Flexural Strength and Ductility of Extended Pile-Shafts.
I Analytical Model
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Abstract: An analytical model, based on the commonly used equivalent cantilever concept, is developed for assessing the local ductility
demand of a yielding pile-shaft when subjected to lateral loading. For elastic response of the pile-shaft, an equivalent depth-to-fixity is
assumed, which can be derived by equating the lateral stiffness of the cantilever to that of the elastic soil-pile system. In adapting the
equivalent cantilever model to yielding pile-shafts, however, the depth-to-maximum-moment is assumed to occur at a depth above th
depth-to-fixity. The lateral strength, which depends on the depth-to-maximum-moment, is determined using the flexural strength of the
pile and the ultimate pressure distribution of the soil. By assuming a concentrated plastic hinge rotation at the depth-of-maximum-
moment, a kinematic model relating the local curvature ductility demand to global displacement ductility demand is developed. The
kinematic relation is shown to depend on the aboveground height, depth-to-maximum-moment, depth-to-fixity, and equivalent plastic
hinge length. The model is illustrated using a pile-shaft embedded in cohesive and cohesionless soils.
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Introduction Under seismic loading, the maximum bending moment occurs in
the pile at some distance below the ground level, depending on
Current seismic design of bridge structures is based on an asthe relative stiffness between the pile and surrounding soil. The
sumed ductile response of the structure. A capacity design prin-magnitude of the bending moment under the design level earth-
ciple is generally followed to ensure that regions of inelastic de- quake is often sufficiently large to cause plastic hinging of the
formation are carefully detailed to provide adequate structural pile. Consequently, the design of such foundation requires careful
ductility. Nonductile failure modes are suppressed by providing a considerations of the flexural strength and ductility capacity of the
differential strength between the ductile and nonductile failure pjje
modes. Regions outside of those with special detailings are pro-- |n addition to the difficulty of damage inspection after an
tected from inelastic actions and hence prevented from potentialearthquake, extensive yielding of the pile below the ground level
brittle failures. _ ___might result in an unacceptable level of residual displacement,
For most bridges, the foundation system may be strategically \yhich may render the structure unserviceable after an earthquake.
designed to remain elastic while the pier portion of the substruc- | order to limit the yielding of the pile, and hence damage in the
ture is detailed for inelastic deformation and energy dissipation. pjle the lateral strength of these members is currently prescribed
This approach is intended to avoid the difficulty of post earth- a¢ 5 evel higher than that of an equivalent column. This approach
quake inspection and the high cost associated with repair of theaiempts to ensure that the full ductility capacity of the pile will
damaged foundation. Elastic response of the foundation can beyst pe developed under the design level earthquake, even though
ensured by increasing the strength of the foundation above that ofg detailing requirements are imposed on the design of these
the bridge pier so that plastic hinging occurs in the pier instead of empers. Such structures have been termedraited Ductility
the foundation. However, many design situations arise Where g,crreshy ATC-32 (1996, where a displacement ductility fac-
pla§t|c hinging cannot be avoided in members of the foqndgﬂon tor of 3 has been implicitly prescribed for design. A similar ap-
during a severe earthquake. A good example of such design is th%roach of prescribing higher lateral strength for piles has been

_extendgd pile-shaft, as shown in Figalor b, V\_/here the column . adopted for seismic design of highway bridges in New Zealand.
is continued below the ground level as a pl'le-shaft.of approxi- pqp plastic hinges expected at a depth less tBam below the
mately the same diameter. Such foundation design iS COSt-y,nd evel but not below the mean water level, the design dis-
effective when compared to the column/pile-cap/pile combination placement ductility factor is limited tp.,<4. For plastic hinges
since the construction of an expensive pile-cap can be e”minated'expected at a depth greater tha m below the ground level or
below the mean water level, the design displacement ductility
IAssociate Professor, Dept. of Civil and Environmental Engineering, factor is reduced tau, <3 (Chapman 1995; Park 1998
Univ. of California, Davis, CA 95616. _ _ _ The lateral stiffness, strength, and ductility capacity of the pile
Note. Associate Editor: C. Dale Buckner. Discussion open until Oc- yeneng on the amount and details of the longitudinal and trans-
tober 1, 2002. Separate discussions must be submitted for individual P arse reinforcement, and to a lesser extent, the compressive

pers. To extend the closing date by one month, a written request must be .
filed with the ASCE Managing Editor. The manuscript for this paper was strength of the concrete. The lateral force-deformation character-

