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In this paper, limits that have been suggested in the literature for 
use of K= 1 and/or for neglecting PA moments in design are 
reviewed within the context of AISC LRFD practice. The paper then 
presents general equations that give the error in the AISC LRFD 
beam-column interaction equations associated with the use of 
K= 1. In the development of these error equations, it is assumed 
that the design is based on second-order elastic forces calculated 
as per the requirements of the present AISC LRFD Specification, 
i.e., by use of approximate amplifiers or by direct analysis, with 
geometric imperfection or notional load effects not included in the 
analysis calculations. The influence of key variables on the error is 
studied, and recommendations are provided for when the design 
of steel frames by AISC LRFD may be based on K= 1. The paper 
closes by comparing design strengths with and without effective 
length to the results from elastic-plastic hinge and rigorous plastic 
zone analyses for several 'maximum error' examples. This provides 
an assessment of the accuracy of upper-bound error estimates, and 
of the implications of using K= 1 relative to the theoretical inelastic 
frame behaviour. The discussions and recommendations are appli- 
cable for any type of steel frame (i.e., frames with fully or partially 
restrained connections, and unbraced or partially braced frames) 
in which a storey-by-storey sidesway stability assessment is appro- 
priate. © 1997 Elsevier Science Ltd. 

Keywords: effective length, stiffness-controlled design, drift-con- 
trolled design, steel frames 

1. Introduction 

There has been much discussion during recent decades 
about the appropriate calculation of effective length factors 
in sway frames, as well as whether or not it is necessary 
to consider effective length at all when the engineer has 
conducted a second-order elastic analysis to determine the 
design forces ~,2. Therefore, it is no surprise that present 
specifications and standards reflect varying philosophies on 
this issue, the AISC LRFD Specification 3 requires the cal- 
culation of column buckling loads, which is often handled 
implicitly by determination of effective lengths, whereas 
many of the other design standards 4-6, do not require any 
buckling analysis or effective length calculation. These 
standards use 'notional horizontal load' or 'equivalent 

imperfection' approaches in computing second-order elastic 
forces to account for the effects of geometric imperfections 
and distributed plasticity on a frame's sidesway stability. 
Conversely, the AISC LRFD Specification does not require 
any consideration of geometric imperfections or distributed 
plasticity within the design analysis, but accounts for these 
effects through the column strength equations (by basing 
the column strengths on buckling effective lengths). 

The ASCE Technical Committee on LRFD is due to pub- 
lish a report 7 that identifies and contrasts several appropri- 
ate effective length and notional load approaches within the 
context of AISC LRFD practice. This report emphasizes 
that the use of K = 1 in the design of steel frames can result 
in significant unconservative errors, even if second-order 
elastic forces are computed, unless an alternative device 
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such as the notional horizontal load concept is employed 
with all the load combinations. However, in many situ- 
ations, the error associated with disregarding the effective 
length or notional load approximations is small. Higgins ~ 
confirmed this fact in 1964, shortly after the effective 
length concept was first introduced within the AISC Speci- 
fications, by the disclaimer 

'It should not be construed from the following remarks 
that, from now on, all tier buildings, or even very many, 
must be designed on the basis of overall instability 
unless provided with an extensive bracing system.' 

Significant design effort is often required to obtain appro- 
priate buckling solutions and/or the associated effective 
length factors. Also, the proper application of notional 
loads is tedious in certain cases. Therefore, it is desirable 
to define simple checks that can be used to ascertain when 
the unconservative error associated with using K = 1 is neg- 
ligible, without the need for alternative devices such as 
notional load. The major goals of this paper are to clarify 
the errors associated with this simplification within the con- 
text of the AISC LRFD Specification 9, and to suggest gen- 
eral rules for when the design of frames can be based on 
K = 1 in current LRFD practice. 

Notation 

Ag gross cross-section area 
B2 Storey sidesway amplification factor at factored 

load levels 
Bz~ Storey sidesway amplification factor at service 

load levels 
CL P6 stiffness reduction factor for a column member 
(CL)~g weighted average value of CL over storey 
E elastic modulus 
F,<L> allowable stress for column design in AISC-ASD 3, 

based on actual column length L 
F,, yield stress 
G "Z(Ic/Lc)/'Z(IJL~) at a beam-column joint 
H column shear force obtained from a lateral load 

analysis 
I cross-section moment of inertia 
I, moment of inertia of column 
I~, moment of inertia of girder 
K effective length factor 
KcL storey-based effective length factor, with P8 

effects accounted for through CL 
K ,  K,. storey-based effective length factors for flexural 

buckling about x- and y-axes 
L, L, actual column length 
L u actual girder length 
L; equivalent girder length for calculation of column 

effective lengths by AISC LRFD sidesway-unin- 
hibited alignment char t  9 

L ,  Ly column unsupported lengths for flexural buckling 
about x- and y-axes 

MF, MN sidesway moments at far and near ends of a girder, 
relative to joint at which G is being calculated, 
used for calculating L~ 

M, member nominal strength for bending within plane 
of frame 

Mp plastic bending capacity in absence of axial com- 
pression 

/14,  member maximum second-order elastic moment 
for bending within plane of frame 

N 

P 

Pe( ¢571. ) 

PelR L ) 

Pn 

Pn(L~ 

PL 

P~ 
P, 
Py 
RL 

SL 

e 

f(1 
r 

r~, Fv 

Aoh 

E 

6 

ratio of factored gravity load on all columns of 
a storey to that supported by columns of lateral- 
resisting system 
axial force 
column axial force at incipient elastic buckling of 
storey, based on KcL 
column axial force at incipient elastic buckling of 
storey, based on approximation of 1/[1 + ((~)),,,~,] 
by (0.85 + 0.15 RL) 
nominal compressive strength based on an appro- 
priate column effective length 
nominal compressive strength based on actual col- 
umn length 
column stiffness pertaining to a unit rotation of 
column chord, A/L = 1 
axial force at service load levels 
axial force at factored load levels 
member yield load, p,, = AJT, 
ratio of loads on all leaning columns in a storey 
to total vertical load supported by storey 
approximate ratio of storey yield strength to elastic 
storey buckling capacity 
error in column axial strength associated with use 
of K = I compared to column strength based on an 
elastic effective length factor 
applied axial stress at service load conditions 
radius of gyration 
radius of gyration about x- and y-axes of cross-sec- 
tion 
relative transverse displacement between ends of 
a member 
first-order drift of storey due to ZH 

sidesway stiffness coefficient, i.e., Pc = ([3E1)/L 2 
error in LRFD beam-column interaction equation 
associated with use of K =  1, when this equation 
equals 1.0 (i.e., corresponding interaction equation 
based on an elastic effective length factor attains 
a value equal to ( 1 + E) when interaction equation 
based on K= 1 is equal to 1.0) 
maximum value of E for a specified B2 limit, asso- 
ciated with Cc -< 0.176, P,/P,. >- 0.05, L/r >- I0, 
and F,. -> 250 N/mm 2, approximated by 
equation (25) 
deflection of member axis from rotated member 
chord 
column slenderness parameter based on effective 
length KL 
column slenderness parameter based on actual col- 
umn length L 
resistance factors for bending and axial com- 
pression 

2. Prior recommendations and design provisions 

2.1. SSRC recommendations and AISC provisions 
Research by Lu et al. ~° and Liapunov ~ demonstrated that 
within the context of AISC Allowable Stress Design 3, cer- 
tain classes of rigidly connected unbraced frames can be 
designed neglecting pA and P8 effects in the calculation of 
system forces, and with the column axial strength computed 
based on K =  1. Limits that define when these conditions 
exist were developed based on parametric studies of 17 
frames. These studies included a representative sample of 
practical frame geometries and loadings. Several elastic 
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designs of these frames were performed, with one set of 
designs based on first-order moments and K =  1. These 
designs were subjected to second-order elastic-plastic-hinge 
and/or distributed plasticity analyses to ascertain whether 
their ultimate capacities were sufficient. The limits pro- 
posed based on this research are t 

• The ratios f ,  IF,,L~ and f ,  lO.6E~ are not to exceed 0.75, 
where f ,  is the applied axial stress at service load con- 
ditions, and F,,(L~ is the allowable stress in ASD based 
on K =  1 (or KL=L)  

• The maximum in-plane column slenderness ratio L/r is 
not to exceed 35 

• The bare-frame first-order drift index, AoJL, is to be lim- 
ited such that 

~H 
A ,,~ 1 nonleaner 

L - - 7  EP, 
all  

(1) 

where l. is the storey height, EH is the total storey 
nonleaner 

shear due to service lateral loads, Aoh is the first-order 
drift of the storey due to ]£H , and EP~ is the total 

nonleaner all  

service level gravity load on the storey (the symbols 
E and E indicate summation over only the lateral- 

nonletoter a l l  

resisting columns within the storey or summation over 
all the columns, respectively). As a result, the approxi- 
mate sidesway amplification at service load levels 

1 1 

l - -  a l l  I - -  a H  . . . . .  

