IMPEDANCES FOR RADIALLY INHOMOGENEOUS VISCOELASTIC
SoiL MEDIA

By Y. C. Han' and G. C. W. Sabin?

AssTRACT: The dynamic impedances of a radially inhomogeneous viscoelastic soil layer with a central hole
are formulated based on a new boundary zone model with a nonreflective boundary. A parabolic variation
of the medium properties is assumed, so that the boundary zone has properties smoothly approaching those
of the outer zone to alleviate wave reflections from the interface between the two media. Vertically, torsionally
and radially excited soil layers have been examined in this paper. The results are evaluated over a wide range
of the parameters involved and compared with those obtained for a homogeneous layer, as well as compared
with Novak and Veletsos’s solutions. Since this boundary-zone model includes mass and a nonreflective
boundary, the impedances (soil stiffness and damping) presented in this paper are considered to be more

suitable to practical applications.

INTRODUCTION

One of the more important problems in soil-structure in-
teraction is how to model the soil. A number of approaches
are available to account for dynamic soil-structure interaction
but they are usually based on the assumptions that the soil
behavior is governed by the laws of linear elasticity or vis-
coelasticity and the soil is perfectly bonded to an embedded
foundation or a pile. In practice, however, the bonding be-
tween the soil and the footing is rarely perfect and slippage
or even separation often occurs in the contact area. Further-
more, the soil region immediately adjacent to the footings
can undergo a large degree of straining, which would cause
the soil-structure system to behave in a nonlinear manner.
Both theoretical and experimental studies have shown that
the dynamic response of the footings is very sensitive to the
properties of the soil in the vicinity of the footings (Han and
Novak 1988; Han 1989; Han and Vaziri 1992; El-Marsafawi
et al. 1992).

To account for the nonlinearities resulting from loss of
contact between the soil and the footing, Novak and Sheta
(1980) proposed including a cylindrical annulus of weakened
soil (an inner weakened zone, or so-called boundary zone)
around the footing in their plane strain analysis. Although
their analysis allowed for different properties in the weakened
boundary zone and the outer zone, each zone is assumed to
be homogeneous. One of the simplifications involved in the
original boundary zone concept was that the mass of the inner
zone was neglected to avoid the wave reflection from the
interface between the inner zone and the outer zone. To
overcome this problem Lakshmanan and Minai (1981), Ve-
letsos and Dotson (1986) and Dotson and Veletsos (1990)
proposed schemes that can account for the mass of the bound-
ary zone. Some of the effects of the boundary zone mass were
investigated by Novak and Han (1990) who found that a ho-
mogeneous boundary zone with a nonzero mass yields un-
dulating impedances due to wave reflections from the inter-
face between the two media. Since in reality the interface
between the two media is only fictitious, the undulating im-
pedances may be not suitable for practical applications. The
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ideal boundary zone should have properties smoothly ap-
proaching those of the outer zone to alleviate wave reflections
from the interface.

It should be mentioned that a continuously increasing mod-
ulus with radial distance was proposed to eliminate the un-
dulations in the impedances by Veletsos and Dotson (1988)
and Gazetas and Dobry (1984). However, in those schemes
the concept of the boundary zone was not included and the
modulus was increased unboundedly.

In this paper, the impedances for a composite soil layer
are formulated based on a new model of the boundary zone
with a nonreflective boundary. A parabolic variation of the
medium properties is assumed, so that the boundary zone
has properties smoothly approaching those of the outer zone
to remove wave reflections from the interface. The imped-
ances of the soil layer are presented for different modes of
vibration: (1) Vertical vibration; (2) torsional vibration; and
(3) axisymmetrical vibration (breathing vibration). The re-
sults are evaluated over a wide range of the parameters in-
volved and compared with those obtained for a homogeneous
layer, as well as compared with Novak and Veletsos’s results.
Since the boundary zone mass is accounted for in this model
and the nonreflective boundary is included, the impedances
(soil stiffness and damping) are considered to be more suitable
for practical applications than previous ones.

