BUCKLING OF PILES WITH GENERAL POWER DISTRIBUTION
OF LATERAL SUBGRADE REACTION

By M. A. Gabr,' Member, ASCE, J. J. Wang,” and M. Zhao®

ABSTRACT: A model for evaluating the critical buckling capacity of long slender friction piles is developed
with lateral soil support included based on the concept of the subgrade reaction. A general power distribution
of the coefficient of the subgrade reaction (k,), with depth, is utilized in the model. The lateral force-deflection
(P-y) behavior is assumed to be linear. A parametric study was conducted to demonstrate the effect of w value,
defining the distribution of the horizontal subgrade reaction, on the evaluated buckling capacity. In the case of
the free top and fully embedded condition with embedment length (h) greater than 10 m, a 59% increase in the
buckling capacity (P,,) was predicted as @ was increased from O (constant horizontal subgrade reaction distri-
bution) to 1 (linearly increasing horizontal subgrade reaction). Results also indicated that the boundary conditions
at the pile tip have a minimal effect on P, when the nondimensional embedded length (4') exceeded 3.3 for
the free top, 5.6 for the fixed-sway top, and 7.6 for the pinned-top condition. A comparison between a pile load
test result reported in the literature and the model presented in this paper favorably verified the applicability of

the developed model.

INTRODUCTION

The use of slender long piles extending a considerable dis-
tance above the ground line has increased over the past three
decades. Examples of this type of foundation include piles
supporting offshore structures and highway bridges in which
the piles are extended to the structure’s deck. In these cases,
over half of the pile length can be unsupported. In general,
long slender piles can fail in buckling mode under axial
stresses below the yield point of the pile material, as presented
by Golder and Skipp (1957) and Bergfelt (1957). Evidence of
such behavior was also described by Brandtzaeg and Harboe
(1957) for long piles that were extended above the ground
surface. Experimental data from these studies showed that
buckling failure of piles occurred suddenly with no obvious
advance warning.

Several approaches were used for analyzing buckling of ax-
ially loaded piles. Early approaches by Brandtzaeg and Harboe
(1957) and Golder and Skipp (1957) used Euler stability the-
ory with the analysis verified using a limited number of buck-
ling tests. Davisson and Robinson (1965) used the governing
differential equation for buckling deflection to estimate critical
loads with the assumption of constant and linearly increasing
subgrade moduli. In this case, partially embedded piles were
treated as free standing columns with fixed bases. Analysis
using this approach was limited to a nondimensional embed-
ded length (normalized pile length using soil-pile stiffness) of
greater than 4. Reddy and Valsangkar (1970) used the energy
method to develop a model for the estimation of critical buck-
ling capacities of piles. Gabr and Wang (1994) developed a
model for estimating the critical buckling loads of piles as-
suming uniform variation of the skin friction as a function of
depth and nine cases of boundary conditions. In this study, the
distribution of the modulus of horizontal subgrade reaction
was restricted to the case of linearly increasing with depth.

In general, previous work on this subject was performed
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assuming the horizontal subgrade modulus to be either con-
stant or linearly increasing with depth, as shown in Fig. 1.
Applying a slight adaptation to Terzaghi’s (1955) work, a
common equation to describe the horizontal subgrade distri-
bution can be expressed as follows [a constant { = 1 m is
introduced to normalize the units, as suggested by Rowe
(1956)):

ky = myzol ™ 1

where k, = coefficient of horizontal subgrade reaction kN/m?;
m,, = ratio between coefficient of horizontal subgrade reaction
and depth below ground surface (kN/m*); » = empitical power
index equal to or greater than zero and describes distribution
of k,; and z = depth below ground surface.