Pt, Y-, (HL)/Aoh 
nonleaner tlonleaner 

(2) 

is limited to a maximum value of 1.17 

The above three requirements are simply the maximum 
values encountered in the design studies, and it has been 
suggested t that these recommendations are only tentative. 
These limits are cited in the AISC ASD Commentary 3. 
However, the equivalent recommendations are not included 
in the AISC LRFD Manual 9. 

The above limits may be placed in the context of AISC 
LRFD as follows. As has been observed 7'~:, if the tra- 
ditional allowable stress column equations 3 are multiplied 
by 1.67~b,A~, the LRFD column design strength (~b, P,)  is 
closely approximated. In fact, the LRFD column equations 
were developed as an approximate fit to the ASD equations 
at a live to dead load ratio of 1.1 and Ac = 1 j3, where _A_~_~ 
the column slenderness parameter (KL/r)(1/Tr) ~]-FdE. 
Therefore, upon recognizing thatf,/F,~c~ <- 0.75 is the only 
relevant limit in the context of LRFD 7, the first restriction 
in the above list may be expressed as 

1.67&,A~, -< 0.75 [I.67~b, AgF,,L,] (3a) 

After substituting 4)c = 0.85 and Aft,, = P, on the left-hand 
side of this equation, and 1.67AuF,~L)= P,,~L~ on the right- 
hand side, equation (3a) can be written as 

1.42 
tr,,r~'",'",: P'' -< 0.75 ['h,.P,,,l~,] (3b) 

where P, is the factored axial load for strength design, p, 
is the applied axial force at the corresponding service load 
level, and P,~L~ is the nominal axial strength obtained from 
the LRFD column equations based on K =  1. If the 
maximum L/r limit of 35 (the second restriction in the 
above list) is considered along with the LRFD load factors 
for strength design, and if A36 steel is assumed, the above 
equation translates to a limit on P, ranging from 0.55P~ for 
P,/p~= 1.3 to 0.63,°.,. for P,/P~= 1.5 (1.3 to 1.5 rep- 
resenting the range of P,/p,  for a large percentage of 
designsl3). 

Equation (1) is applicable only at the nominal (i.e., 
unfactored) load levels in LRFD. This equation translates 
to a maximum allowable sidesway amplification at factored 
load levels '~ 

1 1 
9 2 = = 

EP,, EP,, 
1 - , , i t  1 - -  . u  

E Pz. HL 
...... , ........ , z  •ii;i 

tzotllectner 

(4) 

that generally would be greater than 1.17 (the limit on 
equation (2)), depending on the ratio "ZP,,/'ZP,. 

all  all 

2.2. Other recommendations 
Several current limit states standards give rules for when 
stability effects can be neglected that are more restrictive 
than the above limits. Eurocode 35 provides one of the most 
extensive discussions on this issue. It restricts the ratio of 
the total factored gravity load to the elastic buckling load 
for which the engineer is allowed to design a frame as 'non- 
sway' (if a frame is considered nonsway, the design may 
be based on K <-- 1 and first-order forces). This limit corre- 
sponds to the load level at which the gravity load is 1/10 
of the associated elastic sidesway buckling value. An equ- 
ation that is identical to an upper bound on B2 of 1.11 is 
suggested for checking this limit. A similar restriction is 
stated in the Australian AS4100 limit states design standard 
for assessment of when second-order effects may be neg- 
lected in plastic design of building frames 6. These limits 
may be traced back to recommendations by W o o d  14 and 
Home ~ 5. 

The 1991 NEHRP Recommended Provisions for the 
Development of Seismic Regulations for New Buildings ~6 
provide equations for when pA effects on the member 
forces and storey drifts may be neglected in seismic design. 
One note of particular interest regarding the NEHRP pro- 
visions is they suggest that when calculating the vertical 
load for purposes of determining pA forces for seismic 
design, the load factors need not exceed 1.0. As a result, 
the NEHRP equations translate to a requirement that Bz~ 
must be less than or equal to 1.11 for the p-A effects on 
the member forces and for storey drifts to be neglected (a 
somewhat more liberal limit than those of Eurocode 35 
and AS41006). 

2.3. Summary and observations 
To the knowledge of the authors, with the exception of the 
work by Lu et al. and Liapunov discussed in Reference 1, 
there are no published studies available that attempt to 
quantify the error associated with neglecting effective 
length in the design of steel frames. Furthermore, the stud- 
ies summarized in Reference 1 are not comprehensive. The 
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frames considered involved an extensive range of practical 
frame designs, but none of the frames supported leaning 
columns, and none were representative of the most severe 
stability-critical cases such as the Kanchanalai j7 frames uti- 
lized in the development of the AISC LRFD beam-column 
equations 7. All the study frames were highly redundant, and 
had substantial inelastic redistribution of forces prior to 
reaching their limits of maximum resistance. 

None of the recommendations cited above focus on the 
use of K=  1 in a design based on second-order elastic 
forces (calculated either by second-order analysis or by 
moment amplification as appropriate). The studies by Lu 
et al. and by Liapunov, and the provisions within EC3, 
focus on both eliminating the calculation of effective length 
(or using K--< 1) as well as basing the design calculations 
on first-order forces. The AS4100 and NEHRP provisions 
are directed solely at the limits of applicability of first-order 
analyses. It can be argued that for static design, the compu- 
tation of second-order elastic forces, either by approximate 
amplification formulae that do not require K factors or by 
direct second-order elastic analysis, is relatively easy com- 
pared to calculation of column effective lengths. The calcu- 
lation of 'appropriate' effective length factors can involve 
considerable complexity and design effort in certain cases, 
and general procedures such as system buckling analysis 
do not necessarily produce proper K values for design 7. The 
range of frames that can be designed based on K = 1, but 
using second-order elastic forces is, of course, greater than 
if both second-order amplification and effective length are 
neglected. Therefore, the authors suggest that it is most use- 
ful, in the context of static elastic analysis and design, to 
assess the conditions under which a design using second- 
order forces can be based on K = 1. The remaining sections 
of the paper address this issue. 

3. Key concepts  for assessment  of  when  K = 1 is 
acceptable 

The key concepts for assessment of when K = 1 is accept- 
able in LRFD, as well as in the design of steel frames in 
general, are quite simple. Use of K =  l will tend to be 
acceptable when any of the following occur 

• K L / r  is small, since the column strength varies little with 
large variations (or large error) in the effective length 
factor for small K L / r  

• The columns are heavily restrained at each end, and sub- 
jected to nearly full-reversed curvature bending under 
sidesway of the frame, provided the gravity loads are 
small in any framing that leans on the lateral resisting 
system. Of course, if the ends of a column subjected to 
sidesway are prevented from rotation, and if the leaning 
column loads are zero, the exact solution for the effective 
length factor is K = 1 

• Sufficient sidesway stiffness and strength is provided by 
some means in addition to the sidesway bending behav- 
iour of the frame members 

• The beam-column interaction check for the lateral 
resisting columns is dominated by the moment term, with 
the contribution from the axial strength ratio P.I(a~.P., 
being relatively small 

It is important to recognize that the only error of impor- 
tance in the context of a design evaluation is the error in 
the value obtained from the beam-column interaction equa- 

tions. For any combination of the above beneficial situ- 
ations, the error in the evaluation of the beam-column 
strength may be small even though the error in the calcu- 
lated effective length factor may be very large. 

4. Error  equations associated with use of  K--  1 
in L R F D  

4.1. Buckl ing model  uti l ized f i)r  deve lopment  o f  error  
equations 

Although consideration of inelastic effective length, or use 
of an inelastic buckling analysis, leads to substantial econ- 
omy in many practical situations ~, the influence of column 
inelasticity on the effective length becomes small in the 
limit that the columns are restrained by heavy beam mem- 
bers, or in the unusual situation that the storey buckling is 
elastic. Therefore, for reasons of generality and simplicity, 
the error equations developed in this paper are based on 
elastic storey-buckling analysis and the corresponding col- 
umn effective lengths. Use of an elastic storey-buckling 
model allows development of explicit relationships between 
design parameters (such as the elastic storey drift ratio and 
the storey-sidesway amplifier B2) and the error in the beam- 
column interaction equations caused by use of K = 1. The 
error equations to be developed are applicable for any 
frames in which elastic storey-based effective length factors 
are acceptable for the design assessment. 