submitted for review and possible publication on June 6, 2000; approved IStics ©f the pile also depend on the interaction between the pile

on August 22, 2001 . This paper is part of theurnal of Structural and surrounding soil. For most bridges, however, the inertial force
Engineering Vol. 128, No. 5, May 1, 2002. ©ASCE, ISSN 0733-9445/ from the superstructure tends to dominate the inelastic deforma-
2002/5-586—-594/$8.08%.50 per page. tion of the pile. Consequently, the inelastic deformation of the
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Fig. 1. Formation of subgrade plastic hinge due to inertial loading of superstructure

pile frequently occurs at a depth very close to the ground surface3-6 pile diameters below the ground level, is used to account for
(typically less than three or four pile diameters below the ground the flexibility of the embedded pile. The equivalent depth-to-fixity
surface. Exceptions to such shallow inelastic deformation in- depends on the relative stiffness between the pile and surrounding
clude piles embedded in liquefiable soils or piles embedded in soil and may be determined by equating the lateral stiffness of the
soil layers with large stiffness contrast where the pile may be soil-pile system to that of an equivalent fixed-base cantilever.
subjected to a large local deformation due to kinematic loading,  The elastic lateral stiffness of a prismatic equivalent fixed-base
or in situations where the lateral spread of an adjacent soil masscantilever is given by
may impose a large deformation on the pile. In this paper, only
the inelastic response dominated by inertial loading is considered. K — V. 3El,
An analytical model, based on an extension of the equivalent ST A (LitLy)3 (1)
cantilever method, is developed for assessing the flexural strength
and ductility capacity of reinforced concrete piles embedded in Where V=lateral force applied at the top of the cantilever;
cohesive and cohesionless soils. Comparisons of the model withA=lateral displacement at the top of the cantilever;
experimental test results are presented in a companion papeEl.=¢éffective flexural rigidity of the equivalent cantilevéas-
(Chai and Hutchinson 2002 sumed to be the same as that of the )pile,=aboveground
height; andL;=equivalent depth-to-fixity. For concrete piles, the
flexural rigidity in Eq.(1) should account for the possible reduc-
Equivalent Cantilever Model tion of stiffness due to cracking of the concrete. In this case, the
effective flexural rigidityEl, may be taken as the secant stiffness
of the pile section at first yield of the reinforcement. The equiva-
lent depth-to-fixityL; may be determined by equating the lateral
A common approach for structural design of a pile foundation stiffness of the equivalent cantilever to the lateral stiffness of the
assumes that the soil-pile system can be replaced by an equivalengoil-pile system using known solutions for elastic piles embedded
cantilever that is fully restrained against lateral translation and in an elastic Winkler foundation. The lateral stiffness of the soil-
rotation at the base, as shown in Fig(Qaltrans 1986; Dorwick  pile system and the equivalent depth-to-fixity will be determined
1987). The equivalent depth-to-fixity, typically in the range of separately for cohesive and cohesionless soils.

Elastic Soil-Pile System

Equivalent Depth-to-Fixity: Cohesive Soils

4y [ 8p eN ) ; . .
TV°7 +—%—+vu For an elastic pile embedded in a cohesive soil, the lateral stiff-
- — — oo . . .
f e \ ness of the soil is commonly modeled with an elastic Winkler
Lal Elastic Elastic Inelastic foundation with a constant modulus of horizontal subgrade reac-
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tion. The solution for an elastic pile embedded in a soil with a
constant modulus of horizontal subgrade reaction is well known
(Poulos and Davis 1980; Pender 199Bor a long pile, i.e., em-
beddment length greater than 3.5 times the characteristic length
R. [defined later in Eq.(4)], the lateral displacementy and
rotation 64 of the pile at the ground level are given lpyoulos

and Davis 198D

Equivalent Fixed-Base Cantilever V(L Ry

/ay M= )
/ . c

Fig. 2. Representation of soil-pile system by equivalent fixed-base V(2L +R)
cantilever TR 3)
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where k;,=constant modulus of horizontal subgrade reaction in
unit of force/lengtR, and the characteristic lengRy, is given by

El,

Kn
Note that the influence of axial force on ground level displace-
ment and rotation of the pile has been ignored in Egsand(3).