Terzaghi (1955) recommended that the coefficient of sub-
grade reaction (k,) can be assumed constant for cohesive soils
and to increase linearly with depth for cohesionless soils. Da-
visson and Prakash (1963) suggested, however, that a power
variation (w = 0.15) was a more realistic value for clays (pre-
sumably under undrained conditions), to allow for the plastic
soil behavior near and at the surface. Reese and Matlock
(1956) indicated that the adoption of piecewise linearly in-
creasing distribution of subgrade modulus can account for soil
yield and nonlinearity of piles in sand and soft clay. The Jap-
anese Road Association (1976) recommended an « value of
0.5 or within the range of 0.1-0.6 based on the results of their
pile load tests. Kubo (1965) indicated that w can be 0, 0.5, 1,
or 2 depending on the soil and pile conditions.

Ground Surface

47‘

o=1 ©=0.5
k, =m, z¢

(@) (b) (©

FIG. 1. Common Assumption of Subgrade Modulus: (a) Con-
stant; (b) Linearly Increasing with Depth; (c) Nonlinearly In-
creasing with Depth
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FIG. 2. Pile Deflection Models and Boundary Conditions

The several recommendations concerning the distribution of
k, can be commonly expressed by (1). However, no analytical
model has been presented to estimate the critical buckling load
(P.,) of piles with a versatile subgrade reaction distribution that
represents various soil conditions.

A buckling model is developed assuming a general power
distribution of the coefficient of horizontal subgrade reaction
with depth. The variation of the soil reaction with the lateral
deflection from the buckling of the pile is presumed to be
linear. This is based on assuming that buckling instability oc-
curs at a relatively small lateral deformation of the pile ma-
terial. The minimum potential energy concept is used to de-
velop the model with suitable deflection functions selected
using the Rayleigh-Ritz method. Nine combinations of pile top
and tip boundary conditions are selected, as shown in Fig. 2
[after Gabr and Wang (1994)]. Fully embedded piles are
treated as special cases of partially embedded piles. A para-
metric study is performed to investigate the buckling response
of fully and partially embedded piles with various power dis-
tributions of the lateral subgrade reaction. Applicability of the
developed model is demonstrated through the use of a case
study reported in the literature.

LATERAL SUBGRADE REACTION

Analysis of the buckling behavior using the lateral subgrade
reaction approach requires the knowledge of the variation of
horizontal subgrade modulus and the soil reaction along the
pile. The lateral pressure as a function of depth based on the
subgrade reaction concept can be written as

p=my(h — '™y @

where h = embedded pile length; x = distance from pile tip;
and y = lateral deflection due to pile buckling. Referring to
Fig. 2(a), the soil reaction as a function of depth is then ex-
pressed as

q(x) = pd = myd(h — x)*{' "y 3

where g(x) = horizontal soil reaction per unit length of pile
(kN/m); and d = pile width or diameter.

In this study, the variation of the soil reaction as a function
of the lateral deflection is presumed to be linear, i.c., lateral
pressure p = ky, where k is the lateral subgrade modulus at a
given depth (note that & has units of force/length? and is com-
puted by multiplying the coefficient of subgrade reaction k,,
force/length®, by the pile diameter). This assumption is ration-
alized based on the fact that the model being developed is a
stability rather than a laterally loaded pile model. In the pile
buckling case, a relatively small material strain (on the order
of 0.1%) can be interpreted as failure of the pile. Accordingly,
the use of a linear soil reaction-lateral deflection relationship
is justified.

PILE BUCKLING MODEL

The coordinates system for length and deflection is shown
in Fig. 2(a). Deflection functions for the nine boundary con-
ditions are chosen using the Rayleigh-Ritz method, as pre-
sented in Table 1. These deflection functions satisfy the vari-
ous geometric boundary conditions of the analysis model.

The strain energy of the system due to the bending of the
pile and elastic deformation of soil (U) and the potential en-
ergy of external loads (V) are expressed as

L h L

viv=2 f O dx + = f g0y dx — = f PO(Y') dx
2 ), 2 Jo 2 Jo

@

where EI = flexural stiffness of pile; L = total pile length;
h = embedded length of pile; P(x) = axial force; # = number
of half-wave of deflection function, integer; y' = dy/dx; and y"
= d*yldx*.