LeMessurier ]9 has presented a useful procedure for sto- 
rey buckling analysis and determination of the associated 
effective lengths. Essentially all of the storey-based 
approaches that have been published then are a form of the 
equations in LeMessurier's paper ]9. This procedure has 
been shown to provide an excellent assessment of the effec- 
tive length factors for ordinary types of steel frames in 
which the sidesway deflections involve predominantly 
shear racking of the storeys vJg. It is used in this paper for 
calculating the column strength for comparison with the 
strength based on K= 1. LeMessurier's equations lbr the 
elastic storey-based effective length may he expressed as 

Kc;. 

, ~ E  P . +  Y C;P,, 
= / ! ~ F , , "  ,,,~,' ....... ,: 

P,, \ r J  

1 q-fiE E P .  

P , , ~ r }  " ,,o.,; ........ . 

[1 + (CD,.,~,] (5) 

where 

E H L  
~ P c  = ,,,,nt~,,,~, 

nonleaner  A o h  
( 6a ) 

is the sum of the column first-order sidesway stiffnesses 
associated with a unit rotation of the column chords. This 
term also may be written in the form 

[3El 
EPL = E L2 (6t)) 

tlOnl~,atle, ,= tlOn/c~ltl~,t 
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where /3 is a stiffness coefficient for each of the columns, 
which can be expressed as a function of the end rotational 
restraints provided by the girders 7'~9. The term CL in 
equation(5) is the P8 stiffness reduction factor, which 
accounts for the influence of P8 effects on the storey sides- 
way stability, and 

ECL P.  
¢loltle(lner 

( c L )  ,,, =  PI; 

all 

(7) 

is the weighted average of the CL values over all the col- 
umns within the storey (the CL values for leaning columns 
being equal to zero). For purposes of generality, one should 
note that equations (5) - (7)  as well as equations (2) and (4) 
are valid only for storeys with columns of equal height. 
For unequal height columns, the correct versions of these 
equations and of the equations to follow are obtained by 
dividing all terms within the summations by the individual 
column lengths 7. 

The column axial force at incipient elastic storey buck- 
ling corresponding to equation (5) is 

EPL 
nonleaner  

P ' " ' "  ' = ~PI; +~CL P' P'' 

EP~ 
nonleaner  ] 

=: ~P,7 [1 + (CL)[ [~| P" 
a H  

(8) 

In the AISC LRFD Commentary 9, equation (8) is written 
in the form 

~Vt. 
nonleaner  

P'"~"= ~P,, (0.85 + 0.15 RL) P,, 
all 

(9) 

by approximating 1 / [ I+(CL)  .~] by (0.85+0.15RL), 
where 

~P,~ 
le, lner R~:~p,, 
a[{ 

(lO) 

For a storey that does not have any leaning columns, this 
simplification involves the assumption that (CL),~, is equal 
to 0.176. This assumption is expected to be conservative 
for the majority of frames considered in practice, and it is 
adopted in this paper for estimating the errors associated 
with the use of K =  1. However, it can be violated in 
extreme caases, where some of the columns have 

(1) Negative end restraint (i.e., negative G values 7'9, in 
which case the column end rotations in a first-order 
sidesway analysis are in the opposite direction to the 
column chord rotations associated with the sidesway, 
and/or 

(2) Inordinately large L~P-7~ values (for Lx/P--TH > rr, 
or P/(~'ZEI/L2) > 1, the Ct. effect can be larger than 
0.216, the maximum value discussed by Le- 
Messurier ~9) 

These situations can occur if a column, framed by 
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moment-resisting connections, is quite flexible relative to 
the other columns and is loaded by large axial forces rela- 
tive to 7rZEI/L z. LeMessurier 2° developed an equation for 
the commentary of the AISC LRFD Specification which 
ensures that any unconservative error in the calculation of 
the elastic storey buckling load caused by the approxi- 
mation of 1/[1 + (G),,v~] by (0.85 + 0.15 Re) is negligible. 
This formula may be expressed in terms of the parameters 
P,, and PL as7 

EP. 
P. ,m l 
PI~ <- 1.7 EPL (0.85 + 0.15Rl) 

nonleaner  

( l l a )  

or in terms of the column axial and shear forces as 

P. H 1 
Epi] -< 1.7 EH (0.8.5 + O. 15RL) 
all nonh,~lner 

( l l b )  

Equation ( l l b )  indicates that the error in the estimate of 
the elastic storey-buckling capacity, EPc (0.85 + 0.15 

nonlea~ler 

RD, can become significant and unconservative when the 
fraction of the storey vertical load supported by a column 
is substantially larger than the fraction of the storey shear 
resisted by that member in a first-order lateral load analysis. 
This can happen, for example, when some of the columns 
are turned in weak-axis bending whereas others are oriented 
in strong-axis bending within the plane of the frame. Fortu- 
nately, potential violation of these equations can be deter- 
mined by inspection in most practical cases. 

Equations for the error associated with the use of K = l 
are developed below in terms of equations (5) and (8). This 
permits consideration of the errors in general terms, with 
the influence of the P8 effects addressed by selection of a 
value of (CD,,,~. 

4.2. Relationship between errors in column and in 
beam-column strengths 

The nominal strength of a member as a concentrically- 
loaded column based on K = 1 may be related to the column 
strength based on its calculated effective length as 

P,,It., = ( 1 + e)P, (12a) 

or vice versa 

1 
P" = ( 1 + e) P,,L, (12b) 

where e is the error in the column axial strength associated 
with the use of K=  1, P,,~, is the nominal axial strength of 
the member based on K =  1, and P,, is the value of the 
column strength based on the buckling model summarized 
in the previous section. It is desired to develop equations 
for the error in the AISC LRFD beam-column interaction 
equations as a function of the error in the column axial 
strength, e. The error in the LRFD beam-column interaction 
equations associated with the use of K = 1 is expressed here 
by e. If it is assumed that both P,/(&,P,,,.O and P,/(dp,.P,,) 
are greater than or equal to 0.2, equation (H l - l a )  of the 
LRFD Specification is the governing interaction equation 
both for design with K = 1 and with the calculated effective 
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length factor. Therefore, for a specified allowable error e, 
the effective length based interaction equation can be writ- 
ten as 

P .  8 M. 
+ - (1 + e) (13) 

at the limit of  the design resistance. Correspondingly, if the 
design is based on K =  1, and P./(4)cP,,L)) is greater than 
or equal to 0.2, the engineer would use the interaction equ- 
ation 

4.3. Error in column axial strength 
The previous section developed relationships between the 
error in the beam-column interaction equations, e. and the 
error in the column strength based on K = 1, e. In this sec- 
tion, expressions for e are obtained simply by considering 
the ratio P,,L]P,,, which is equal to (1 + e) as specified by 
equation (12). In general, each of the values P,,a. and P,, 
may be controlled either by the AISC LRFD inelastic or 
elastic column strength equations. If both values are greater 
than or equal to 0.39 Py, then they are each governed by 
equation (E2-2) of  the AISC LRFD Specification" and we 
may write 

P.  8 M. 
+ --< 1 (14a) 

ck, P.~L> 9 4~dl4~ 

An equation for e independent of  49.-P. and ~bdl4. can be 
obtained by dividing equation (13) by (1 + e), and substi- 
tuting the resulting equation into the right-hand side of  
equation (14a) to obtain 

P.  8 M. + 
~cPn(L) 9 49d14. 

+ 
(1 + e )  9 

(14b) 

( 1 + e) = P,,L~ = 0"658a'2~t~ 
x'p 

P" C ,5/ " 
0.658P. >:v~. II + c,) ~,I 

nonleaner 

(18) 

where 

h~IL1 = "n-- E (19) 

If both P.~L~ and P,, are less than 0.39 p~,, then equation ( E2- 
3) of LRFD controls, and the error relationship is 

Then, by substituting equation(12b) for P .  into 
equation (14b) and solving this equation for e, the follow- 
ing relationship between e and e is obtained 

eP. 
E ~  - - - -  (15)  

qScP,,~L~ 

This equation shows that if the beam-column interaction is 
dominated by its moment term such that the axial strength 
ratio is small, substantial error in the column axial strength 
(e) can be tolerated with relatively small resulting error in 
the value of  the beam-column interaction check (e). 

