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Three-Dimensional Analysis of Lateral Pile Response using
Two-Dimensional Explicit Numerical Scheme

Assaf Klar1 and Sam Frydman2

Abstract: A procedure for exploiting a two-dimensional~2D! explicit, numerical computer code for the 3D formulation of dynam
lateral soil-pile interactions is considered. The procedure is applied to two models using simultaneous computation of a series
strain boundary value problems, each of which represents a horizontal layer of soil. The first model disregards the shear forces
between the horizontal layers, and may be considered as a generalized Winkler model. The second model takes account of thes
coupling the behavior of the horizontal layers. Several verification problems for a single pile and pile groups in a homogeneous
modeled as a viscoelastic material were solved and compared to known solutions in order to assess the reliability of the models.
agreement was observed between results of the present analyses and existing solutions.
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Introduction

Many methods have been proposed for analysis of dynamic
erally loaded piles and pile groups. Each method has its o
advantages and disadvantages; rigorous analytical methods
boundary integral methods~e.g., Tajimi 1969; Kaynia and Kause
1982; Mamoon et al. 1988! are restricted to viscoelastic materia
and frequency domain analysis, true three-dimensional~3D! finite
element method or finite difference method analyses require
nificantly large calculation time, and simple Winkler models~My-
lonakis and Gazetas 1999! have difficulty in modeling the pile-
soil-pile interaction for nonlinear materials. Furthermore, mos
the soil-pile interaction analysis methods require computer co
designed specifically for that purpose, some of which are c
mercial, and others research codes@e.g., Blaney et al. 1976~the
3D finite element research codeNONSPS!; Kagawa 1983~the
beam-on nonlinear Winkler foundation research codeDYNA3!;
Novak et al. 1990~the commercial code for pile and pile group
analysisPILE-3D!; Wu and Finn 1997a, b~a quasi-3D finite
element research code!#. This paper describes a procedure f
utilizing explicit 2D finite element~FE! and finite difference~FD!
codes for representation of a 3D soil-pile interaction under st
and dynamic loading. This technique was developed using
commercially available 2D geotechnical finite difference co
FLAC Ver. 3.4 ~Itasca 1999! ~hereafter referred to as the F
code!. Although the procedure is not limited to this code, its us
available, internal programming feature makes the impleme
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tion of the technique quite simple. Furthermore, no extens
knowledge of numerical methods~creation of stiffness matrices
etc.! is required for implementation of the technique, and thus
use is feasible for any practicing engineer. Two models were
veloped using this technique; a generalized Winkler~uncoupled!
model, and a coupled model. Several verification problems
single piles and pile groups under different loading conditio
were analyzed and the results were compared with known s
tions in order to assess the reliability of the models. In th
verification problems, the soil was modeled as a homogene
viscoelastic material. However, the models are also applicable
nonlinear constitutive models. The work presented is part
broader research; the aim of the present paper is only to introd
the approach. Consequently, nonlinear behavior is not consid
here, but will be the subject of future publications.

Outline of Proposed Technique

The technique is based on discretization of the 3D soil continu
into a series of horizontal layers, each layer represented by a
boundary value problem~BVP!. The initial FD grid may be di-
vided into several disconnected subgrids, thus allowing the sim
taneous calculation of several BVPs. For representation of
physical problem, a cavity~or cavities in the case of a pile group!
is inserted in each subgrid in order to model the pile cross sec
in that layer. Different soil properties and/or initial stresses m
be introduced for each layer, as required. In addition, a sepa
grid consisting of a series of connected, unsupported beam
ments, representing the pile, is defined. In the case of a pile g
with a cap, another separate subsystem should be defined to
resent the cap. The procedure advances in time, in corres
dence with the FD explicit time marching calculation scheme, a
develops the interaction between the two~or three! systems
through transfer of velocities and forces from pile~beam! nodes
to the BVP’s grid point and vice versa. In each calculation cy
~time step! the pile’s motion equations are solved and the velo
ties of each pile segment’s nodes are applied to the correspon

s
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Fig. 1. Proposed procedure:~a! original FLAC calculation cycle;~b! modified calculation cycle;~c! subgrids and beam interaction
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cavity boundary nodes. Next, in the same calculation cycle,
resulting forces acting on the cavity perimeter are extracted
applied to the appropriate pile segment’s nodes. These force
then used in solving the pile’s equation of motion in the next ti
step, producing new velocities which are again transferred to
relevant cavity nodes. Fig. 1 demonstrates the concept of the
cedure. It should be realized that, by applying the pile veloci
to the cavity perimeter in the same calculation cycle, a full co
patibility of displacement is achieved. This formulation describ
only the interaction between the pile and the horizontal lay
The formulation of the BVP’s coupling and the consideration
seismic loading will be described later.