Assuming a linearly increasing variation of the skin friction
as a function of depth, the axial load in the pile is expressed
as

2
P(x)=P [1 - w(h—hz—ﬁ] x=h) Px)=P (x>h)
(Sa,b)
where P = axial load; and ¢ = parameter defining influence of

TABLE 1. Deflection Functions and Boundary Conditions

Boundary
Model Conditions
number Top Tip Deflection functions
(1) (2 (3) 4)
a Free Fixed y= 2 Cn (1 ~ cos n -1 ﬂx)
pre 2L
- 1
b Free Free y=c+5co+2c,.sin"——x
L - L
c Free Pinned y=%x+2¢,sin%x
LT

< 1
y=2c, (l —cosn—L-x>

d Fixed-sway | Fixed

2n—1
nL Iix

e Fixed-sway | Free y=co + 2 c, 8in
n=i

- 2n ~ 1
f Fixed-sway | Pinned y= E €, sin ”2L Ix
nwl
< 2n + 1 2n — 1
i i = " Ix - I
g Pinned Fixed |y g [4 (cos Y3 X = cos 2L x)
- nll
h Pinned Free y=Co (1 - {) + Z ¢, sin T x
nwl

i Pinned Pinned

- 11
y=2 Ca sin"—x
et L
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skin friction on pile axial force distribution with value between
0 and 1. A value of zero represents no skin friction.

Substituting (3) and (5) into (4), the following general equa-
tion is established:

L 1-o h
U+ V=I—E-!f (y”)2dx+ﬂé€—-f h — )y dx
2 ), 2 o
h
Py

L
- gj' Pdx+ == | b — 0y dx
(]

20 ©)

A conservative system is in equilibrium if the stored strain
energy is equal to the work performed by the external loads,
and can be expressed as follows:

S(U + m:"-“%%’—@aq:o )

The symbol & denotes change caused by virtual displacement;
and C, denotes constants of deflection function. 8C, = arbitrary
variational displacement. Applying the minimum potential en-
ergy principle and since 8C; is arbitrary

U+ V) _

ac; 0 ®

Substituting (6) into (8), the following equation is obtained:

L A L
ay" spi~ 3y L dy
v Zr + ® — )y ~~dx — — r'—d
foyacidx o’ L(h x)yaci x EloyaC,- X

h
Py
+
EIR* ),

ay’
— 2 ’ — —3
h — )%y aC, dx =0 )

where i = 0, 1, 2, ..., n; n = half-wave number of deflection
function; and a = coefficient of pile-soil compliance, or rela-
tive stiffness, and is defined as

5 m,,d
Er

o=

(10)

Substituting the deflection functions shown in Table 1 into
(9) and performing the integration, a set of homogeneous lin-
ear equations in terms of C can be obtained. This system pos-
sesses nonzero solutions only if the determinant of the co-
efficient matrix is equal to zero. Appendix I presents deter-
minants of the coefficient matrices [(14), (20), and (25), re-
spectively] and defines the components for the cases of free-
fixed, fixed with sway-free, and pinned-fixed.

The determinants expressed in (14), (20), and (25) are sym-
metric along the diagonal with P’ [nondimensional parameter
defined by (15)] being unknown. Expanding the determinant
for each case, an algebraic equation of the nth, or (n + 1)
degree in terms of P’ can be obtained. This equation is referred
to as the characteristic equation of the system. The nth or
n + 1 root of this equation is the eigenvalues.

The Jacobi Rotation method is used to find the eigenvalues
for the coefficient determinants. The smallest root of the so-
lution provides P’ for this model. The other roots correspond
to higher buckling modes. Once P’ is obtained, the critical
buckling capacity is defined as

IT’Er
L2

P, = P’ (11)

or in terms of equivalent buckling length, L,
M2EI
Pcr = ? (12)

where

L
Lo=—r= 13
B (13)
Solutions of the determinant equations are implemented in
the computer program GABPC (General Axial Buckling Pile
Capacity). Using this program, the solution for the equivalent
length, L., is obtained for the various boundary conditions uti-

lized for the model development.