If  both P./(4),-P~L~) and P./(4)..P,,) are less than 0.2, the 
equivalent relationship between e and e is 

eP. 
-< - - -  (16)  

249cP~c~ 

Furthermore, if P./(cb,P.) is greater than or equal to 0.2, 
but P./(4),.P~(L~) (which is less than P./(cb, P.), assuming 
that the effective length factor is greater than one, and thus 
that e is positive) is less than 0.2, the relationship between 
e and e is 

--< + e ~b~.P,,L~ 9 
(17) 

Based on equations (14)- (17) ,  it can be concluded that for 
a given error in the column strength e, the maximum value 
of  the error in the beam-column interaction check, e, will 
occur when equation (14a) is equal to one. Furthermore, it 
can be concluded that e depends only on e and the ratio 
P./(go,-P.(c~), or since P.(c~ is a function of  Py (or F~) and 
L/r, the error in the beam-column interaction equations 
using K = 1 is solely a function of  e and the fundamental 
design parameters P./p~, L/r and F,,. 

Pu 
P )  all 

P. ~ P L  [l+(Cz-)m"e] 
Ptt( L ) tlonl~'¢ltler 

(1 + e ) =  = (20) 
P,, h~,;., 

Otherwise, P,,c~ is controlled by equation (E2-2) and P,, is 
controlled by equation (E2-3) (assuming positive e), and 
the ratio of  the two column strengths is 

P,,(LI 0 658a~ ,~ p,, ,,a 
1 + e ) =  p,, = 0.877 ~.PI~ EPc [1 + ( C , )  ...... ] 

nonleaner 

(21) 

By inspection of  the above equations, it can be seen that 
the error e depends on P./p,,, L/r, FY, EP, , /~  Pc .  and 

all tlopllt,atl~'r 

(CD.,,~. Furthermore, the term EP./ E Pc is directly 
all nonleaner 

related to B2 (equation (4)), and may be written in terms 
of this parameter as 

Eeu 
aa B 2 -- 1 

PL = B2 
nonleaner 

(22) 

It is felt that the values of  elastic sidesway amplifier B 2 are 

in general more familiar than values of YP./  E Pc . There- 
all nonleanet 

fore, equation (22) is used here to express the error e in 
terms of B> 

4.4. Overview of procedure for calculating e 
The equations presented above show that the error in the 
beam-column interaction equations e (associated with 
equation (14a) equal to one) can be expressed generally as 
a function of  B2, ( C L ) a v g ,  l~v, L/r, and P./P,.. The basic pro- 
cedure for calculating this error is: (1) Determine e from 
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equations (18) - (22) ;  and (2) Compute • from equations 
(15)- (17) .  

The results for B~= 1.11, (CL),,vg =0-176, and 
E,. = 250 MPa (36 ksi) are plotted for various L/r and P,/P~ 
values in Figure 1. The B2 value of  1.11 is chosen because 
this is the limit proposed in Eurocode 35 for consideration 
of  a frame as 'nonsway' ,  and it is approximately the limit 
suggested in AS41006 for which frame stability effects may 
be neglected in plastic design. A subsequent section of  the 
paper shows that the errors generally increase with 
increases in B 2. The value (CL),,,,~ = 0.176 is an estimate of  
the maximum potential reduction in the storey elastic buck- 
ling capacity due to P$ effects, as previously discussed. 
The value of  F,. = 250 MPa is a practical lower bound to 
the yield strengths used in current building construction (it 
is shown later in the paper that the error is generally 
reduced for larger values of  F~,)- 

The specific behaviour underlying Figure I is described 
in the next section. This is followed by a broader discussion 
of the influence of the different variables on the error •. 

5. Key error attributes and influence of LIr and 
PulPy on  

Earlier in the paper, general concepts for when the use of 
K-- 1 is appropriate have been outlined. However, a major 
goal of  this paper is to determine specific upper-bounds on 
the errors associated with assuming K = 1. The following 
are key characteristics associated with the plot in Figure 1. 
These characteristics provide detailed insight into when it 
is appropriate to use K =  1, and they form the basis for 
specific K = 1 guidelines outlined later. 

• Based on Figure 1, the error • may be determined for 
specified values of L/r and P,/Py. However, there are an 
infinite number of possible frames associated with any 
one of  the points in the plot. This is a result of  the fact 
that equations (5 ) - (8 )  do not require specification of any 
values for the column rotational end restraint or for the 
leaning effects on the storey being considered. 

* Larger errors occur for the curves with the smallest L/r 
values. This is because, if B2, (CLL~g, Fy and P,/Py are 
held constant, then as a column becomes stiffer by hav- 
ing its L/r reduced, it will participate to a greater extent 
in stabilizing the storey. Thus its actual effective length 
will increase. 

• For larger L/r and P,/p~ values, the column tends more 
and more towards being 'braced' by the other storey 
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Figure 1 E r r o r  in b e a m - c o l u m n  i n t e r a c t i o n  e q u a t i o n s  (e)  for 
B2 = 1.11, (CL~,vg= 0 .176  a n d  F y =  250  MPa 

framing. At the points where each of the curves intersect 
the horizontal axis in Figure I, the error is equal to zero 
because the value of  KcL (equation (5)) is equal to one. 
For example, the error plots in the figure indicate that a 
column with L/r = 50 would have a value of  KcL = 1, and 
therefore zero error, if P,/Pv is equal to approximately 
0.58. 

* The curves for each of the L/r values exhibit the largest 
error when the axial load to yield load ratio P.]Py is near 
zero. However, the error reduces rapidly with increases 
in P,/P,, for values of this parameter less than approxi- 
mately 0.11. Most of the curves reach a local minimum 
error approximately at P,/P,~ = 0.11, and then show a 
rapid increase in the error over a short range of P,/P, as 
the axial load to yield load ratio is increased further. The 
error for these curves peaks again at P,/p,. between 0.1 I 
and 0.17, the location of this local maximum depending 
on which L/r curve is considered. For P,/P) larger than 
0.17, all the curves show a decrease in the error with 
increasing values of the axial load to yield load ratio. 

• The reasons for the above variation in the error with 
P,/P) are as follows. The tendency for the error to reduce 
with increasing values of P,/P,. has already been dis- 
cussed, and is due to the fact that for larger values of 
P,/Pv, the column participates less and less in stabilizing 
the storey and actually may start to ' lean'  on the other 
storey framing. The dramatic dip in the error curves for 
small P,/P,., shown in Figure 1, is due to changes in the 
controlling beam-column interaction equations. For 
P,/Py < 0.11, AISC LRFD equation (H 1-1 b) governs the 
interaction checks based on both P,  and P,~L) for all the 
curves shown in the figure (i.e., the relationship between 
e and • is given by equation (16)). However, for values 
of P,/Py between 0.11 and 0.17, LRFD equation ( H I - l b )  
controls in many cases for the interaction check based 
on P,(L), whereas equation (H 1-la) (equation (13)) con- 
trois for the check based on P,. As a result, equation (17) 
is utilized in calculating the error for these points. For 
P,/P) >-- 0.17, equation ( H I - l a )  always controls for both 
beam-column interactionn checks (i.e., equations(13) 
and (14a) are both applicable), and e and • are related 
by equation (15). For the curves that show a local 
maximum at P,/P~. = 0.13 to 0.17 (all the curves except 
for L/r = 80 and 90), the local maximum corresponds to 
the lowest value of P,/P~. where equation ( H l - l a )  con- 
trols for both interaction checks. That is, the local 
maximum error at P,/p,. = 0.13 to 0.17 is associated with 
the 'knee'  in the beam-column interaction curve based 
on K =  19. 

• When P,/Py is larger than approximately 0.05, the AISC- 
LRFD inelastic column strength equation, (E2-2), 
governs the calculation of  both P,  and P,(L~ for all the 
curves shown in Figure 1. There/ore, the elastic column 
strength equation (LRFD equation (E2-3)) and the asso- 
ciated error equations (equations (20) and (21)) have no 
influence for the majority of  points in the figure. Of 
course, this is expected in general since it is rare that the 
strength of  a frame would be controlled by elastic storey 
buckling. Also, the types of frames corresponding to 
P,/Py < 0.05 in Figure 1 tend to have extremely large 
leaning column effects, with only a few lightly-loaded 
lateral-resisting columns acting as springs that are 
propping up the leaning columns of  the storey. As a 
result, the errors shown in Figure 1 for P,Ip~ less than 
about 0.05 are not considered to be of  any practical sig- 
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nificance. The use of  K = 1 for situations in which the 
error is larger than that predicted by a maximum error 
equation developed subsequently can be disallowed (for 
any B2) by limiting this simplification to frames in which 
the vertical load capacity is controlled by inelastic storey 
buckling. This requirement can be checked by inspection 
in most cases, or in general by using the simple approxi- 
mate equation 

EPy ] 
S L  - -  non leaner  

~PL N ---2.25 
nonleaner  

(23) 

where 

~P" 1 
N - all 

EP,  - 1 - R L  (24) 
nonleaner  

The parameter Sc is an estimate of the sum of the yield 
loads for all the columns of  the storey to the elastic sto- 
rey buckling capacity, and is used by LeMessurier ~ in 
a similar way to limit the application of  simplified equa- 
tions he has developed for calculating column effec- 
tive length. 