Uncoupled Model

A 3D soil-pile interaction problem may be solved by discretiz
tion of the soil continuum into horizontal layers, where each la
is represented by a different uncoupled plane strain problem.
technique may be classified as a generalized Winkler appro
Although it is considered approximate, its predictions are in go
agreement with rigorous solutions, within some limitation
Novak~1974! was the first to use this technique for evaluating t
behavior of a single pile under lateral dynamic loading in a h
mogenous soil layer. He used an analytical solution of the pl
strain problem in conjunction with the equation of equilibrium
the pile. Novak and El-Sharnouby~1983! extended these solu
tions to the case of soil properties varying with depth. Noga
and Novak~1980! showed that, for a frequency of loading high
than the fundamental natural frequency of the system, the
medium can be treated as a Winkler model. The uncoupled m
presented herein is based on this same assumption, but it i
restricted to viscoelastic material or frequency domain analy
Since the BVPs are uncoupled, the formulation presented in
previous paragraph needs no modification for piles later
loaded at their heads, and only minor modification for seism
776 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGIN
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loading. Several verification problems for different pile config
rations and loading conditions are presented in the following s
tions.

Uncoupled Model: Lateral Dynamic Loading of
Single Pile

Neglecting the internal damping of a pile embedded in a Wink
medium, the differential equation may be written as follow
~Novak and Aboul-Ella 1978!:

EpI p

]4u~z,t !

]z4 1m
]2u~z,t !

]t2 1kus•u~z,t !50 (1)

kus5G@Su1~a0 ,n,bs!1 iSu2~a0 ,n,bs!# (2)

where EpI p , u, m, and kus are the pile flexural rigidity, latera
displacement along the pile, mass of the pile per unit length,
horizontal soil stiffness respectively.Su1 andSu2 are functions of
the dimensionless frequencya0 ~5vr 0 /Vs , wherer 05radius of
the pile; v5circular frequency of loading; andVs5shear wave
velocity of the soil!, Poisson’s ration, and material dampingbs of
the soil, as given by Novak et al.~1978!. Assuming a harmonic,
steady state motionu(z,t)5u(z)eivt through the pile leads to the
differential equation

EpI p

]4u~z!

]z4 1~kus2mv2!u~z!50 (3)

Solution of Eq.~3! results in a complexu(z) and a typical solu-
tion is shown in Fig. 2. As can be seen, only a certain length
effective; this phenomenon is common in long piles, and is
sponsible for the length independency of the pile behavior. In
case of homogeneous soil properties with depth, a closed f
solution is available. For an arbitrary variation of soil propertie
there is no exact solution, but Eq.~3! may be solved numerically

If the soil can be assumed to behave viscoelastically, the s
pile-structure interaction problem may be solved by represen
EERING / SEPTEMBER 2002
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the soil-pile system as an equivalent viscoelastic element~i.e.,
spring and dashpot!. Considering two degrees of freedom at t
top of the pile~U5horizontal translation andF5rotation! one
can write the following relations for harmonic motion~Novak
1974!:

H Peivt

MeivtJ 5
EpI p

r 0
3

3F ~ f 11,11 ia0f 11,2! r 0~ f 9,11 ia0f 9,2!

r 0~ f 9,11 ia0f 9,2! r 0
2~ f 7,11 ia0f 7,2!