PARAMETRIC STUDY

A parametric study is conducted to investigate the effect of
key analysis parameters on the buckling capacity of piles and
to demonstrate a simplified methodology for estimating the
critical buckling loads. For the sake of this study, the following
nondimensional parameters are used: e = h/L, defines an em-
bedment ratio; L' = aL, nondimensional total length of pile;
h' = ak, nondimensional embedded length; and L, = «L,, non-
dimensional equivalent buckling length.

The value of e is varied from 0.5 to 1 with the value of 1
representing a fully embedded pile. For each boundary condi-
tion combination, three different w values of 0, 0.5, and 1 are
utilized. For @ = 0, m, = 53 MN/m* (representing the stiff clay
condition) is used; for w = 0.5, m, = 34 MN/m"* (representing
the dense sand condition) is used; and for w = 1, m, = 20 MN/
m* (representing the medium sand condition) is used. These m,
values conform to the values presented by Terzaghi (1955).
Other key soil and pile parameters assumed in this analysis are
EI = 1.4 X 10° kN/m* (assuming concrete pile concrete), di-
ameter = 0.75 m, and ¥ = 0.5 (median friction value).

Figs., 3—5 show the variation of the nondimensional equiv-
alent buckling length L, as a function of 4’ for the nine bound-
ary conditions considered in this model and use w values of
0 and 0.5 (please note that these figures are drawn using dif-
ferent scales). Cases shown in these figures can be compared
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FIG. 3. Nondimensional Equivalent Buckling Length (L) ver-
sus Nondimensional Embedded Length of Pile (') As Function
of 6 (h/L) with Free Top and: (a) Fixed Tip, w = 0; (b) Fixed Tip, ®
= 0.5; (c) Free Tip, o = 0; (d) Free Tip, » = 0.5; (e) Pinned Tip, &
= 0; (f) Pinned Tip, w = 0.5
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FIG. 5. Nondimensional Equivalent Buckling Length (L.) ver-
sus Nondimensional Embedded Length of Plle (/') As Function
of e (h/L) with Pinned Top and: (a) Fixed Tip, » = 0; (b) Fixed Tip,
® = 0.5; (c) Free Tip, » = 0; (d) Free Tip, » = 0.5; (8) Pinned Tip,
o = 0; (f) Pinned Tlp, ® = 0.5

with cases presented by Gabr and Wang (1994) in which the
subgrade reaction distribution was assumed linearly increasing
with depth (0 = 1).

As shown in Figs. 3(a,b), 4(a,b), and 5(a,b), which represent
the cases of the fixed-tip boundary condition and free top,
fixed-sway, and pinned-top boundaries, respectively, the L. in-
creased as a function of increasing 4’. This increase in L/
indicated a decrease in P, with increasing the length of the
pile. In the case of full embedment, this decrease in P.. was
less than 1% as h' exceeded the value of 3. However, as the
embedment ratio (e) of the pile was decreased from 1 to 0.5,
higher L, and, therefore, lower P,, values were calculated for
piles with e < 1.

In the case of boundaries representing free-free [Fig. 3(c,d)]
and free-pinned [Fig. 3(e,f)] conditions, the value of L. tended
to be infinite as 4’ approached a value less than 1. Infinite L/
implies a P,, = 0. The value of L. decreased as 4’ was increased
up to a critical A’ value [a first buckling mode corresponding
to this behavior is presented in Fig. 6(a)); after which L! in-
creased as a function of A’ [a first buckling mode corresponding
to this behavior is presented in Fig. 6(b)]. The decrease in L!
as k' is increased can be attributed to the difference in the buck-
ling modes. For the case presented in Fig. 6(a), the presence of
inflection points reduces the critical buckling length. Conse-
quently, the contribution of the lateral soil stiffness to the buck-
ling stability is less for the mode with the inflection points as
compared to the case presented in Fig. 6(b). This leads to a
higher L. and therefore a lower P,. The decrease in L. was
estimated to be a function of the embedment ratio. For ¢ = 0.5,
the critical A’ value was estimated to be 2, and for ¢ = 1 the
critical A’ value was estimated to be 3. Similar behavior was
computed for the pinned-free case [Fig. 5(c,d)].