COMPOSITE LAYER WITH
NONREFLECTIVE BOUNDARY

The system examined is a linear viscoelastic layer of unit
depth and infinite extent with a circular hole of radius r,, as
shown in Fig. 1(a). The impedances of the composite layer
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FIG. 1. Model of Boundary Zone with Nonreflective Boundary: (a)
Composition of Zones; and (b) Variation of Shear Modulus with
Radial Distance
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are derived based on the plane-strain assumption. The outer
zone medium is homogeneous, isotropic, and viscoelastic,
with frequency independent material damping; within the
boundary zone, the complex shear modulus, G *(r), varies
parabolically. as expressed by the function f(r), shown in Fig.
1(b). The variation of G *(r) is continuous at the boundary,
both the function itself and its derivatives, so that no reflective
wave can be produced at the interface (this is referred to as
nonreflection boundary).

The properties of the soil medium for each region are de-
fined by the complex-valued modulus

GHor=r,
G*ry =yGIf(r): r,<r<R (la—c)

G r=R
and G* = G,(1 + i2B); G* = G,(1 + i2B,) (2a,b)

in which G, and G, = shear moduli of the inner and outer
zones; r,, = radius of the cylindrical cavity in the medium; R
= radius of boundary zone; r = radial distance to an arbitrary
point; B, and B, = damping ratio for the two zones; and i =
V — L. The parabolic function, f(r), can be expressed as

— R ?
) =1~ nr (——) ©
., _1-GNG;
and =y @
where ¢,, = thickness of boundary zone; m = a constant

whose value depends on G}'/G; and ¢, /r,. as shown in {(4).
It should be explained that the soil in the boundary zone may
be weakened—as well as strengthened in some cases, such
as pile driving. When the soil is weakened, G,/G, < 1; when
the soil is strengthened, G,/G,, > 1. Denoting

&E=rlr, (5)
then f(¢) =1 — m* (& — R/r,)? (6)

VERTICAL VIBRATION
Within Boundary Zone

As the composite layer is excited vertically, u = v = 0,
where u, v = radial and tangential displacement, respectively.
The governing equations can be derived from the standard
form, written in cylindrical coordinates (Sokolnikoff 1956)

ow [dG*(r) N G*(r)} aw aw

= 7
ar’ dr r Prar )

G0 or at-

where w = vertical displacement; ¢ = time; and p = mass
density. The mass density for the inner zone is assumed to
be equal to that of the outer zone.

Under harmonic excitation

w = w(r)e™ (8)
Eg. (7) can be written as

d*w w &2 Ejﬂ — ANw =
UOr [ a& e ] - MmO
in which A, = ——2 (10)

V1 o+ 28,
where dimensionless frequency, a, = wr,/V,, o is circular
frequency, and V, is shear wave velocity of soil. Let

x = m(R/r, — &) (1)
then f(§) =1 - x? (12}
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Substituting (11) and (12) into (9), yields
o dw x* =1 dw A, : _
(x D dx? * <2.x * x - mR/r,,) dx * (m) w=9
(13)

Denoting a = mR/r, and b = (A ,/m)>. Eq. (13) can be re-
written as,

dx

The displacement, w, can be expressed by a power series as

d S
(x2—1)—'¥+(2x+" )1'3+bw=0 (14)
dx* X a

w = 2 A,x" (15)

n

Substituting (15) into (14), the coefficients in the power series
can be determined as

) _abA, + A,
2 2 2a

A, ={n - 1A, | +ab + (n - 2)(n - 1)]A4, .,
=6+ (n—=3)n - D]A, Haln - Da] (16d)

where C, and C, = complex-valued constants that can be
determined by considering the boundary conditions.
Finally, the shear stress is

(16a—c)

dw m . dw
T = G*(r)gr‘ = G*(r) i (17

Quter Medium

The governing equation can also be derived from the stan-
dard form, written in cylindrical coordinates, but G * is taken
as constant in the outer zone. The equation can be written

w dw
€ E + & dt AETwW(E) = 0 (18)

This is a Bessel equation whose solution is
w(g) = CGK, (N8 + CA(\E) (19)

where I, and K, = modified Bessel functions of zero order
of the first and second kind, respectively; C; and C; = com-
plex-valued constants of integration that can be determined
from the boundary conditions.

