-to-fixity ofL f*
59.85/1.8355.38.

In calculating the depth-to-maximum-moment, the passive
pressure coefficient from Eq.~26! is Kp53.39, giving a normal-
ized flexural strength ofMmax* 5Mmax/Kpg8D4532.0. Assuming a
value of C53 and substitutingMmax* 532.0 andLa* 54.86 into
Eqs.~29! and~30!, the normalized depth-to-maximum-moment
Lm* 51.87, or corresponding to a depth-to-maximum-moment
Lm53.42 m. The normalized lateral strength isVu* 55.25 from
Eq. ~31!, or corresponding to an ultimate lateral force ofVu

51,908 kN.
Since the aboveground height is the same for both cases

same plastic hinge length ofLp52.71 m is used. Substituting
mD53, L f* 55.38, Lm* 51.87, La* 54.86, lp51.48, Mmax* 532.0,
andVu* 55.25 into Eq.~42!, the local curvature ductility deman
is (mf)dem512.8, which is less than the curvature ductility capa
ity of the pile (mf)cap514.6. Thus the bridge structure support
by the extended pile-shaft in medium dry sand is also expecte
have adequate ductility capacity. A comparison between cas~i!
and case~ii ! indicates that, for a given displacement ductili
e

factor, the curvature ductility demand increases with decrea
stiffness of the soil.

Conclusions

An analytical model suitable for assessing the lateral strength
ductility demand of a yielding pile-shaft is developed in th
paper. The model, based on an extension of the commonly u
equivalent fixed-base cantilever model, uses different depth
estimate the lateral stiffness and strength of the soil-pile syst
The lateral stiffness of the soil-pile system is characterized
terms of an equivalent depth-to-fixity, which is derived from t
elastic solution of piles embedded in an elastic Winkler foun
tion. For lateral strength calculation, however, the depth-
maximum-moment is assumed to occur at a depth above
depth-to-fixity and is calculated using the flexural strength of
pile and the ultimate pressure distribution of the soil. By assu
ing a concentrated plastic hinge rotation at the depth
maximum-moment, a kinematic model relating the local cur
ture ductility demand to the global displacement ductility dema
of the soil-pile system is derived. The kinematic relation indica
that the curvature ductility demand depends on the abovegro
height, depth-to-maximum-moment, depth-to-fixity, and equi
lent plastic hinge length. The analytical model, which is fair
easy to use and suitable for design purposes, is illustrated us
bridge structure supported on an extended pile-shaft embedd
cohesive and cohesionless soils. A comparison between the m
and experimental data is made in a companion paper.
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