In the case of fixed-sway top (where the pile is free to dis-

pinned | .~ pinned | .- ’

)

|P P

(e}

FIG. 6. FirstPile Buckling Modes (e = 1) Corresponding to: (a)
Point 1 in Fig. 3(e); (b) Point 2 In Fig. 3(e); (¢) Point 3 in Fig. 4(c);
{(d) Point 4 in Fig. 4(c); (e) Point 5 in Fig. 5(c); (f} Point 6 in Fig.
5(c); (g) Point 7 in Fig. 5(c)
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place laterally with the tangent to the elastic curve remaining
vertical), free-tip [Fig. 4(c,d)], and pinned-tip [Fig. 4(e,f}] con-
ditions, the general trend of increasing L; with k' was inter-
rupted by a region of decreasing L, for h’ values between 1
and 3. This resulted in the ‘‘hump’’ shape shown in these
figures. The first buckling mode corresponding to the ‘‘hump’’
point [labeled “*3’’ in Fig. 4(c)] for the case of free tip and e
= 1 is shown in Fig. 6(c). For the sake of comparison, the first
buckling mode for a general point on the same curve [labeled
““4’’ in Fig. 4(c)] is shown in Fig. 6(d). The difference in the
buckling modes may explain the ‘*hump’’ shape of this curve.
In this case, the first buckling mode at the hump point con-
tained an inflection point, as shown in Fig. 6(c). While the
presence of an inflection point reduces the critical buckling
length, it also means less contribution from the lateral soil
stiffness to the buckling stability. In comparison, the buckling
mode for the general point [labeled ‘‘4’’ in Fig. 4(c)] is such
that the contribution of the soil lateral stiffness is along the
whole length of the pile, which leads to a lower L, and, there-
fore, a higher P,,.

Fig. 5(a—f) represents cases with the pinned top condition.
The first buckling modes for three cases located in different
regions of the L,-h' curve in Fig. 5(c) are presented in Fig.
6(e-g).

As previously explained, the significantly different modes
account for the different trends existing in the curve, as the
soil stiffness contribution to the buckling stability is dependent
on the critical buckling length.

Similar to previous predictions by Gabr and Wang (1994),
the effect of the skin friction on the equivalent buckling ca-
pacity is found to be insignificant for the various distributions
of the subgrade reaction. Within a ¥ range of 0-1, less than
10% variation in the buckling capacity was predicted.

The number of terms (n values in the deflection functions)
used for all calculations in this paper is 50. However, less than
a 1% difference in L, values was found by using n = 26 as
compared to n = 50. Therefore, 26 can be considered as the
number of terms to obtain accurate buckling capacities.
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FIG. 7. Comparison among Different Tip Boundaries with
Free Top for: (a) Fully Embedded Piles, w = 0; (b) Partialiy Em-
bedded Piles, w =0

EFFECT OF BOUNDARY CONDITIONS

Figs. 7-9 show the variation of L, as a function of A’ for
different tip boundaries with a free-top boundary, fixed-with-
sway top boundary, and pinned-top boundary, respectively. For
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the sake of comparison, the values of w = 0 and m, = 53 MN/
m® were used in the analysis. As shown in Fig. 7, as h’ reached
a critical value of 3.3 for fully embedded piles and 2.8 for
half-embedded piles, curves representing different tip condi-
tions but the same free-top boundary tend to coincide. Similar
behavior was estimated for the cases of fixed-sway top bound-
ary (Fig. 8) and pinned-top boundary (Fig. 9). The critical A’
value for a pile with a fixed-sway top was evaluated to be 5.6
for full embedment and 3.3 for half embedment. In the pinned-
top case, A’ was estimated to be 7.6 for the fully embedded
piles and 3.4 for the half-embedded piles. A comparison of
these data, with the results presented by Gabr and Wang
(1994) in which an @ = 1 was used, indicated that regardless
of the distribution of the horizontal subgrade reaction, the pile-
top conditions mostly controlled the buckling behavior once
h' reached a critical value.