The lateral displacement at the top of the pile consists of contri-
butions from the lateral displacement and rotation of the pile at

4

R (4)

the ground level and the flexural deformation of the pile above the

ground
®)

whereALa corresponds to the flexural deflection of the pile above
the ground and is given by

A=Agt+0gla+ A

3
_ vk
2~ 3E1,

By defining the aboveground height, and equivalent depth-to-
fixity L¢ in terms of the characteristic lengRy., i.e.,L,=&,R.
andL;=§&;R., where§, and&;=coefficients for the aboveground
height and equivalent depth-to-fixity, respectively, the lateral stiff-
ness of the soil-pile system can be written as

AL (6)

Vv

KspE K

- 3kyR.
32+6¢,+32¢2+¢2

The coefficient for equivalent depth-to-fixi#y; can be obtained
by equating the lateral stiffness of the soil-pile systgy from
Eq. (7) to the lateral stiffness of the equivalent cantilekerfrom
Eqg. (1)

@)

£c=3/8.24+6,+4.242+£3— ¢, 8)

Note that the coefficient for equivalent depth-to-fixityis only a
function of the coefficient for aboveground heightin Eq. (8).
The coefficient for equivalent depth-to-fixity, however, is not very

sensitive to the aboveground height, particularly for large values

of &, . Fig. 3 shows the variation of the coefficient for equivalent
depth-to-fixity for 0<¢,<6. For&,=0, i.e., lateral load applied
at the ground level, the coefficient for equivalent depth-to-fixity is
¢:=1.62. For¢, >0, the coefficient for equivalent depth-to-fixity

decreases rapidly with increase in the coefficient for aboveground

height. For aboveground height in the range &,<6, the coef-

ficient for equivalent depth-to-fixity varies between 1.42 and 1.49.

The relative insensitivity of; led to an approximate expression
for the equivalent depth-to-fixityDorwick 1987; Scarlat 1996

For a free-head pile embedded in a cohesive soil and loaded with

588 / JOURNAL OF STRUCTURAL ENGINEERING / MAY 2002

Table 1. Undrained Shear Strength of Cohesive Spéldapted from
Das(1990]

Estimated consistency

Undrained shear strengtl (KN/m?)

Very soft <12
Soft 12-25
Firm 25-50
Stiff 50-100
Very Stiff 100-200
Hard >200

a horizontal force at an aboveground height.gf the equivalent
depth-to-fixity has been given by Scarlda©96 as

Li=1.4R, if Ly/R>2 9)
=1.6R, if La/R.<2 (10)

Eq. (9) was suggested by Daviss¢t970 earlier forL,/R.=2.

The equivalent depth-to-fixitL; can be calculated if the
modulus of horizontal subgrade reactibpis known. An expres-
sion has been proposed by Davissd®70, and adopted by
Prakash and Sharn{a990, for the estimation of the modulus of
horizontal subgrade reaction

k,=67s, (11)

wheres,=undrained shear strength of the cohesive soil. The un-
drained shear strength may be determined from laboratory testing
of soil samples, or estimated from in situ tests such as cone pen-
etrometer tests. As a guide, however, Table 1 provides a correla-
tion between the consistency and undrained shear strength of the
cohesive soi(Das 1990. It should also be noted that the modulus
of horizontal subgrade reaction, as estimated using(EL).and
Table 1, corresponds to the working load level. Such a value tends
to overestimate the lateral stiffness of the soil-pile system when
evaluating the yield displacement of the extended pile-shaft. The
argument for reducing the modulus of horizontal subgrade reac-
tion is presented together with the cohesionless soil in the next
section.

Equivalent Depth-to-Fixity: Cohesionless Soils

For an elastic pile embedded in a cohesionless soil, the lateral
stiffness of the soil is commonly modeled with an elastic Winkler
foundation with a linearly increasing modulus of horizontal sub-
grade reaction. For a long pile, i.e., embedment length greater
than four times the characteristic leng®y [defined later in Eq.
(14)], the lateral displacement, and rotatior ; of the pile at the
ground level are given byPoulos and Davis 1980

v 3 2
Ag=g7 240+ LORIL,] (12)

v
egzg[l.smﬁ+ 17R,L,] (13)
e

whereR,=characteristic length of the pile and is given by

- (14)
andnp=rate of increase of modulus of horizontal subgrade reac-
tion in unit of force/lengti.