The displacement amplitude should be unit at the boundary
of the hole and the displacements vanish as £ — %; the dis-
placements and stresses are continuous at the interface of the
two zones. Then, the boundary conditions can be written as

w,=1 at§ =1 (20a)
w, =0 at§{—o><x (20b)
w, =w, at§ = Rir, (20c)
T, =1, at§ = Rir, (20d)

To satisfy these boundary conditions, C, = 0 must hold. Eq.
(19) can now be written

w(g) = CK (A8 (21)

At the boundary of the hole, r = r,, so & = 1. Thus, (11)
reduces to

x,=V1=G}G} (22)
and likewise (15) becomes

C,+ Coxy + Asxi + -+ Ax) =1 (23)



At the interface of the two zones, £ = R/r,, so x = 0. From
(15) and (21), it follows that:

C, = GK,[N(RIr)] (24)
and the shear stresses are
1, = C, (-’?) G* (25)
)Y R
T, = —er—" K, ()\,, r—) G} (26)

where K, = a modified Bessel function of first order and the
second kind. Using 7; = 7, at the interface it follows that:

. = C e, (x,, 5) @)
m

o,

From (23), (24), and (27), C,, C,, and C; can be calculated.
The impedances of the composite layer for vertical vibra-
tion are defined as

K = 2‘1'"'”1',-(, =r,) (28)

1

then, K, can now be determined from

M

K, = nG2m(1 + i2B) Z—: (29)

P
It is desirable to express K., in the following form:
K. = wG(S,, + ias8,) (30)
in which 4, = wr,/V, 31

where V; = VG,/p = shear wave velocity for the boundary
zone; 8, and S, are dimensionless factors that depend on
a,t,lr,, G,/G,,8;,and B,. The factors S,, and S, , are referred
to as the vertical stiffness and damping of soil, respectively.

. * present solution

N-S solution

E SN nemogenenss _ /

V-D solution

(B) Frequency a;

FIG. 2. Comparison of impedance Functions for Vertical Vibration
with Novak-Sheta (N-S) and Veletsos-Dotson (V-D) Solutions, t,/r,
= 1.0; G/G, = 0.25; B, = 0.1; B, = 0.05: (a) Stiffness Factor S_,;
and (b) Damping Factor S,

In this paper, the impedances of the soil layer were ex-
pressed in terms of the shear modulus of the inner region,
G,, following the format employed in Veletsos and Dotson
(1988). The stiffness and damping factors, S,, and S,,, ob-
tained from the present analysis are compared with those
obtained for the Novak-Sheta (N-S) and Veletsos-Dotson (V-
D) idealizations, as shown in Fig. 2. These solutions are for
a soil layer with ¢,/r, = 1.0; G/G, = 0.25; B, = 0.1; and
B, = 0.05. The mass density for the inner zone is taken to
be the equal to that for the outer region in the present solution
and the V-D solution, while for the N-S solution the mass
density for the inner zone is assumed to be zero, an unrealistic
assumption. It can be observed that the three sets of results
are significantly different; the V-D solution results in pro-
nounced oscillations (undulations) caused by wave reflections
from the interface between the two media. 1t should be noted
that Veletsos and Dotson (1988) also included a model with
a continuously increasing shear modulus with radial distance
to remove the undulations in the impedances. The differences
between the present solution and that solution are that the
modulus was varied unboundedly, i.e., without a boundary
zone in their model, and in the present model the modulus
varies only in the boundary zone and is constant in the outer
zone as one might expect. The nonreflective boundary be-
tween the boundary zone and the outer zone is formulated
in the present solution. It should be explained that the con-
vergence of the power series used to express the displacement
in this study is rapid; however, the convergence for the de-
rivative of the series is slow. To obtain a satisfactory solution,
the first 10 to 12 terms of the series are needed. The results
from the present analysis are smooth curves over a wide range,
the value of a; from 0.0 to 4.0, which indicates that the wave
reflections from the interface are alleviated because it em-
bodies a continuous variation in soil properties in the bound-
ary zone with smooth (continuous derivatives) transition into
the outer zone. For comparison, the resuits for a homoge-
neous layer are also included in Fig. 2.

To illustrate the influence of parameters involved, the stiff-
ness and damping factors for a vertically excited layer are
plotted in Fig. 3 and Fig. 4 as a function of a, for several
different combinations of t,/r, and G,/G, with material
damping, B; = 0.1 and B, = 0.05. It should be noticed that
the undulations caused by wave reflection vanish as expected
in all of the cases presented, owing to the nonreflective
boundary. The influence of the material properties in the
boundary zone is sensitive to the stiffness and damping of the
soil layer. The stiffness factor, S,,, increases with the level
of G,/G; and is smallest for the homogeneous case (G,/G; =
1). The damping factor, S,,, at lower frequency levels be-
comes larger as the magnitude of G,/G, increases; however,
at higher frequencies this tendency is diminished.