In the case of the fixed-sway and pinned-top boundaries,
and free-top, and pinned-tip boundaries, and for 4’ values be-
tween 1 and 3, the ‘*hump’’ shape of the curves depicting A’
as a function of L] was observed. As explained earlier, this
shape was due to the difference in the buckling mode as com-
pared to the fundamental case of buckling in which L, in-
creased as a function of #’. In this case, the critical buckling
length was less than that evaluated for the fundamental case.
This rendered a lower L, and the consequent increase in P,,.

EFFECT OF SUBGRADE REACTION

Fig. 10 shows a comparison of evaluated L, using the dif-
ferent w and m, values utilized in the parametric study. The
effect of the selected w value on P, is pronounced. As shown
in Fig. 10(a), for the free-top, fixed-tip, fully embedded con-
dition with pile width equal to 0.75 m and embedment length
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- = - - o*1, ma20 MN/m*
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FIG. 10. Comparison among Different » Values with Free Top
and Fixed Tip for: (a) Fully Embedded Piles; (b) Half Embedded
Plles

(h) greater than 10, a 14% decrease in L, was predicted as w
was increased from O to 0.5. Since P, varies linearly with
1/L%, the 14% decrease in L, indicated a 28.4% increase in
P.. As o was increased from 0 to 1, a 37% decrease in L,
and, therefore, a 59% increase in P,,, were predicted. For half-
embedded piles with the free-top/fixed-tip condition (pile
width = 0.7 m) and A greater than 10 m, a 7.4% decrease in
L,, thus a 15.5% increase in P, was computed as ® was
increased from O to 0.5, as shown in Fig. 10(b). As w was
increased from O to 1, a 14.4% decrease in L,, thus a 28.3%
increase in P,,, was estimated. Comparing Fig. 10(b) with Fig.
10(a), it is evident that the effect of the selected w value on
P, is less considerable for a partially embedded pile than for
a fully embedded pile. This can be explained by the fact that
the contribution of the lateral soil reaction to buckling stability
is more substantive in fully embedded piles as compared to
partially embedded piles having the same length.

MODEL APPLICATION

The series of full-scale buckling load tests, to failure, on a
0.33 m diameter timber pile reported by Klohn and Hughes
(1964) was used to verify the developed model and demon-
strate its applicability. Using the structure and soil conditions
given by Klohn and Hughes, the model presented in this paper
was used to predict the critical buckling capacity of the test
pile. The pile information and soil information utilized in the
analysis are given in Table 2.

The wharf piles were driven through soft silt into an un-
derlying dense gravel layer. The average eccentricity of the
test piles was 0.127 m, with the pile top considered pinned
and the pile tip fixed. Based on the soil conditions described
by Klohn and Hughes, the modulus of subgrade reaction was
assumed to vary as a function of depth with « having a range
of values from 0 to 1 and m, having a range of values from
18 to 54 MN/m®. The skin friction coefficient ¥ was assumed
to vary between 0 and 1.

The predicted variation of P,, as a function of ¥ for differ-
ent @ and m, values is shown in Fig. 11. The range of P,
values measured by Klohn and Hughes was from 267 kN to
302.5 kN with an average of approximately 285 kN. For a
given ¥ value, the estimated P,, increased as w was increased.