G
3 H Ueivt

FeivtJ (4)

whereP andM are the lateral force and moment at the pile he
respectively; andf i , j are parameters extracted from the soluti
of Eq. ~3! and given by Novak~1974! for different ratios of
Vs /VL and rs /rp ~ratios of the soil shear wave velocity to th
longitudinal wave velocity of the pile and the density of the s
to that of the pile, respectively! for a dimensionless frequencya0

of 0.3. A more convenient way of presenting Novak’s solution
through reference to the Young’s modulus ratio of the pile a
soil Ep /Es ~Kuhlemeyer 1979!. Table 1 shows Novak’s param
etersf i , j for a ratio of pile length to diameterL/d530, a050.3,
n50.25, andrs /rp50.7. In order to verify the accuracy of th
proposed model for dynamic problems, several runs were c
ducted and the results were compared with Novak’s closed f

Fig. 2. Solution shape of Eq.~3! for EP /ES51250, n50.25, a0

50.3, rs /rp50.7 ~no material damping,bs50!

Table 1. Novak’s Stiffness and Damping Parameters

VS /VL EP /ES

Stiffness Parameters Damping Parameter

f 11,1 f 9,1 f 7,1 f 11,2 f 9,2 f 7,2

0.01 5,714.286 0.003220.0181 0.195 0.007620.0262 0.135
0.02 1,428.571 0.009 20.0362 0.275 0.021520.0529 0.192
0.03 634.9206 0.016620.0543 0.337 0.039520.0793 0.235
0.04 357.1429 0.025620.0724 0.389 0.060820.1057 0.272
0.05 228.5714 0.035820.0905 0.435 0.085 20.1321 0.304
JOURNAL OF GEOTECHNICAL A
-

solutions. No material damping was introduced into the mod
consistent with Novak’s 1974 solutions. A quiet~nonreflecting!
boundary was defined at the model edges, in order to pre
reflection of outward propagating waves back into the model fr
the boundaries, and to allow the necessary energy radiation. F
a plane strain model of a circular cavity motion was tested,
verification of the FD code’s radiation damping, and the resu
were compared with Novak’s parameterSu2 @see Eq.~2!#, which
represents the geometric~radiation! damping. From these calcu
lations, it was found that a distance of approximately 0.7 wa
lengths is required from the cavity to the boundary in order
provide satisfactory representation of the radiation damping.
3 shows a comparison between Novak’s results, and those
tained from the FD computations; the agreement is excellent.
hlemeyer~1979! showed that Novak’sf i , j parameters plot agains
Ep /Es as a straight line on a log-log plot, and thus only a fe
values are needed for evaluating the validity of the propo
method. The FD analyses were performed at three different ra
of Ep /Es ~500, 1,250, 3,000!; the results are presented in Fig.
The results were obtained by using two different techniques
both techniques, the vibration was developed to the steady
condition smoothly, beginning from the static state. In the fi
technique, a force was applied to the pile head and displacem
at the same node was monitored; in the second technique a
locity was applied to the pile head and the unbalanced force a
same node was monitored. In the latter case no forces were t
ferred from the subgrid corresponding to the pile head node,
thus it was necessary to subtract the reaction created in that
grid ~a velocity boundary and force boundary cannot coexist!. The
results obtained from both techniques were identical. The sec
technique is suitable for pile group analysis, where all pile he
move rigidly together. Deviation of the FD solutions from N
vak’s solutions are presented in Table 2. Novak’s valuesf i j for the
testedEp /Es were calculated from the power function corr
sponding to Novak’s straight line on the log-log plot. From t
comparison presented in Table 2, it can be seen that the gre
deviation relates to the parameterf 11.1. Note that the distance
between the cavity, which represents the pile, and the q
boundary, was only 0.4 wavelengths in these calculation runs.
use of this small distance decreased the calculation time sig
cantly, and thus justified the small deviation it possibly cause

Uncoupled Model: Pile Group Interaction

The influence of pile-soil-pile interaction on the behavior of a p
group is well known for static loading. This interaction is qui

Fig. 3. Radiation damping of cavity motion in plane strain proble
ND GEOENVIRONMENTAL ENGINEERING / SEPTEMBER 2002 / 777
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simple for linear elastic material, and many expressions for ev
ating it have been suggested~e.g., Poulos 1971b!. However, this
is far from true for a pile group under dynamic loading; dynam
characteristics of pile groups are very complex, strongly f
quency dependent, and often significantly different from those
a single pile~El-Marsafawi et al. 1992!. A superposition approach
is commonly employed, using complex interaction factors for t
piles, in conjunction with known single pile dynamic character
tics. Clearly, in using superposition, the interaction between
the piles is approximated. The superposition method is im
mented through a flexibility approach in conjunction with t
dynamic interaction factors for two piles. For a pile group one c
write the following relation:

$Ui%5ls@a i , j #$Pj% (5)

Fig. 4. Comparison between finite difference solutions and Nova
solutions

Table 2. Deviation from Novak’s Solution

EP /ES

Stiffness Parameters Damping Parameters

f 11,1 f 9,1 f 7,1 f 11,2 f 9,2 f 7,2

500 9.66% 5.08% 2.44% 1.87% 23.80% 23.52%
1,250 9.52% 5.28% 2.41% 1.74% 23.41% 23.31%
3,000 10.20% 5.45% 2.42% 0.58% 23.05% 23.04%
778 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGIN
whereUi5head displacement of pilei; ls5single pile dynamic
flexibility; Pj5force at the head of pilej; anda i j 5complex in-
teraction factor between pilei and pile j for a certain vibration
mode, defined as the ratio of the dynamic displacement of pi
due to dynamic loading on pilej to the dynamic displacement o
pile j. By considering the rigidity of the pile group cap (U5Ui

5¯5Un), one can derive the pile group complex stiffness fro
Eq. ~5!, as follows:

Kgroup5
( j 51

n Pj

U
5

1

ls (
i 51

n

(
j 51

n

e i , j5ks(
i 51

n

(
i 51

n

e i , j (6)

whereks5single pile dynamic stiffness; ande i , j5elements of the
inverse of matrixa. Design values of interaction factors for dy
namic loading were suggested, for example, by Gazetas e
~1991! and El-Marsafawi et al.~1992!. It should be pointed out
that, although the superposition method is very convenient
practical usage, a small error in evaluating the interaction fa
will result in a much greater error in the group dynamic stiffne
As an example, the group stiffness of a 333 pile group is com-
posed of the summation of 81 values of which 72 are evalua
from design graphs, some by interpolation functions. Wink
models for evaluating the horizontal dynamic pile-soil-pile inte
action in pile groups have also been developed; they all sh
good agreement with more rigorous solutions based on 3D w
propagation. The simplest Winkler based model is quite new, s
gested by Mylonakis and Gazetas~1999!, yet it is limited by
assumptions of linearity for soil and pile materials, and perf
bonding at the soil-pile interface. A more complex model, a
based on the Winkler assumption, was proposed by El Nagger
Novak ~1996!. The model accounts for nonlinear behavior of t
soil adjacent to the pile and gapping at the soil-pile interfa
Although the computational effort is quite small, a computer co
designed for that particular model is required. None of the W
kler model approaches used up to the present have taken ac
of the disturbance caused by a pile to the waves propaga
through the soil medium. When the pile spacing is small, t
effect may be of considerable significance. Even the more rig
ous existing solutions relate the forces to the average displ
ment of the soil-pile interaction segment. Rajapakse and S
~1989! reviewed continuum models for elastic soil pile system
and referred to the averaging procedure as problematic for
namic problems. They claimed that with increasing frequen
models based on the cross sectional average of the displace
fail to provide an accurate solution. To verify the reliability of th
proposed method for the pile-soil-pile interaction, two simple
teraction problems were considered—two fixed-head piles, an
333 pile group. The solutions obtained from the FD analys
were compared with El-Marsafawi et al.’s~1992! solutions,
which were based on a 3D boundary integral formulation, a
with Mylonakis and Gazetas’~1999! solutions based on a Winkle
model ~propagation of waves in a horizontal manner only! in
conjunction with superposition. For the case of interaction of t
piles, the solutions were obtained for the case in which the h
zontal translation of the pile head was in the direction of the l
connecting the two pile centers. These solutions are presente
an interaction factor between the two piles in Fig. 5. The solut
for the case of the 333 pile group is presented~Fig. 6! as a
normalized dynamic stiffness defined as the dynamic stiffnes
the pile group divided by the dynamic stiffness of a single p
multiplied by the number of piles in the group. In order to eva
ate both the two-pile interaction factor and the normalized p
group stiffness, the dynamic stiffness of a single pile must
EERING / SEPTEMBER 2002
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known. This was found by calculating, with the FD code, t
dynamic stiffness of each frequency, in the same manner that
employed in the single-pile dynamic analysis. For the two-p
interaction, excellent agreement between the El-Marsafawi e
~1992! solution and the FD solution exists for a normalized sp
ing (s/d) of 5. However, less good agreement exists for norm
ized spacing of 2, although the Mylonakis and Gazetas Win
based model shows good agreement with the El-Marasafwi e
solution. It may be seen that this deviation increases with
quency, implying that it is connected to the wave propagat
factor. As mentioned previously, both the Winkler based mo
and the 3D solutions do not comprehensively account for the
interference to wave propagation, and it is possible that the re
from the present calculations take account of this interferen
For the 333 pile group, general agreement exists for all t
parameters; interaction of nine piles is quite complex and thu
is difficult to pinpoint the source of the observed deviations.