The effects of material damping on the impedances of the
soil layer are shown in Fig. 5. Several values of damping ratio
are selected, in one case both B, and B, are zero and in other
cases B, = 0.05 and B8, = 0.05, 0.1, and 0.2, respectively. It
can be seen that the stiffness factor, S, reduces with material
damping increasing, but the effect to the damping factor, S, ,,
is small. This trend in damping response can be explained by
reference to the fact that the radiation damping becomes
more dominant (relative to the material damping) at higher
frequency levels.

TORSIONAL VIBRATION
Within Boundary Zone

Because the composite layer is excited torsionally, w = u
= 0, the governing equations can be derived from the stan-
dard form, written in cylindrical coordinates (Sokolnikoff 1956).
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FIG. 3. Vertical Impedances for Composite Layer with Material
Damping B, = 0.1, B, = 0.05 and Different Parameters: (a) for
t./r, = 0.1; (b) fort,/r, = 0.2

(B) Frequency ai
FIG. 4. Vertical Impedances for Composite Layer with Material

Damping B8, = 0.1, B, = 0.05 and Different Parameters: (a) for
t,/r, = 0.5; (b) for t,/r, = 1.0

G*(r) (g:l’_*,lﬂ_ﬂ) +__dG (r) <@_2) _ pa"(f (32)

ar:  rar r’ dr a r ot

where v = tangential displacement; ¢t = time; and p = mass
density. The mass density for the inner zone is assumed to
be equal to that of the outer zone.
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FIG. 5. Effects of Material Damping on Vertical Impedances of
Soil Layer: (a) Stiffness Factor S,,; and (b) Damping Factor S,;

Under harmonic excitation
v = v(r)e™ (33)
Eq. (32) can be written

&, (4 , 10]
o e + |42, 0] &

NI CICI
[g x et *"] 0 (34)

Substituting (11) and (12) into (34), yields

d*v x2—1|dv
-1 + |2 + —
(x )at\f2 [ x—a]dx
2x 1 - x?
+ =
I:a—x+(x—a)3+b:|I 0 (35)

The displacement, v, can be expressed by a power series as
v= 2 Ax (36)
n=0

Substituting (36) into (35), the coefficients in the power series
can be determined as

A, =C; A =GC (370,1))

A, = (a’b + l)/i(, + aA, 370)
2a°

A, = 2a(l — b)A, + a-(l:» + 2)A, + 6aA, (37d)
6a?

and 81 = (n ~ 1)(2n — 3a (384)

82 = (n — )(n—2)a> — (n — 2)* + ba> + 1 (38b)
83 = —af(n — 3)(2n — 3) + 2(b — 1)] (38¢)
84 =(n—2)n -4 +b-3 (38d)



the general term can be expressed as

A, = 31A, , + 324, , + ‘631;\,,_3 + 844, _, (39)
n(n — 1a

where C, and C, are complex-valued constants that can be
determined by considering the boundary conditions.
Finally, the shear stress is

= G*(r) (%‘;’ ~ g) = -G*(9) (rﬂof—ixy + %) (40)

Outer Medium

The governing equation can also be derived from the stan-
dard form, written in cylindrical coordinates, but G * is taken
as constant in the outer zone. The equation can be written

4
3 e

+ e% ~ (28 + Du(®) = 0 1)

This is a Bessel equation, for which its solution is

v(€) = GK(AE) + CA(\E) (42)

where I, and K, = modified Bessel functions of order one
of the first and second kind, respectively; C; and C, = com-
plex-valued constants of integration, which can be determined
from the boundary conditions.

The boundary conditions are

(43a,b)
(43c.d)

vlr,=1 atg=1;, v,=0 atf— =

v, =v, atg = Rir,; at§{ = Rir,

T, =T

i 0

From these boundary conditions, C,, C,, C;, and C, can be
calculated.

The impedance of the composite layer for torsional vibra-
tion is defined as the moment of the shear stresses around
the cylinder axis with respect to a unit torsional angle (v,/r,

Ky = =2mrim,_,, 44
then, K, can now be determined from
m dv
= 2G. i28,) [ — = 4
K, = 27r2G;(1 + i2B) (ru o + 1) . (45)
It is desirable to express K, in the following form:
K, = 2mriG(So + ia;Sy2) (46)

where S,, and Sy, are dimensionless factors that depend on
a, ttr,, GIG,, B;, and B,. The factors S,, and S, are referred
to as the torsional stiffness and damping of soil, respectively.