Two observations can be made based on Figure 1 that 
have important implications with respect to practical 
restrictions for the use of  K = i in design: firstly, since 
for P,/p~. >-0.17, the errors decrease with increasing 
P./Py for all values of L/r, there appears to be no need 
to restrict the maximum value of  P,/Pv as suggested in 
Reference 21 to limit the error associated with using 
K = 1. Secondly, the error plot demonstrates that there 
is no need to restrict the maximum L/r of the columns 
to control the error associated with using K = 1. By plac- 
ing a limit on B2, then: (1) the slenderness of  at least 
some of the columns within the storey must be suf- 
ficiently small; (2) the total gravity loads on the storey 
must be sufficiently small, or (3) an alternative device 
that gives adequate storey lateral stiffness (such as sides- 
way bracing) must be provided. 

6. U p p e r - b o u n d  e s t i m a t e  o f  the  e r r o r  for  
B 2 <~ 1.11 

Based on Figure 1, a 'practical worst case' error can be 
estimated for any frame with B2-< 1.11, E~ -> 250 MPa, 
and (CL),,~ --< 0.176 (the error reduces with larger Fy and 
smaller (CL)~g, as discussed below). If L/r = 10 is assumed 
as a lower-bound for the column slenderness, the maximum 
error for P,/p~ >- 0.05 is 0.065, or 6.5% (at P,/P~.=O.17). 
The value of  Kcj~ corresponding to this point is 7.38. This 
type of  situation can only be achieved with very large lean- 
ing column effects, and/or very low rotational end restraint 
(in which case, it is practically impossible to obtain 
(CL)a~g=0.176). Therefore, the above estimate of  the 
maximum E is conservative. Furthermore, L/r values this 
low generally require the use of  a beam-type section. It can 
be argued that L/r ~ 20 is probably a better practical lower 
bound for steel frame design. If  L/r = 20 is assumed as a 
lower-bound value for the column slenderness, the 
maximum error in Figure 1 for P,/p~ >- 0.05 is reduced to 
0.062 (at P,/p~.=O.17), with a corresponding value of  

Kc,, = 3.69. Therefore, one may conclude that for B. --< 1.11 
and F,. >- 250 N/mm 2, 6% is a reasonable upper-bound esti- 
mate for the error in the AISC LRFD beam-column inter- 
action equations associated with the use of  K = 1. 

7. M i s c e l l a n e o u s  effects  on  the  m a x i m u m  e r r o r  
for  Bz <- 1.11 

The previous sections have studied in detail the error attri- 
butes associated with neglecting the effective length for a 
wide range of  L/r and P,/P,. values, and for constant para- 
meters B2= 1.11, (CL),,.~,= 0.176, and F s = 2 5 0 M P a .  The 
discussion concludes by estimating that an upper bound for 
this error is 6%. This section addresses a number of miscel- 
laneous factors that can cause the actual error to be less 
than this estimate. It focuses first on reductions in the error 
due to variations in (Cc),~, and F,. from the values associa- 
ted with the maximum error estimate. The effects of these 
parameters may be evaluated from equations (15)-(22) .  
Subsequently, reductions in the error caused by several fac- 
tors that do not appear in the above error equations are 
discussed. The reader is referred to Reference 7 for a more 
detailed exposition. Of the easily quantified design para- 
meters, L/r, P,,Ip,. and B~ have the most significant effect 
on the error. The influence of L/r and P,/P,. has already 
been discussed. The influence of B2 is addressed in a separ- 
ate and subsequent section. 

7.1. P3 stiffness reduction, (Ct,),,~ 

The value (Ct,),,,~, = 0.176 is practically impossible for the 
types of frames that produce errors close to the 6% upper 
bound. A value of (Cc),,.~, equal to 0.056 is representative 
of designs based on the maximum error parameters (i.e. 
L/r= 10 or 20 and P,/P, = 0 . 1 7 )  7. Specific example frames 
in which (CL~,,v~ = 0.056 are shown later in this paper. For 
B2--< 1.11, F,.--> 250MPa,  and (Cc~,,,~=0.056, the 
maximum errors based on the elastic storey-buckling model 
are reduced to 5.8 and 5.5% for L/r= 10 and 20, respect- 
ively. 

7.2. Yield stress, Fy 

If the case B2= 1.11, (CL~,,.~=0.176, and E~.=350MPa 
(50 ksi) is considered, the maximum error is still 6.5% for 
L/r= 10. It is reduced slightly to 6 . l% for L/r= 20. These 
errors still occur at P,/p,  = 0.17. For larger L/r and P,/P, 
values, the reduction in the error by increasing the yield 
stress from 250 to 350 MPa is significantly greater than in 
Figure 1 (see Reference7).  Nevertheless, F,. has little 
effect on the maximum error in using K = 1. 

7.3. Beam-columns controlled by out-of-plane strength 
For all the cases that have been considered thus far, it has 
been assumed that the design is controlled by in-plane stab- 
ility. In many cases, a building frame may have its columns 
subjected to sidesway and oriented in strong-axis bending 
in-plane, but effectively braced at each of  the floor levels 
in the out-of-plane direction. In this situation, P,  is often 
controlled by the out-of-plane strength. This is the case if 
KyLy is greater than KxLx/(G/ry). A reasonable lower-bound 
for the rx/ry of rolled wide-flange shapes is 1.6. Therefore, 
if we assume that an effective length K~ = 1 is used for 
the out-of-plane check, and that L~ = Ly = L, the weak-axis 
column strength would control the design of  wide-flange 
columns unless Kx is greater than 1.6. 
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If the design is based on K = 1.6 rather than K = I, the 
maximum error for L/r= 10 is reduced only to 6.4% at 
P,/p,. = 0.17 (a change of only 0.1% from Figure 1); the 
corresponding effective length factor is 4.61. For L/r = 20, 
the maximum error is 5.5% (reduced from 6.2% in 
Figure 1 ). The error equations for this problem are identical 
to those presented with the exception that equation (19) is 
multiplied by /~  = 1.62= 2.56. Essentially, for the critical 
low L/r cases, the leaning column effects are so high, 
and/or the column end rotational restraint is so small when 
attaining the maximum error, that designing the column 
with K = 1.6 versus K = 1 has only a minor effect on this 
error. 

It is interesting to consider the errors obtained if all the 
beneficial effects discussed thus far are combined. If the 
design parameters are B2 -< 1.11, F,. <- 350 MPa, 
(CL~,,,,, <--0.056 and K =  1.6, then the maximum errors 
become 5.5% and 4.3% for L/r = 10 and 20, respectively. 

7.4. Redundancy and inelastic reserve strength 
In building frame designs, there is usually some redundancy 
and an associated amount of inelastic reserve strength 
within the structural system. This attribute of  the behaviour 
was relied upon in the prior research outlined in 
Reference 1. Inelastic force redistribution can increase the 
strength of framing systems far above that estimated by 
elastic design procedures. Furthermore, it is present in most 
frames that have a reasonable degree of redundancy. How- 
ever, it cannot be counted upon generally unless a second- 
order inelastic analysis check (such as is discussed in 
Reference 21) is utilized, and thus, it is not incorporated 
into the error estimates presented here. 

7.5 Column inelastic stiffness reduction and reversed 
curvature bending 
As previously discussed, the effective length is reduced in 
many practical situations due to distributed yielding and the 
resulting inelastic stiffness reduction within the columns. 
This reduction can be quite large in cases where the elastic 
rotational restraint from the girders and beam-to-column 
connections is relatively small. However, accurate determi- 
nation of  the inelastic buckling capacity requires, in gen- 
eral, an iterative analysis, and development of explicit 
relations between B2 and • based on an inelastic buckling 
model is not possible. 