TABLE 2. Pile and Soll Parameters Based on Data from Kiohn
and Hughes (1964)

Pile Properties Soil Properties

L h d E m,
(m) (m) | (m) (kN/m?) ¥ | wrange | (MN/m%)
(M 2 [ 3 “) (5) (6) 7)

16.76 | 15.24 | 033 | 11.7 x 10° | 0-1 0-1 18-54
360
320 - . _1- =18 MN[m4
3025 Z S =32 MN/m*
Fap 2801, i A

(k?\'i) 267 Zri,=54 MN/m 4
240_ /
200+
160+
120 7 i : . T

0 02 04 06 08 10

FIG. 11. Prediction of P., As Function of Skin Friction Influ-
ence Parameter for Different «w Values
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In general, using m, = 54 MN/m* and o = 0 for the distribution
of the horizontal subgrade reaction underestimated the mea-
sured response. This implies that the practice of assuming an
average, constant distribution of horizontal subgrade reaction
should be revisited.

The comparison between the predicted and measured ca-
pacity favorably verified the applicability of the developed
model. The average measured capacity of 285 kN was pre-
dicted using two combinations of w and ¥: ©w = 0.5 (m, = 32
MN/m*) and ¥ = 0.95; and @ = 1 (m, = 18 MN/m*) and ¥ =
0.3.

SUMMARY AND CONCLUSIONS

A pile buckling model was developed assuming a general
power distribution of the soil horizontal subgrade reaction to
represent various soil conditions. The minimum potential en-
ergy method was used to develop the model with the Rayleigh-
Ritz method adopted to select suitable deflection functions.
Nine boundary conditions were utilized in the model. A pa-
rameter study was conducted to analyze the effect of the pile
top and tip conditions and the horizontal subgrade reaction
distribution on the equivalent buckling length and the buckling
capacity. Applicability of the developed model was investi-
gated through the use of Klohn and Hughes’ (1964) results
from full-scale buckling load tests to failure. Based on the
analysis and results presented in this study, the following con-
clusions are advanced:

1. Regardless of the distribution of the horizontal subgrade
reaction, the boundary conditions of the pile tip had a
minimal effect on the critical buckling loads in cases
where k' exceeded a critical value. In the case of fully
embedded piles, this value was approximately 3.3 for the
free-top condition, 5.6 for the fixed-with-sway top con-
dition, and 7.6 for the pinned-top condition. Similar be-
havior was estimated for partially embedded piles.

2. In the case of fixed-sway top, free-tip, and pinned-tip
conditions, an increase in P, was estimated as A’ was
varied between 1 and 3. The ‘‘hump’’ shape obtained for
several of the h'-L. curves was explained based on the
first buckling modes and the presence of inflection points
along the pile.

3. The effect of the selected @ value on P,, is pronounced.
For the free-top, fixed-tip, and fully embedded conditions
with the embedment length (4) greater than 10 m (pile
width = 0.7 m), a 59% increase in P, was predicted as
w was increased from O to 1.

4. For the half-embedded piles with the free-top/fixed-tip
condition and A greater than 10 m (pile width = 0.7 m),
a 28.3% increase in P, was observed as w was increased
from O to 1. The effect of w value on P, is less consid-
erable for partially embedded piles than for fully embed-
ded piles.

5. A comparison between the results of pile load tests re-
ported in the literature and the model presented in this
paper favorably verified the applicability of the model.

APPENDIX . COEFFICIENT DETERMINANTS AND
THEIR COMPONENTS

For the boundary condition a (free top-fixed tip), as shown
in Fig. 2(a), the coefficient determinant is expressed as fol-
lows:

b, —F by, by o b,
a=| B BT BB e g g
bn.l bn.z bn.3 bn.n - P
where

PL?
P = O (15)

and b,; = intermediate parameters for calculation. The ranges
of i, j and values of b, , are different depending on the bound-
ary conditions. Here, for boundary condition a

b,;=wi* + a,A + t,B (16a)
by=b,=a,A+ t,B (16b)

wherei=1,2,...,nj=i+ 1,i+ 2,..., n; both A and
B are nondimensional; and embedment ratio e = h/L.

o (eL. 5o
A=2 (m) ; B= e an
and
~ 1 IO, 1 cosl(i — 0.5ell]
=i =05 -052° G — 0.5711

_ Y —cos[(j — 0.5)eIl] 1 = cos[(i +j —~ Dell]