Kn

nh:_

. (15)
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Subgrade Coefficient n;, (kN/m?3)

Similar to the approach taken for cohesive soils, the above- Relative Density (%
ground height., and equivalent depth-to-fixitl; can be defined ty (%)
in terms of the characteristic leng®,, i.e., L,=&.R, and L; Fig. 5. Subgrade coefficient and effective friction angle of cohesion-
=&¢R,,. The lateral stiffness of the soil-pile system can thus be |ess spils(ATC-32 1996
written as
V  Elg 1
=_=_2 erimental results presented in the companion éai and
Kep=3 RS [2.4+3.2%,+1.745+£2/3] (16) ¢ b P bap

Hutchinson 200Rindicated that the value of;, could be as low
By equating the lateral stiffness of the soil-pile systiy from as 1/5 of that shown in Fig. 5. Although the equivalent depth-to-

Eq. (16) to the lateral stiffness of the equivalent cantilewer fixity is not very sensitive to the variation of largg,, a smaller
from Eg. (1), the coefficient for equivalent depth-to-fixity is value ofn;, nonetheless results in a 20% or more increase in the
3 - equivalent depth-to-fixity. As noted in the previous section, a
£=3/7.2+9.65,+5.2%5+£3- &, 17) similar reduction should be made for the modulus of horizontal

Fig. 4 shows the variation of the coefficient for equivalent depth- Subgrade reaction of cohesive soils, even though experimental
to-fixity for 0<£,<6. For a lateral force applied at the ground results are currently not available for such soils.

level, i.e.,£,=0, the coefficient for equivalent depth-to-fixity is

€r=1.93. The coefficient for equivalent depth-to-fixity decreases jne/astic Soil-Pile System

rapidly with increase in aboveground height for small values of ) ) ) . )
£, similar to that observed for cohesive soils. For an above- In using the equivalent fixed-base cantilever model for assessing
ar .

ground height in the range of <%,<6, the coefficient for the ductility capaci'Fy of a yielding pile-shaft, it must be recog-
equivalent depth-to-fixity varies between 1.81 and 1.77. The rela- Nized that the maximum bending moment does not occur at the
tively small variation of¢; also led to an approximate expression Pase of the cantilever but at a depth above the equivalent depth-
by Scarlat(1996 for free-head piles embedded in cohesionless to-fixity. The depth-to-maximum-moment defines the location of

soils the in-ground plastic hinge and will influence the lateral strength
) and ductility capacity of the pile. The depth-to-maximum-
Li=1.8R, if La/R=1 (18) moment, however, depends on the ultimate resistance of the soil
—2.R, if Ly/R,<1 (19) and the flexural strength of the pile, and will be considered sepa-

rately for cohesive and cohesionless soils in the next two sections.

Eq. (18 was also suggested by Davissoh970 earlier for
La/R=1. Depth-to-Maximum-Moment: Cohesive Soils

The equivalent depth-to-fixity.; for piles embedded in a co-  Extensive studies have been conducted in the past to quantify the
hesionless soil can be determined if the lateral stiffness of the soil, ultimate soil pressure distribution acting on a laterally loaded pile.
as characterized by the rate of increase of the modulus of hori-For a purely cohesive soil, the ultimate soil pressure was found to
zontal subgrade reaction,, is known. Guidance for the selection increase from abouts} at the ground level to a stress level be-
of ny, is currently available in the literature. For example, Fig. 5, tween 8 and 1€, at a depth of about3 (Broms 19645 where
which has been reproduced from ATC-@296, provides a plot s =undrained shear strength of the cohesive soil Brgile di-
of n, and effective friction angléb as a function of the relative = ameter. The ultimate soil pressure was found to remain fairly
density of the sail for both dry and submerged sands. The value ofconstant beyond a depth oD3 A simplified soil pressure was
n, in Fig. 5, however, is typically estimated at the working load subsequently proposed by Brorils964a where zero soil pres-
level, which may be as low as 1/4 of the ultimate load. The sure was assumed between the ground level and depth Bf 1.5
definition of yield limit state, on the other hand, should be based followed by a constant soil pressure o59to the depth-of-
on first yielding of the longitudinal reinforcement of the pile. At maximum-moment. The simplified soil pressure distribution,
the first-yield limit state of the pile, the inelastic deformation of which is shown in Fig. @), is similar to the rectangular stress
the soil will be significantly larger than that at the working load block used for calculating the ultimate flexural strength of rein-
level, resulting in a much smaller secant stiffness. This means thatforced concrete sectio&Cl 1999).
the appropriate value af, for lateral strength and ductility as- For stiff cohesive soils, however, large lateral resistance is
sessment of piles is much smaller than that given in Fig. 5. Ex- developed in the upper region of the soil, resulting in the forma-
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Fig. 6. Ultimate soil pressure distributions of laterally loaded piles