The stiffness and damping factors, S,, and S, obtained
from the present analysis are compared with those obtained
for the Novak-Sheta (N-S) and Veletsos-Dotson (V-D) ideal-
izations, as shown in Fig. 6. These solutions are for a soil
layer with ¢,/r, = 1.0; G/G, = 0.25; B, = B, = 0.0. The
mass density for the inner zone is taken to be the equal to
that for the outer region in the present solution and the V-
D solution; for the N-S solution the mass density for the inner
zone is assumed to be zero. It can be observed that similar
to the case of vertical vibration, the V-D solution results in
pronounced oscillations (undulations) caused by wave reflec-
tions from the interface between the two media. In the same
way as in the vertical vibration case, Veletsos and Dotson
(1988) proposed a continuously increasing shear modulus to
eliminate the undulations in the impedances. The results from
the present analysis are smooth curves over a wide range
parameter values, indicating that the wave reflections from

[ v — -

Parameter Sn

(4)

Parameter Sy

(B) Frequency a;

FIG. 6. Comparison of Torsional Impedance Functions with No-
vak-Sheta (N-S) and Veletsos-Dotson (V-D) Solutions, t,,/r, = 1.0,
G,/G, = 0.25, B, = B, = 0.0: (a) Stiffness Factor S,,, and (b) Damping
Factor S,,

8 . - —
= Sn
tmfre =0.25 -
Ss
w O Gi= 4
<3 ] .G./G.-. 4 Go/ il
e =
) " \
g 4, 2
L o — 4
WN e 1
N T e T R T R e e e R e o
1
0 - " .
0 1 2 3 4
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4 N 2

3 4h

g

“ \

g 3pA 2
h

g zk 43

a. ‘WX h |
L VSt c oo

b

0 A .

0 1 2 3 4
(B) Frequency 8i
FIG. 7. Torsional Impedances for Composite Layer with Material

Damping B, = 0.1, B, = 0.05 and Different Parameters: (a) for
t,/r, = 0.25; (b) for t,/r, = 0.5

the interface have been removed. For comparison, the results
for a homogeneous layer are also included in Fig. 6.

To illustrate the influence of the parameters involved, the
stiffness and damping factors for a torsionally excited layer
are plotted in Fig. 7 and Fig. 8 as a function of q; for several

JOURNAL OF ENGINEERING MECHANICS / SEPTEMBER 1995 / 943



5 r
tmf/re =10
&
3
&
&
1 ‘\\__._‘,‘_,_‘,.‘,._,.-_..—__.-__.-:—_.-_a-__—_--_—*- gl
0 " .
0 1 2 3 4
6]
5 v
tu/Te =20 Sn
~--~ Se |
&
3
&
ji
°0 1 2 3 4
(B) Frequency 4

FIG. 8. Torsional Impedances for Composite Layer with Material
Damping B, = 0.1, B, = 0.05 and Different Parameters: (a) for
t,/r, = 1.0; (b) for t,/r, = 2.0
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FIG. 9. Effects of Material Damping on Torsional Impedances of
Soll Layer: (a) Stiffness Factor S,,; and (b) Damping Factor S,,

different combinations of ¢,/r, and G,/G;, with material
damping, B, = 0.1 and B, = 0.05. It should be noticed that
the undulations caused by wave reflection vanish as expected
in all of the cases presented. The torsional stiffness factor,
Se1, increases with the level of G,,/G; and is smallest for the
homogeneous case (G,/G, = 1).
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The effects of material damping on the torsional imped-
ances of the soil layer are shown in Fig. 9. Several values of
the damping ratio are selected, in one case both B, and 8,
are zero and in the other cases g, = 0.05 and B, = 0.05, 0.1,
and 0.2, respectively. It can be seen that the stiffness factor,
Se1, reduces with material damping increasing, but the effect
to the damping factor, S,,, is small. This trend in damping
response can be explained by reference to the fact that the
radiation damping becomes more dominant (relative to the
material damping) at higher frequency levels.

RADIAL VIBRATION (BREATHING VIBRATION)
Within Boundary Zone

The composite layer is subjected to an axisymmetrical, vol-
umetrical deformation associated with the propagation of a
P-wave in the radial direction or, say, a breathing vibration,
such as in the cases of cavity expansion, pile vibration and
driving. In this case, w = v = 0, and the governing equations
can be derived from the standard form (Sokolnikoff 1956)

do o, — O %u(r, t
_r+ r e _ ( )

or r ot?