Uncoupled Model: Single-Pile Seismic Response

Using a Winkler based model for earthquake analysis require
evaluation of shear wave propagation through the soil lay
Since the plane strain problems are uncoupled~disconnected! the
vertical propagation of shear waves must be modeled separ
and applied indirectly to the plane strain problems. This may
done by applying to each grid point, at each time step, an a
tional force which corresponds to the horizontal acceleration
the free field at the same depth and time. For viscoelastic mat
this procedure is completely legitimate; it is equivalent to sup
position of forces. For nonlinear materials, it is considered to b
reasonable approximation, due to the difference in the polarit

Fig. 5. Lateral interaction factors between two piles in homogene
soil, for normalized distancess/d52,5
JOURNAL OF GEOTECHNICAL A
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theSwaves in the free field~txz andtyz! and thetxy stress waves
and P waves that would emanate from the pile~Wang et al.
1998!; where x is the horizontal direction of pile displacemen
and z is vertical. Since this formulation decouples the vertic
shear propagation from the soil-pile interaction, the free field
celeration history may be calculated from an additional o
dimensional analysis within the FD code or an external progr
such asSHAKE~Idriss and Sun 1991!. In this verification prob-
lem, the one-dimensional vertical shear propagation was mod
by an additional subgrid which represents the site. A subrout
which monitors the velocities and acceleration of each grid po
in the free field subgrid and inserts them in tables, was written
every time step an acceleration value for each plane strain p
lem was interpolated from these tables, according to depth.
acceleration value was then multiplied for each internal~not on a
boundary! grid point by its mass and was applied to it. For t
plane strain boundary grid points, a forceDF defined by Eq.~7!
was added to the initialK0 static forces in order to maintain
nonreflecting boundaries

DF5maf f1C~v f f2v !s (7)

wherem5grid point mass;af f andv f f5acceleration and veloc
ity, respectively, of the free field at the same depth;v5grid point
velocity; C5coefficient that is related to theS wave andP wave
velocities~depending on the direction of the applied forces!; and
s5boundary length, which is related to the grid point. This fo
mulation is very similar to that used inFLAC for free field bound-
aries, based on the viscous boundary developed by Lysmer
Kuhlemeyer~1969!, yet the one implemented inFLAC cannot be
used for this formulation. It should be noted that in case a m
rial damping is defined externally~not within the constitutive re-
lation! it should be activated only on strain rates, i.e., when us
Rayleigh damping as inFLAC, the mass proportional dampin
coefficient should be set to zero. If a mass proportional damp

Fig. 6. Normalized lateral dynamic stiffness of 333 pile group
ND GEOENVIRONMENTAL ENGINEERING / SEPTEMBER 2002 / 779
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is defined, the free field vibration modes will be overdamp
since damping is applied both to the free field subgrid, and als
the plane strain system masses.

For the verification problem, a fixed-head pile embedded i
homogeneous, viscoelastic soil layer was considered. The ba
the soil layer was excited by a harmonic shear wave. In orde
represent a homogeneous half space, the shear wave was a
to a quiet boundary. After reaching a steady state motion,
amplitudes of the horizontal oscillation of the pile capUp and
free field surfaceU f f were extracted. The FD analyses were p
formed at two different ratios ofEp /Es ~1,000, 10,000! for a
complete range of frequencies. The results were compared
the rigorous solution of Fan et al.~1991! based on the boundar
integral based formulation developed by Kaynia and Kau
~1982!. The results are presented in Fig. 7 as a ratio between
pile cap oscillation amplitude and the free field surface oscillat
amplitude.