Also, as noted previously, it is expected that when the 
columns of  a frame are subjected to nearly full-reversed 
curvature bending under sidesway (i.e., approximately 
equal and opposite-sign end moments due to sidesway 
deflections), the possibility of basing the design on K = 1 is 
increased. This aspect of  the behaviour also is not reflected 
directly in the error relationships that have been developed. 

The influence of  column inelasticity and reversed-curva- 
ture bending on the error can be considered only by study- 
ing specific benchmark frames. Studies of this nature have 
been presented 7 for practical extreme values of end 
rotational restraint associated with G ~ 0.25, and assuming 
minimum values of F,. = 250 MPa, L/r = 20, and B2 = 1.11 
(the factor G is equai to the ~(l,./Lc)/'~(lffL'~) at the end 
of  a column, where L~ = Lx (2 - M F / M N )  is the equivalent 
girder length for calculation of  effective length factors from 
the AISC LRFD sidesway-uninhibited alignment chart, and 
M F and MN are the moments due to sidesway, located at 
the near and far ends of  the girder relative to the column 9. 
These studies show that the maximum error in the beam- 

column interaction equations compared to the strengths 
based on a precise inelastic effective length calculation is 
5.1% if the opposite end of the column is pinned, and 4.0% 
if the opposite end of the column is restrained with G ~ 1. 
This latter case corresponds to an arbitrarily selected degree 
of reversed-curvature bending in which the inflection point 
under sidesway deflections is just within the middle one- 
seventh of the column length. Both of the above error 
bounds include the effects of reduced (C~,,..~ values 
encountered in the maximum error cases. Furthermore, for 
larger L/r, larger Fy, and larger minimum G values, the 
maximum errors can be substantially smaller. Also, if the 
frame has a reasonable degree of redundancy, and/or if the 
column axial strength is controlled by out-of-plane buck- 
ling, any overprediction of  the elastic in-plane design 
strength by using K = 1 is of reduced significance. 

8. Influence of the sidesway amplification factor 
B2 

As noted at the beginning of the previous section, B2 is one 
of the most important parameters that influence the error 
in the beam-column interaction equations associated with 
the use of K = 1. Figure 2 is the same plot as in Figure 1, 
but for B2 = 1.17 instead of  1.11. The value of  1.17 is selec- 
ted since this is the minimum B~ limit in LRFD based on 
the recommendations by Lu et al. m, assuming that ~P,/  

. l l  

ZP~ is greater than or equal to one, as discussed previously. 
all 

Comparing Figures 1 and 2, it can be seen that the error 
curves for different L/r values have the same shape in each 
of the plots, but the errors based on B~ = 1.17 are somewhat 
larger. The maximum error for B2 = 1.17 is 10.4% (again 
for L/r= 10 and P,,/P, = 0.17). This error might be judged 
to be excessive. 

Similar plots have been generated by the authors for 
other values of B2. An empirical relationship between e,,,,~ 
and B2, which fits the maximum error data reasonably well 
and provides a simple means of  relating the value of B2 to 
the error in using K = 1 for column design, is 

• ....... = 0 . 5 B z ( B  2 - I ) ( 2 5 )  

This equation slightly underestimates the upper-bound error 
for B2 <-- 1.25 (the largest underestimate is 9.9% versus 
10.4% at B2 = 1.17). It increasingly overestimates the error 
for increasing values of B2 > 1.25 (at B2= 1.4, 
equation (25) gives e ....... = 0.28 whereas the error equations 
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predict a maximum error of  0.26; at B2 = 1.6, this gives 
Ema x = 0.48 whereas the error equations predict a maximum 
error of  only 37%). Plots of  these errors are given in 
Reference 7. It is important to understand that 
equation (25) is based on the following limits: (Ccj,,vu -< 
0.176, Sc <-- 2.25, L/r  >- 10, and Fv --> 250 MPa. It has been 
explained that it is practically impossible for (Cc~,,,g to 
exceed the above limit for the combinations of  parameters 
that produce the maximum errors. The limit on Sc prevents 
the application of  K = 1 to any types of frames for which 
the error is larger than given by equation (25). As shown 
in Figures I and 2, the errors can be larger than the local 
maximum at P,/p , .= 0.13 to 0.17 for extremely small 
values of P,/p~. For B2 > 1.4, the dip in the error plots 
for Pu/Py < 0.13 to 0.17 disappears such that e actually 
decreases monotonically with increasing P,/Py for all 
values of L/r. The above limits on L/r  and V~ are simply 
minimum values that would be expected in practice. 

Equation (25) is quite useful, since the allowable value 
of  the beam-column interaction equations can be reduced 
based on E,,~ to ensure that designs with K--- 1 will never 
violate the interaction equations based on the 'correct'  
value of  K. This concept is discussed next. 

whenever B2, calculated using equation (4), is less than or 
equal to 1.11. The upper-bound on the resulting error is 
approximately 6%. The actual maximum error is on the 
order of 5% for pinned base conditions and 4% for cases 
involving nearly full-reversed curvature bending, as long 
as G -> 0.25. 

If the engineer wishes to ensure that a design based on 
K = 1 is conservative, the beam-column interaction values 
may be limited to 0.94 as long as B2 -< 1.11. Use of  K = 1 
can be extended to frames with any characteristic B2 values 
by limiting the beam-column interaction equations to 
1/(1 + e . . . .  ), where E ....... is given by equation (25). 

These recommendations are based on estimates of the 
maximum possible error in the beam-column interaction 
equations associated with B2 = 1.11 (or equal to the speci- 
fied B2 value), L/r  >- 10, and F~. -> 250 MPa. A (Cc~,,,.x of 
0.176 is assumed in the maximum error calculations. It has 
been explained that for the combinations of parameters 
required to produce the maximum errors, it is practically 
impossible for the P6 stiffness reduction factor to exceed 
this value. 

The above recommendations are subject to the follow- 
ing restrictions: 

9. L imi t ing  the interact ion equat ion  values  
based on B2 

In the development of  the error plots in Figures ] and 2, 
it is assumed that the value of  the beam-column interaction 
equations based on K =  1 (e.g., equation (14a)) are equal 
to one. This is true only if the design is controlled by 
strength. If  the design is controlled by drift or some other 
serviceability criterion, the interaction equation may have 
a value substantially less than one. The error ~ reduces rap- 
idly as the value of  the interaction equation falls below 
one. For example, if the beam-column interaction check 
evaluates to less than approximately 0.94 and B2 is less 
than 1.11, it can be stated that the 'practical worst case' 
unconservative error is zero. In other words, if the engineer 
wishes to ensure that his or her design is conservative, the 
design can still be based on K = 1 if B2 is held less than 
1.11 and the beam-column interaction checks are limited 
to 0.94. Alternatively, if B2 is less than 1.17, the design 
can be based conservatively on K =  1 if the interaction 
values are limited to 0.90. In fact, a general limit on the 
interaction equation values can be set as 1/( 1 + Em,,,), where 
e,,~ is given as a function of  B2 by equation (25). 

A question arises when considering how to apply this 
approach in the context of  beam-column design where the 
out-of-plane column strength may control for P,,. In this 
situation, the most appropriate procedure is to make two 
checks: one for the lateral-torsional strength of  the member 
with P ,  based on the out-of-plane column strength and a 
maximum value of  the interaction equation equal to 1.0, 
and one for in-plane strength based on K =  1 with a 
maximum allowable value less than one. At the expense of  
some extra conservatism in checking the lateral-torsional 
strength, a single interaction equation value may be com- 
puted based on the controlling P,, and limited to 
1/(1 + emax).  

10. S u m m a r y  of  des ign r e c o m m e n d a t i o n s  

Based on the studies presented, it is recommended that 
K=  1 can be used in AISC LRFD with negligible error 

( 1 ) Second-order elastic forces must be used in the design 
evaluation. These forces may be computed either by 
direct analysis or by appropriate amplification of  first- 
order elastic forces. Geometric imperfections or 
notional load effects do not need to be considered in 
the force calculations. It should be noted that this 
restriction is very important. If the second-order ampli- 
fication of the design forces and the column effective 
length are both neglected for the maximum error cases, 
the beam-column interaction equations can be up to 
16% in error for B2 = 1.11. 

(2) The vertical load capacity of  the structure must be gov- 
erned by inelastic storey buckling. Equation (23) can 
and should be used for unusual frames where this 
restriction cannot be verified by inspection. 

(3) The calculation of the column strengths based on elas- 
tic storey buckling, or equivalently based on effective 
length factors associated with elastic storey buckling, 
must be valid. 

No restrictions on the maximum values of  LIr and/or P, IP,. 
are required. 