tion of the plastic hinge close to the ground surface. The simpli- may be less than 1.5. Thus the simplified soil pressure distribu-
fied soil pressure distribution by Brom49644a, on the other tion by Broms(1964a is inappropriate for stiff cohesive soils.
hand, does not lend itself to the formation of a plastic hinge for a

depth less than 1. Consequently, the rectangular soil pressure Depth-to-Maximum-Moment: Cohesionless Soils

distribution tends to underestimate the lateral strength of the soil- The depth-to-maximum-moment for piles embedded in a cohe-
pile system for stiff cohesive soils. In this paper, a parabolic dis- sionless soil can be determined in a manner similar to that for
tribution of ultimate soil pressure is assumed for the upper region, cohesive soils by assuming an ultimate soil pressure distribution.
followed by a constant soil pressure at greater depth. In equationin this paper, the depth-to-maximum-moment and ultimate lateral

form, the ultimate soil pressure distribution is given by force resisted by the pile will be derived using the ultimate soll
. 212 pressure distribution proposed by Brofi964Hh for cohesionless
s |54+ 84——7(—) for z<6D soils, which assumes théj the lateral displacement of the pile is
pu(2)=4 277" D D (20) large enough to fully mobilize the lateral resistance of the §ojl,
11.3, for z>6D the net soil pressure distribution on the pile is equal times the

Rankine passive pressure, afiiil) the shape of the pile section
does not influence the distribution of the ultimate soil resistance.
Thus, according to assumptidin), the net soil pressure acting on
the pile may be assumed to be a linear function of the deptid

be written as

where z=depth below the ground surface. EQO) assumes an
ultimate soil pressure ofs, at the ground level, a soil pressure of
9s, and 11.3, at depths of ® and @, respectively, and a
constant pressure of 1k3for a depth greater thands For most
cases, however, the depth-to-maximum-moment is less tBan 6
except for very soft clay, which means that the constant soil pres- pu(2)=Co (2)K, (25)
sure of 11.8, for z>6D is often not needed for the calculation.
The depth-to-maximum-moment as well as the ultimate lateral
force resisted by the pile can be determined using the parabolic
soil pressure distribution. The equilibrium of horizontal forces

whereo | =vertical effective overburden stress and may be taken
as the effective unit weight of the sojl' times the deptlz and
Kp=passive soil pressure coefficient of the cohesionless soil and

and bending moments requires is given by B
Lm 1+sin(d)
_ Kp=r—"— (26)
VLI fo pU(Z)DdZ (21) p l_SIn((b)
Lm
Mmax:Vu(La+Lm)_f0 pPu(2)D(Lym—2)dz (22) 6
0
where V =ultimate lateral force and ., =flexural strength of 5 \,f %

the pile. Eqs(21) and(22) can be integrated and rearranged into

*
m
L
»

Mira= 2LE Lot (1+ SLE)LE + g3(12- L)LY

— 1elxd for LE<6 (23)

©
~
)
/ /10/
Vi=2Ly+ 5l -gly® for Ly<6 (24)
whereV? =V, /s,D?=normalized lateral strength of the soil-pile

N
system; M*_=M.,/s,D*=normalized flexural strength of the 1////

Normalized Depth L
[ X}

pile; L} =L,/D=normalized aboveground height; and¥ W Stiff Clay Soft Clay
=L,,/D=normalized depth-to-maximum-moment. The normal- 0 — S N —
ized depth-to-maximum-moment, as given by the solution of Eq. 4 100 200 300
(23), is shown in Fig. 7 foM?*,_=0-300 and folL* =0-10. It Normalized Moment Mpax

can be seen from Fig. 7 that for very stiff cohesive soils, i.e.,

small value ofM* ., the normalized depth-to-maximum-moment Fig. 7. Normalized depth-to-maximum-moment of cohesive soils
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where $=effective friction angle. Using the condition of zero Actual Response
shear force at the section of maximum bending moment, the equi- /
librium of horizontal forces requires o W o 1 jutimate
o , ‘
> SV A \ Idealized
u \
L= CK,y'D (27) g / Fiest Response
- ; |
The summation of bending moments about the section of maxi- 3 1 !
mum bending moment requires o
g q A, A, Ay