(47)

where o, = pormal stress; g, = tangent stress; and u(r, f)
= radial displacement. The stresses, o, and o,, can be ex-
pressed as

5, = + 267 2D . 1) 8)
oo =t 2D 4 0 4 gy M0 (49)

where \* = complex Lamé constant of the medium in the
boundary zone, and expressed as

2v

= 2 G (50)

A=

where v = Poisson’s ratio, to be assumed a constant in the
boundary zone and the same as that in the outer medium.
Substituting (48) and (49) into (47), yields

[()\* + 2G*) au(r D s\ u(rr’ t)]
4 2G* jou(r, )  u(r,n| _ 3%, 1)
r ar r N or? (51)

Within the boundary zone, A* and G * are variable, (51) can
be written

1 s 1
(\* + 2G*) [a ur, ) ;"“(a’r U = u(r, t)]
d\* + 2G*) du(r, t) | dN*u(r,n)  3%u(r, 1)
* dr or * ar r P (52)
Under harmonic excitation
u(r, 1) = u(r)e (53)
Eq. (52) becomes
d’u afe) . fe)
= [ & e ] T
_ | f® _ df©)ni S
[ e g O ] gy (54)
in which sr, = W_l——m:”_i—fp,, (55a)



n=V2(1 - v)/(1 - 2v); m = Vvi(l —v) (55b,c)

Y
N g

—) (56)

and denoting B = (
m

With reference to (11) and (12), (54) can be written

. d?u x2 — 1\ du
(x-_l)dx2+<2x+x—~a>dx
B Pl S +Blu=0
(x — a)y My = a (57

The displacement, u, can be expressed by a power series
as

u= Y Ax" (58)
n=0

Substituting (58) into (57), the coefficients in the power series
can be determined as

A, =C; A =G (59a,b)

A, = (@B + 12);21 + aA, (59)

Ay, =[-2a(B + nDA, + a*(B + 2)A, + 6aA,)/6a> (59d)

and 81 =(n — 1)(2n - 3)a (60a)
NR=m-Dn-3Na*-1)+(n-2)2a>—-1)+ Ba®> + 1

(60b)

83 = —a[(n — 3)2n — 3) + 2(B + M) (60c)

=0m-2)n—-4)+B+2qv}-1 (604)

the general term can be expressed as

A, = (314, , + 824, , + 83A, , + 844, )/[n(n — 1))
(61)

where C, and C, = complex-valued constants which can be
determined by considering the boundary conditions. Finally,
the normal stress is

P wau U
o, (A +2G)dx“‘r (62)

o

Outer Medium

The governing equations of the homogeneous medium can
be derived from (51), but A* and G * are taken as constants.
For the axisymmetric, volumetric deformation associated with
the propagation of P-wave in the radial direction, breathing
vibration, the equation is

N w | u, ) lou(r,n 1 0%, 1)
(Au + ZGU) [ ar? + r ar r2 u(rs t) =P atz
(63)

where A% = complex Lamé constant of medium in outer
zone. For harmonic excitation, (63) becomes

d>u(r) + tdu(r)
dr? r dr

5

s+ %) u(r) =0 (64)

This is a modified Bessel equation, for which its solution is

u(ry = C,K\(sr) + C,I\(sr) (65)

where I, and K, = modified Bessel function of order one,
the first and second kind, respectively; C; and C, = complex-
valued constants of integration that can be determined from
the boundary conditions.

The boundary conditions are the displacement amplitude
is unity at the boundary of the hole and displacements vanish
as r — =; displacements and stresses are equal at the interface
between the two zones. To satisfy these boundary conditions,
C, = 0 must hold. Eq. (65) can now be written as

u(ry = C,K,(sr) (66)
At the boundary of the hole, r = r,,and § = 1
x, = V1 - G}G} (67)

and likewise (58) becomes
C, + Cx, + Axi+ -+ Axr =1 (68)

At the interface of the two zones, r = R and x = 0, from
(58) and (66), it follows that:

C, = G:K,(sR) (69)

From (1) and (50) one knows that A* = A% and G* = G,
at the interface (r = R), and the normal stresses o; = o,
then
Y, Sr
L= G | == 2K, 70
G, = C. [mR K, (sR) + p K (sR)] (70)