For building frames, the second of  the above restrictions 
is likely to always be an academic one. Also, restrictions 
associated with the use of elastic storey buckling equations 
(item (3) above) are academic for most problems. Never- 
theless, they are real. The limitations of storey buckling 
models are often not well understood, and therefore it is 
appropriate to summarize some of  these limits. First, if a 
storey has any columns that are relatively slender and heav- 
ily loaded compared to the other columns, equation (11) 
should be checked to ensure that the storey buckling 
strength is not substantially reduced by the weak column(s) 
(which may in fact buckle in a nonsway mode). Also, for 
the correct application of  storey buckling equations (such 
as equations (5 ) - (8 ) )  the axial forces in the girders must 
be negligible; otherwise, the girder stiffnesses must be 
reduced to account for these effects 7. For slender frames, 
it is implicitly assumed that any reduction in the system 
buckling strength due to frame 'cantilever bending' actions 
is insignificant 7. It is assumed in general that the buckling 
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behaviour is a storey-by-storey phenomenon, with limited 
interstorey buckling interactions. For design of frames 
having partially-restrained connections, the connection non- 
linearity must be accounted for in the determination of B2 
by an appropriate tangent stiffness approximation 7. Finally, 
engineers often anticipate that designs using elastic effec- 
tive lengths are at worst somewhat conservative relative to 
those based on inelastic K values. This is not true in gen- 
eral. Due to greater inelastic stiffness reduction in columns 
with larger P,/P~. values, the storey-based inelastic effective 
lengths in columns that have smaller P,/p~ can increase 
relative to their elastic values 7. In certain cases, the 
resulting unconservative error in the beam-column interac- 
tion equations (relative to the strength based on a precise 
inelastic KL) can be significant. For cases in which the lat- 
eral resisting columns have similar PJPy, and/or the P,/Py 
values on all the lateral resisting columns are significantly 
less than one at the limit of the structure's resistance, 
and/or the structure has substantial redundancy, these 
unconservative errors are likely to be negligible 22. How- 
ever, for fames that: firstly, contain columns with substan- 
tially different levels of P,/p~; and secondly, have little 
redundancy, the column strengths may need to be based on 
an inelastic buckling analysis (or the corresponding inelas- 
tic effective lengths) for adequate assessment of the inelas- 
tic stability effects. 

The above recommendations are particularly useful for 
judging when the columns in moment frames with 'partial' 
or 'flexible' bracing provided by diagonal members, walls, 
or cladding may be designed using K = 1. If the lateral stiff- 
ness provided by the bracing elements is denoted by the 
s y m b o l  kt ,  ra, ing , where this stiffness is defined as the bracing 
force generated by a unit storey lateral drift, the effect in 
reducing Be may be included by adding the value k b ~ . c i . , g L  

to the ~PL term in equation (4). Alternatively, if the COI- 
nonleaner 

umns within the storey are of unequal height, all the terms 
within the summations should be divided by the respective 
column lengths, and the lateral bracing stiffness k~,oc~,~ 
should be added directly within this term of equation (4). 
Of course, the strength of the bracing elements also must 
be checked in this type of a design. 

l l .  Case study frames 

It is useful to consider several 'worst-case' frames to assess 
the accuracy of the error relationships, and to better under- 
stand the implications of using K = 1 relative to the rigorous 
theoretical inelastic frame behaviour. Figure 3 shows two 

H ~ P'"i"g = (N' I )P ~P 

© - r ~ g  
¢= W840x527 TM 

= ~ (w33x354) 

m I W360x314 
,- -~ (W14x211) 

~ Lc / rc = 20.15 m ,  
E~ E~ B:, = 1.25 @ P/Py = 0.17 
~= o=.-*-?, ,),~, 
O'J 04 t~r¢¢h 
II II L j ~ = 3.35 m, strong-axis case 

r, ~ = 17.64 m, weak-axis case 

Figure3 Example 'maximum error' frames in strong- and 
weak-axis bending 

E = 200 000 MPa 
Fy = 250  M P a  

G =  T-~/Iw. =0.243 

N = 6 .28  

such frames, one in strong-axis bending and the other in 
weak-axis bending in the plane of the page. These frames 
have a B2 of 1.25 at P/P,= 0.17 in the right-hand lateral 
resisting column (arbitrarily selected as larger than the B2 
values considered in Figures 1 and 2). The combination 
of zero redundancy, pinned-base conditions, heavy leaned 
column effects (N= 6.28 from equation (24)), substantial 
rotational end restraint (G = 0.243), low slenderness of the 
lateral resisting column (L/r=20.15), and small yield 
strength ( / ' , .=250 MPa) lead to an error prediction of 

= 15.6% from equation (25) for the right-hand column of 
these frames. The W360 × 314 column shown in the figure 
(WI4 × 211 in imperial units) is the heaviest Group 3 W 
shape available 9, and the storey height of 3.35 m ( 11 ft) for 
the strong-axis bending case is relatively small compared 
to most practical situations. Nevertheless, the L,/r, of this 
column is still not less than 20. For the weak-axis case, 
the L,: corresponding to L,/r, = 20.15 is quite small. This 
demonstrates that L/r = 20 is a reasonable lower-bound for 
most steel frames, as previously stated. The W840 x 527 
(W33 x 354) girder with L~, = 3.35 m for the strong-axis 
case is obviously rather stocky in proportion to the column 
compared to most practical situations; however, this is 
required to restrict B2 to 1.25 given the other parameters 
for this frame. 

11.1. Strong-axis bending case study 
Figure4 shows four distinct beam-column interaction 
curves for the example strong-axis frame, expressed in 
terms of the normalized axial force in the right-hand 
column (P/p~) versus the normalized maximum primary 
bending moment in this member (HL/Mp). The bold curve 
in the figure corresponds to the LRFD column strength 
based on a precise inelastic buckling analysis outlined by 
LeMessurier ~8. This is referred to as the LRFD(Ki, et) curve 
in the discussions that follow. The inelastic effective length 
factor ginel associated with LeMessurier's solution is an 
alternative to equation (5). By including the effects of col- 
umn inelastic stiffness reduction in the buckling analysis, 
LeMessurier's approach TM tends to produce a slightly more 
liberal interaction equation than that based on equation (5) 
for the examples studied here. 

The second curve listed in the legend is the LRFD inter- 
action curve associated with K = 1. For this example, the 
LRFD(K = 1 ) curve is practically identical to the beam-col- 
umn strength obtained from a second-order elastic-plastic 
hinge analysis in which the LRFD beam-column strength 
for L = 0 is used as the full-plastification strength of the 
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. . . . . .  LRFD (K=I) & EPH-SA (pedect) 
0.7 ' ,  

",, --o--- EPH-SA (imperfect) 
0.6 - ",,, N Plastic Zone 
0.5 

P I Py " ' , , ,  @ P/Py= 0.17, 
0,4 

0.3 

0 .2  

0.1 

0 I ~ t ' - -  - -  
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Figure 4 B e a m - c o l u m n  in te rac t ion  cu rves  f o r  e x a m p l e  f r a m e  
in s t r ong -ax i s  b e n d i n g  
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cross-section (the LRFD curve for L = 0 gives a reasonably 
accurate fit to the exact cross-sesction plastic strength for 
strong-axis bending of wide-flange sections2'). The axial 
yield strength and the plastic moment capacity are set at 
0.85p,. and 0.9Mp for the elastic-plastic hinge analysis, 
where the values 0.85 and 0.9 correspond to the AISC 
resistance factors for axial and bending strength, respect- 
ively. 

The third curve listed in the legend is obtained by a 
second-order elastic-plastic hinge analysis, but with the 
frame assumed to be initially out-of-plumb by L/500. This 
value for the out-of-plumbness corresponds to the 
maximum erection tolerance on a shipping piece specified 
in the AISC Code of  Standard Practice 9. A comparison of  
the two elastic-plastic hinge curves gives an indication of 
the effect of  geometric imperfections on the strength of  the 
frame. Furthermore, the EPH-SA(imperfect) curve may be 
compared to plastic zone analysis results to ascertain the 
effects of  distributed yielding in the lateral resisting col- 
umn. As noted previously, the AISC interaction curves 
account for these effects solely within the calculation of  
the column strength ok, P,,. 