8V Lateral Displacement
Mma=Vilat 9CKy'D (28)

Fig. 8. Actual and idealized elastoplastic lateral force-displacement

Egs.(27) and(28) can be solved simultaneously to give the nor- responses
malized depth-to-maximum-moment

*\2
E:%[L;a)— LX+p (29) whered, ¢, =curvature and equivalent elastoplastic yield curva-
P ture, respectively, and ,=equivalent plastic hinge length, the
where plastic displacement in Eq32) becomes
_3\/12 . ‘s \/24 . 6 . . Ap_Lp(¢_¢y)(La+ Lm) (34)
p= EMmax_(La) * EMma EMmax_(La) By defining the normalized length as before, ile;=L,/D and

(30) Lx=L,/D, and the normalized plastic hinge IengtpELp/D,

and the normalized lateral strength of the soil-pile system Eq. (34) becomes
c Ap=Np(b—by)(LE+Ly)D? (35)
* = —

A 2 (Ly)? (31) For an idealized elastoplastic response shown in Fig. 8, the ulti-
mate lateral forceV, is related to the equivalent elastoplastic
where Mfnax=MmaX/pr’D“:normalized flexural strength and yield displacement\,, by
Vj=Vu/pr’D3=normaIized lateral strength. In the original 3E]
work by Broms(1964b the coefficientC was assumed to be 3, —__ -
and this value may be adopted for the flexural strength and duc- YLy +Ly)*D3 Y
tility assessment of a yielding pile-shaft. Note that care must be The ultimate lateral forca/
taken when evaluating Eq&9) and (30), as the parametqy in
Eqg. (30) may be a complex number depending on the values of
M7 xandL} . The normalized depth-to-maximum-momerft in V- M max
Eq. (2*9), however, should be a real number. For the special case uT M ..D
cifl_'\; "“a(xolg;g_]gg%)?_rg,tgﬁf(ggﬁsog)éat;_e; ?i;irggninjrj—il}/ Whe_reV’J andMy ., are the norma_lized Iate_ral strength and nor-
The use of the first root, i.ep=—L% , results in a negative value mall_zed flexural _strength, respectwely, Wh'Ch have b_een defined
earlier for cohesive and cohesionless soils. By equating [B65.

of Lx=—3/2L% , which is incorrect. However, the choice of the . o s
second or third roots, i.ep=(0.5-0.866)L* , gives rise to ar:gtgﬂésthe equivalent elastoplastic yield displacement can be

Lx=0, and hence the correct value for the normalized lateral

(36)

4, however, may be written in terms
of the maximum moment .

V* (37)

u

strength, i.e.V} =0, according to Eq(31). Even though the spe- M max (L5 +LF)3VE )

cial case ofM*_,=0 has no practical significance, it nonetheless YEIL, . 3M* D (38)

illustrates the need to pay attention to the selection of roots for the max

solution. Since the equivalent elastoplastic yield curvatéiteis given by
by (39)

Kinematic Relation for Ductility Demand Y Ele

The equivalent fixed-base cantilever model may be used to esti-the equivalent elastoplastic yield displacemagimay be written

mate the local curvature ductility demand of a yielding pile-shaft.

A kinematic relation between the displacement ductility fagt@r by (Ly+L7)3ViD?

and curvature ductility factgu, can be developed by assuming a Y3 M.

concentrated plastic hinge rotation at the location of maximum max

bending moment as shown in Fig. 2. The plastic displacemgnt By substituting the elastoplastic yield displacemagtfrom Eg.

at the top of the pile can be written as (40) into Eq. (32), and by defining the displacement ductility
factor ., as

(40)

Ap=0,(LatLp) (32)

Ay A
where6 ,=plastic hinge rotation. Since the plastic rotation can be pa=x- =1+ (41)
replaced by ) ) ) Y ) Y -
a kinematic relation between the displacement ductility fagtor
0p=(d—dyL, for b=d, (33) and curvature ductility factop., may be obtained
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*

(LE+LF) M
M=1+3>\p(p¢—1)ﬁﬁax (42)
where curvature ductility factop,=¢/db,=1. It can be seen
from Eq. (42) that the kinematic relation depends on the above-
ground height, the equivalent depth-to-fixity, the depth-to-
maximum-moment, and the plastic hinge length of the pile. The
accuracy of the kinematic model is compared with experimental
data in the companion papéChai and Hutchinson 2002