(j — 0.5 26 +j — 1)1
1 — cos[(i — j)ell]
2@ —j)’II (18)
= 1 — cos[(i — j)ell] _ 1 —cos[(i +j — Dell] 19)
C Ty w+j-17 ¢
In both (18) and (19) i=1,2,3,...,nyandj=14,i + 1,
i+2,...,n

For boundary condition e (fixed-sway top-free tip), as
shown in Fig. 2(e), the coefficient determinant is expressed as
follows:

I

E d| dz dg e d,.
_ dy bl.l - P bl.z b1.3 ter bl,n _
A= d, b2.l bz.z - P bys b2.n =0
dn bn,l bn.2 bn.J bn.n P’
(20)
where d;, b;; = intermediate parameters for calculation.
1 sin[(j — Dell]
4= -
b U—Qw{e (~ DI @b
where j=1, 2, ..., n; and
b[_l = (O(i - 0‘5)2 + a,,,A + t“B (22“)
by=b,=a,A+t,B (22b)
wherei=1,2,...,mj=i+1,i+2,...,n and
.= 1 1 — cos[(i — j)ell]
M2 — 0.5 — 0.5)11 G —Jj)»
_ 1 —cos[(i +j — Dell)
@ +j- 1y (23)
_ 1 —=cos[i +j— 1ell] 1 — cos[(i — jell]
L= G+ - 17 26 — Y @4
Inboth 23)and (24) i=1,2,3,...,m;andj =i, ¢ + 1,
i+2 ...,n

For boundary condition g (pinned top-fixed tip), as shown
in Fig. 2(g), the coefficient determinant is expressed as fol-
lows:
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by, — 2 X 12+ 05P b, + (1 + 052 bus by
by + (1 +05PP  byy— (2 X22+05)P by + (2 + 052P by by
Ax bys by + 2+ 0SPP' by — @ X3+ 05P by + (3 + 05 - by, -0
by bas bye + B + 0.5P  bei— (2 X4 +05P - bon =
by by by <o by, — (207 + 05)P
(25)

where b, ; = intermediate parameters for calculation; and
b=+ 0.5+ w(j — 05)*+a,A+1,B (26a)
b,"j = a,'jA e tI,jB (26b)

wherei=1,2,...,mj=i+2,i+3,...,n and
b1 = 1A — 0@ + 0.5) + tiB @7
11— cos[ +j+ Dell] 1~ cosl(i +j — Dell]
"'—f‘zn{ G+j+1y * @G+j-17
_ 1 —cos[(i —j + Dell] 1= cos[(i —j— 1ell]
Gi—Jj+1y G—j— 1y
L 2= 2cosl — jlell] _ 2 = 2 cosl(i + j)el'I]}
G—Jj» G+j)y (28)
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v @+
L @+ 025){1 — cosf(i - Felll}
(N
_ (=05 — 0.5){1 — cos[(i + j — Delll}
20 +j— 1)
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20 +j + 1)
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20— j + 1) 29
wherei=1,2,3,...,mandj=i,i+ 1,i+2,...,n
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APPENDIX lll. NOTATION

The following symbols are used in this paper:

d = pile width or diameter;
EI = flexural stiffness of pile;

e = embedment ratio, h/L;

h = embedded pile length;

h' = nondimensional embedded length of pile, ak;
k, = coefficient of horizontal subgrade reaction;

L = total pile length;

L' = nondimensional length of pile, aL;

L. = nondimensional equivalent buckling length, aL,;

m, = ratio between coefficient of horizontal subgrade reaction
and depth below surface, value of which depends on rel-
ative density of soil, kN/m*;

n = number of half-wave of deflection function, integer;
P = axial load;
P(x) = axial force;
q(x) = horizontal soil reaction per unit length of pile, kN/m;
x = distance from pile tip;
y = lateral pile deflection;
o = coefficient of pile-soil compliancy or relative stiffness;
W = parameter defining influence of skin friction on pile axial
force distribution with O value representing no skin fric-
tion considered; and
w = empirical index equal to or greater than zero.
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