The fourth curve specified in the legend is obtained by 
a rigorous plastic zone analysis 23. A nominal yield strength 
of  E,. = 250 MPa is used for the analysis, and the resulting 
beam column strengths are factored a posteriori by 0.9 
along both axes. Use of this 'uniform' resistance factor 
might be justified with this type of analysis based on the 
precision with which the nominal effects on the design 
strength can be modelled. A residual stress pattern 
presented by Galambos and Ketter 24, with compressive 
values at the flange tips of  0 .3E,  is assumed for the plastic 
zone analysis. The stress-strain behaviour is assumed to be 
elastic-perfectly plastic (no strain hardening). Also, an out- 
of-plumbness of L/500 and an out-of-straightness of  
L~ 1000 are assumed, with the lateral-resisting column being 
bowed to the right to create a detrimental out-of-straight- 
ness effect. Plastic zone analyses with these geometric 
imperfections and residual stresses have been shown to 
reproduce closely the AISC-LRFD column strengths based 
on inelastic effective length for light-to-medium weight col- 
umn W sections and a wide range of  end restraint con- 
ditions 7. 

A radial line from the origin, which intersects the K-- 1 
strength curve at P/P,. = 0.17 (this point corresponding to 
B2 = 1.25), is shown in Figure 4. The error in the LRFD 
( K =  1) curve, measured along this line, is 12% relative to 
the LRFD(Ki, e~) curve, 6% relative to the EPH- 
SA(imperfect) curve, and 16% relative to the plastic 
zone strength. 

The following key observations can be drawn from 
Figure 4: 

• The LRFD(Ki,,e~) curve is slightly unconservative, but fits 
closely with the plastic zone strength. 

• The lengths based on K =  1, which are essentially the 
same as the strength based on a second-order elastic-plas- 
tic hinge analysis without initial imperfections, signifi- 
candy overpredict the plastic zone strengths. For the 
point on the K =  1 interaction curve corresponding to 
B2 = 1.25, the error measured along the radial line com- 
pares reasonably well with the predicted Em,,~ value from 
equation (25). Of  course, it should be noted that • is 
defined as the fraction by which the 'correct'  LRFD 
interaction check exceeds the value 1.0. This does not 

match exactly with the definition of  the error based on 
the ratio of  the distances to the curves along a radial line 
from the origin of the plots, but the differences are minor. 

• The strengths predicted by second-order elastic plastic 
hinge analysis, including imperfections, do not 
adequately capture the rigorous plastic zone strengths 
either (although the error is much reduced from that of 
the EPH-SA(perfect) curve). This is primarily due to the 
fact that the elastic-plastic hinge analysis does not 
account for beam-column distributed plasticity effects. 
The LRFD(Ki,,,.~) curve accounts for this behaviour by 
basing ~h,.P,, on an iterative inelastic buckling analysis, 
and by specifying a simple function tbr the interaction 
between oh, P,, and the column's bending capacity. 

• The error in the beam-column interaction curves relative 
to the plastic zone strengths increases as the column axial 
loads are proportionally increased such that P/P, is 
greater than 0.17. However, Bz also increases as the col- 
umn axial loads are increased, such that the estimated 
error • is also greater. For any of the points correspond- 
ing to P/p, > 0.17, the estimated error in the LRFD 
( K =  1 ) curve based on equation (25) is generally larger 
than the actual error measured along a radial line from 
the origin to the point under consideration. 

• The first-order drift ratio at the factored load level corre- 
sponding to P/P,. = 0.17 is relatively large (1/173) for 
the example frame. Obviously, this drift is probably too 
high for the frame to be serviceable under nominal lateral 
loads. Nevertheless, the frame can be checked using 
K = I as long as the interaction equation value is limited 
to 1/( 1 + • ....... ) = 0.86. For larger axial and smaller lateral 
load, the drift is, of course, smaller. However, B2 is 
larger, and thus the corresponding limit on the interaction 
equation value for use of K =  1 must be reduced to 
restrict the error to acceptable values. This indicates that 
limiting the first-order drift ratio alone is not sufficient 
to ensure that the error associated with the use of K = l 
is small. 

11.2. Weak-axis bending case study 
The above example considers only strong-axis bending. It 
is important also to assess the behaviour for weak-axis 
cases, since the inelastic flexural stiffness tends to reduce 
more dramatically as the flange tips become yielded in 
weak-axis bending. Figure 5 shows results comparable to 
Figure 4 but for the weak-axis bending frame of Figure 3. 
The same column cross-section (W360 >< 314) is used for 
this problem. Also, a W840 >< 527 girder is used in strong- 
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Figure5 Beam-column interaction curves for example frame 
in weak-axis bending 
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axis bending, but the girder length is increased to obtain 
the specified G value. The weak-axis cross-section full- 
plastification strength specified in EC3 5 is used for calcu- 
lation of  the second-order elastic-plastic hinge curves. 

The behaviour in Figure 5 is similar to that shown in 
Figure 4 with some notable exceptions. The LRFD(K~,,~O 
and (K = 1) curves in Figure 5 are identical to the corre- 
sponding curves for the strong-axis bending case. The plas- 
tic-zone strength curve is similar to the one for strong-axis 
bending, but due to the sharper reduction in the section 
stiffness with yielding at the flange tips, the weak-axis 
strengths are somewhat smaller for P/p, larger than about 
0.25. This is in spite of the fact that the cross-section full- 
plastification strength for weak-axis bending is quite con- 
vex. The convexity of  the weak-axis cross-section strength 
is apparent in the results of the elastic-plastic hinge analy- 
ses. Both of the elastic plastic hinge curves (with and with- 
out an initial out-of-plumbness of L/500) are significantly 
unconservative compared to the rigorous plastic zone sol- 
ution. 

For the point on the LRFD(K = 1) curve corresponding 
to B 2 = 1.25 and P/p,. = 0.17, the error relative to the plastic 
zone solution is approximately 14%, which is close to the 
predicted E ..... of 15.6% from equation (25) and to the 16% 
error for the corresponding strong-axis bending case. For 
larger B2 (i.e., larger PIPv values), the error in the 
LRFD(K = I ) curve for this problem is larger than that for 
the strong-axis case, but it is still estimated reasonably well 
by equation (25). This larger error is associated in part with 
the use of a single column strength curve in LRFD. The 
LRFD(K~,,~) curve fits the plastic zone strength well in this 
problem for P/P~ <- 0.25. However, this curve is more than 
20% unconservative relative to the plastic zone solution for 
the pure axial loading case. 

11.3. Key general observation 

One general observation can be made from the case study 
examples that is vital to an understanding of the underlying 
physical behaviour which produces the error E. For strong- 
axis bending, use of  K = 1 is appropriate for design when- 
ever distributed plasticity (i.e., residual stress) and geo- 
metric imperfection effects, not considered in the second- 
order elastic design analysis, have a negligible influence on 
the maximum strength of the frame in a sidesway mode of 
failure. For weak-axis bending, the shape of  the AISC 
LRFD beam-column interaction curve accounts in part, but 
not completely, for the relatively severe distributed plas- 
ticity effects on the strength. However, if there is substan- 
tial distributed plasticity in the columns at any of the fac- 
tored load levels, these effects can result in an additional 
reduction in the maximum strength, particularly in non- 
redundant frames. The influence of  distributed plasticity 
and geometric imperfection effects on the sidesway strength 
of  a steel frame is highly correlated with the elastic sides- 
way amplification factor B2. 

12. Conclusions 

Some engineers may find it surprising that the errors in 
using K = 1 can be as large as 6% for frames in which 
B2 = 1.11. It may be even more surprising that the errors 
can be as large as 16% at this Bz limit if both effective 
length and the second-order amplification of  the elastic 

design forces are neglected. For any given value of  B2, the 
maximum error cases involve columns with small L/r and 
relatively small P/P~. (approximately 0.17), that are 
restrained by heavy beams and are subjected to large lean- 
ing column effects. Columns with small L/r and with 
P/Py ~ O. 17, but which have small rotational end restraint, 
are nearly as critical but obtain some benefit due to column 
inelastic stiffness reduction. For equal values of  the storey 
amplifier B2, columns with small L/r that are loaded by 
high axial forces also exhibit errors that are close to the 
maximum estimates, but these errors are slightly less than 
for the above two situations. 

Design recommendations have been made based on the 
critical error cases. It is emphasized that the errors can be 
substantially less than the maximum estimates, particularly 
for cases in which there is significant redundancy, when 
the columns are deformed nearly in full reversed curvature 
bending under sidesway deflections, and for smaller 
rotational end restraints (for which the column inelastic 
stiffness reduction can be significant). Nevertheless, the use 
of these recommendations can substantially speed-up the 
design calculations, and will lead to a design close to that 
based on explicit calculation of effective lengths. 
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