The curvature ductility demand in the plastic hinge region of a
yielding pile-shaft can be estimated if the equivalent plastic hinge
length of the pile is known. A study by Budek et &000 for
piles embedded in cohesionless soils, and adopted by Priestle
et al. (1996, showed that the plastic hinge length varies with the
lateral stiffness of the soil and aboveground height of the pile.
Experimental results(Chai and Hutchinson 2002 however,

showed that the plastic hinge length was rather insensitive to the

lateral stiffness of the soil, and depends primarily on the above-
ground heightL,. Experimental plastic hinge lengths of about
1.2D and 1.® were obtained for aboveground heights lof
=2D and @, respectively. In this paper, the equivalent plastic

hinge length is assumed to increase linearly with the aboveground

height from 1.@ at the ground level to 1® at an aboveground
height ofL,=6D. For an aboveground height greater thdn, &
constant plastic hinge length &f,=1.6D is assumed. The pro-
posed variation of plastic hinge length with aboveground height is
shown in Fig. 9.

Examples

To illustrate the use of the proposed kinematic model, consider
the bridge structure shown in Fig. 10 for two different soil con-
ditions: (i) soft clay and(ii) medium dry sand. The bridge struc-
ture is supported on an extended pile-shaft with a diamet& of
=1.83m, an aboveground height lbf=8.89 m, and an embed-
ded length oL =19.8 m. The following structural parameters are
assumed for the analysigi) expected concrete compressive
strength, as suggested by ATC-321996, f..=1.3f'c
=44.8 MPa, (ii) expected yield strength of the longitudinal and
transverse steel, as suggested by ATC{38296, f,.=1.1f,
=455.1 MPa, (iii) elastic modulus of the concreteE,
=31,685 MPa,(iv) axial force P=4528 kN (axial load ratio of
P/t Ag=0.038, (v) longitudinal reinforcement52d 36 (d,
=36 mm; longitudinal area ratio @f,=0.02, and(vi) transverse
reinforcement=d 19 spiral at a pitch of 76 mnid,=19 mm;
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Fig. 10. Example bridge structure supported on extended pile-shafts

confining steel ratio of;=0.0089. A concrete cover of 75 mm is
assumed for the transverse spiral of the pile. The flexural rigidity
of the cracked pile section, estimated from a moment-curvature
analysis using the first-yield limit state of the section,Bs,
=6.97<10°kNm?. The simulated and idealized elastoplastic
moment-curvature responses of the pile section are shown in Fig.
11. The idealized elastoplastic response has been obtained by
equating the area under the nonlinear moment-curvature curve to
the area under the idealized elastoplastic curve. In this case, the
ultimate moment of the idealized elastoplastic respondd sy
=21,320 kN m while the equivalent elastoplastic yield curvature
is ¢, =0.00306 rad/m. The ultimate curvature of the pile section,

ased on the ultimate compressive strain of the confined concrete,
Is ¢,=0.04467 rad/m. Thus the elastoplastic curvature ductility
capacity of the pile section igu(,)ca;=14.6. The curvature duc-
tility demand will be determined for a displacement ductility fac-
tor of w, =3, as assumed by ATC-32996 for seismic design of
extended pile-shafts.

Case (i): Soft Clay

It is assumed that the undrained shear strength of the soft clay, as
estimated from Table 1, is,=20kN/n?. The modulus of hori-
zontal subgrade reaction ks = 1340 kN/nf from Eq. (11). Even

though it was noted earlier that the modulus of horizontal sub-

grade reaction should be reduced when assessing the flexural
strength and ductility of piles, the value kf, is not reduced in

this example due to a lack of experimental data for cohesive soils.
The characteristic length of the pile ®&=8.49 m from Eq.(4).

Substituting the coefficient for aboveground heighi,
25000 Simulated — VoY)
T 20000 - SR i At W)
2 : .
x Idealized Elasto-
- 15000 ~ Plastic Response |
8
§ 10000
=
5000
0%

0.02 003 004 005
Curvature (rad/m)

0.01

Fig. 11. Moment-curvature response of pile-shaft




=8.89/8.49=1.05 into Eg.(8), the coefficient for equivalent
depth-to-fixity is&;=1.49, giving the equivalent depth-to-fixity
L;=12.65m or corresponding to a normalized equivalent depth-
to-fixity of L¥ =12.65/1.83-6.9.