From (68), (69) and (70), C,, C, and C; can be obtained.
Since the displacement amplitude is unity at r = r,,, the radial
stiffness is defined as

Kr = —Ur(r:r,,) (71)
then, K, can now be determined from
2 -v)ym _ du v 1,
K="= r, e e 1= 2v r(,Gi (72)

Separating the real and imaginary parts of (72), the complex-
valued radial stiffness can be written as

3 —r — _—

Present

25 N 4@ mm=-=- Novak
------- = homogenseous

Parameter Sy

-0.5 " -
[

(A

(B) Frequency aj

FIG. 10. Comparison of Radial Impedance Functions with Novak-
Sheta (N-S) and Veletsos-Dotson (V-D) Solutions, t,/r, = 2.0,
G,/G, = 0.5, v = 0.25, 8, = 0.1 and B, = 0.05: (a) Stiffness Factor
S,; and (b) Damping Factor S,
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FIG. 11. Radial Impedances for Composite Layer with Material
Damping B, = 0.1, B, = 0.05 and Different Parameters: (a) for
t,./r, = 0.5; (b) fort,/ir, = 1.0

25

Parameter Sy,
]

]
(B) Frequency a;

FIG. 12. Effects of Poisson’s Ratio on Radial Impedances of Soil
Layer: (a) Stiffness Factor S,,; and (b) Damping Factor S,

K, = (G/r)[Su + ia:S,)] (73)

The real part S, is a dimensionless stiffness factor and S, is
a damping factor. The values of S, and S,, depend on fre-
quency a,, damping ratio B, and Poisson’s ratio v; also on
the boundary zone parameters, such as, the modulus ratio
G,/G,, thickness ratio t,,/r, and damping ratio ..

946 / JOURNAL OF ENGINEERING MECHANICS / SEPTEMBER 1995

The stiffness and damping factors, §,, and S,,, obtained
from the present analysis are compared with those obtained
for the Novak and Mitwally idealizations (1988), as shown in
Fig. 10. These solutions are for a soil layer with ¢,./r, = 2.0,
G./G, = 0.5, B; = 0.1, B, = 0.05, and Poisson’s ratio v =
0.25. The mass for the inner zone is accounted for in both
Novak’s solution and the present solution. However, the
properties of the soil for the inner zone were assumed to be
constant in the former, which results in pronounced oscilla-
tions (undulations) caused by wave reflections from the in-
terface between the two media. The results from the present
analysis are smooth curves over a wide range of parameters,
indicating that the wave reflections from the interface have
been removed. For comparison, the results for a homoge-
neous layer are also included in Fig. 10.

To illustrate the influence of the parameters involved, the
stiffness and damping factors for a radially excited layer are
plotted in Fig. 11 as a function of g, for several different
combinations of ,/r, and G,/G,, with material damping,
B; = 0.1 and B, = 0.05. It should be noticed that the un-
dulations caused by wave reflection vanish as expected in all
of the cases presented. The radial stiffness factor, S,,, in-
creases with the level of G,/G,; and is smallest for the ho-
mogeneous case (G,/G; = 1).

The effects of Poisson’s ratio on the radial impedances of
the soil layer are shown in Fig. 12. Several values of Poisson’s
ratio are selected, v = 0.0, 0.2, 0.3, and 0.4, respectively. It
can be seen that the stiffness factor, S,,, reduces with Pois-
son’s ratio increasing, but the damping factor, S,,, increased
with v in the higher frequency range.

CONCLUSION

With the information and insight into the response that
have been provided in this paper, the dynamic impedances
of a radially inhomogeneous viscoelastic soil layer with a cen-
tral hole may be evaluated readily. Vertically, torsionally,
and radially excited soil layers have been examined. The pro-
posed boundary zone model allows a continuous variation of
soil properties with a smooth transition into the outer zone,
so that the wave reflections from the interface between the
two media are removed. The impedances of a composite layer
do not show the oscillations that are generally observed with
the other boundary zone models that take account of the soil
mass. In this regard, the proposed formulations have satis-
factorily corrected the problems associated with wave reflec-
tions in the boundary zone.

Using the impedances of the composite layer with a non-
reflective boundary, the stiffness and damping of piles or
embedded foundations can be formulated readily. Since the
problems associated with wave reflections in the boundary
zone have been solved in this paper, the impedances may be
more suitable for practical applications.
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