The depth-to-maximum-moment, which is smaller than the
equivalent depth-to-fixity, is estimated from the normalized flex-
ural strength of the pile, i.eM?* =M., /s,D?*=173.9. Substitut-
ing Mj.,=173.9 and_} = 8.89/1.83=4.86 into Eq.(23), the nor-
malized  depth-to-maximum-moment is L} =3.72, or
corresponding to a depth-to-maximum-momentLgf=6.81 m.
The normalized lateral strength from E@Q4) is V;; = 24.55, giv-
ing a lateral strength o¥ ,=1642 kN.

The curvature ductility demand in the plastic hinge is calcu-
lated using the plastic hinge length interpolated from Fig. 9.
Using L% =4.86, the normalized plastic hinge length is estimated
to be\,=1.48, or corresponding to a plastic hinge length_gf
=2.71m. Substitutingw,=3, Lf=6.9, L;=3.72, L} =4.86,
Np=1.48, M}, =173.9, andV}; =24.55 into Eq.(42), the local
curvature ductility demand iu(y) gem= 13.1, which is close to the
curvature ductility capacity of the pileu(,)c,,= 14.6. Note that
the local curvature ductility demand is sensitive to the lateral
stiffness of the soil. A reduction of the modulus of horizontal

factor, the curvature ductility demand increases with decreasing
stiffness of the soil.

Conclusions

An analytical model suitable for assessing the lateral strength and
ductility demand of a yielding pile-shaft is developed in this
paper. The model, based on an extension of the commonly used
equivalent fixed-base cantilever model, uses different depths to
estimate the lateral stiffness and strength of the soil-pile system.
The lateral stiffness of the soil-pile system is characterized in
terms of an equivalent depth-to-fixity, which is derived from the
elastic solution of piles embedded in an elastic Winkler founda-
tion. For lateral strength calculation, however, the depth-to-
maximum-moment is assumed to occur at a depth above the
depth-to-fixity and is calculated using the flexural strength of the
pile and the ultimate pressure distribution of the soil. By assum-
ing a concentrated plastic hinge rotation at the depth-to-
maximum-moment, a kinematic model relating the local curva-
ture ductility demand to the global displacement ductility demand
of the soil-pile system is derived. The kinematic relation indicates
that the curvature ductility demand depends on the aboveground

subgrade reaction by a factor of 2 would increase the curvatureheight, depth-to-maximum-moment, depth-to-fixity, and equiva-

ductility demand to 17.8, which then exceeds the ductility capac-
ity of the pile. The relative sensitivity of local ductility demand to
soil stiffness illustrates to need to better quantify the appropriate
level of reduction fork;, of cohesive soils.

Case (ii): Medium Dry Sand

The same bridge structure is analyzed for a medium dry sand

where the rate of increase of modulus of horizontal subgrade
reaction for an effective friction angle ofh=33° is n,
=6,000 kN/n? (estimated from Fig. 6 However, based on pile
tests in cohesionless soil€hai and Hutchinson 2002the value
of n,, is reduced by a factor of 4 to 1,500 kNfrim this example.
An effective unit weight ofy’ =17.5 kN/n? is assumed for the dry
sand. The characteristic length of the pildRis=5.41 m from Eq.
(14). Substituting the coefficient for aboveground height
=8.89/5.4% 1.64 into Eq.(17), the coefficient for depth-to-fixity
is £=1.82 giving an equivalent depth-to-fixity;=9.85m, or
corresponding to a normalized equivalent depth-to-fixityLyf
=9.85/1.83=5.38.

In calculating the depth-to-maximum-moment, the passive soil
pressure coefficient from E@26) is K,=3.39, giving a normal-
ized flexural strength o ﬁ]a,(:MmaX/Kp«/’D“:SZ.O. Assuming a
value of C=3 and substituting},,,=32.0 andL} =4.86 into
Egs.(29) and(30), the normalized depth-to-maximum-moment is
Lr=1.87, or corresponding to a depth-to-maximum-moment of
Ln=3.42m. The normalized lateral strength\i§ =5.25 from
Eqg. (31), or corresponding to an ultimate lateral force &
=1,908 kN.

lent plastic hinge length. The analytical model, which is fairly
easy to use and suitable for design purposes, is illustrated using a
bridge structure supported on an extended pile-shaft embedded in
cohesive and cohesionless soils. A comparison between the model
and experimental data is made in a companion paper.
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