Good agreement is observed between the results. Howev
can be seen that better agreement exists for the higher rat
Ep /Es . This is consistent with Nogami and Novak’s~1980! con-
clusion that a soil medium can be treated more favorably a
Winkler based model for stiffer piles.

Limitations of Uncoupled Model

The uncoupled model is based on Winkler’s approach. It may
classified as a first order, dynamic, subgrade model, accordin
Nogami et al.’s~1992! definition. Being a first order model, it is
bounded by the first order model limitations. It encounters di
culties in modeling frequencies lower than the fundamental
quency of the soil medium. For machine foundations, this lim
tion is almost irrelevant since the frequencies involved in su
cases are usually considerably higher than the fundamental
quency of the soil. Also, for earthquakes, most of the soil-p
interaction is noticeable for frequencies around the structu
foundation resonance, which are usually higher than the fun
mental natural frequency of the ground. For floating piles, the fi
order model is quite accurate. Usually, in order to overcome
limitation of the first order dynamic model, it is modified by usin
a static stiffness for frequencies lower than the natural one,
ignoring the radiation damping~Nogami et al. 1992!. A similar
procedure may be invoked in the present procedure for lat
loading of piles, by using a fixed boundary instead of a qu
boundary, so that no energy is absorbed by the boundaries.

Fig. 7. Kinematic seismic response of single fixed-head pile in
mogeneous soil layer~rs /rp50.7, bs50.05,n50.4!
780 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGIN
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must, of course, be careful in using this procedure, since the
cation of the boundaries is crucial in determining the static st
ness in a plane strain problem. Baguelin et al.~1977! have con-
ducted a theoretical study of the static lateral reaction mechan
of piles using plane strain analysis. Their recommendation for
boundary locations may be adopted, but it should be appreci
that unnecessary amplification is possible in dynamic analy
However, it is possible to overcome all limitation of first ord
models by coupling the plane strain problems. This modificat
is presented in the following section.

Coupled Model

A coupling of the plane strain problems is feasible by connect
shear springs and dashpots between every plane strain pro
grid point and the upper/lower plane strain problem grid point
schematic representation of coupling the plane strain probl
with springs and dashpots is presented in Fig. 8. This coup
may or may not actually be a part of the constitutive model for
soil. The use of springs and dashpots for homogenous ela
material is equivalent to the use of terms obtained from the eq
tion of motion for a continuous body

r
]2uj

]t2 5rgj1
]s i j

]xi
(8)

where uj5displacement vector; r5density; t5time; gj

5gravitation vector; ands i j 5stress tensor. By restricting the mo
tion to the horizontal planes, only the variation of displacem
with depth needs to be considered for the coupling. An additio
force vector should be applied to the concentrated masses loc
at the corners of the FD zones~grid points!

F j5
M

r

]sz j

]z
5

M

r

]~2Gez j12Ghėz j!

]z

5
M

r
GS ]2uj

]z2 1s
]2u̇ j

]z2 D (9)

where F j5additional force vector applied to the mass;M
5mass value of the grid point;G5shear modulus; h

Fig. 8. Coupling mechanism of plane strain problems
EERING / SEPTEMBER 2002
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5parameter related to the viscous damping and frequencz
5vertical axis; andj takes the index of the horizontal axes. R
writing Eq. ~9! using finite difference approximations of the d
rivatives results in the same expression that is obtained by u
springs and dashpots with values ofK5G/ l and C5hG/ l , re-
spectively, and correcting from stress to force by applying
‘‘area factor’’ of M /rd to the applied grid point force~l is the
distance between the layers connected by the springs and
pots andd is the thickness of the horizontal layer that the pla
strain problem represents!. One can regard this model as a tr
3D model where all the grid points are constrained~fixed! in the
vertical direction. Wu and Finn~1997a, b! presented a quasi-3D
finite element model, where the grid point motion was fixed b
in the vertical direction and in the direction perpendicular to
pile motion. However, instead of using a nonreflecting~quiet!
boundary they applied dashpots to the pile shaft to model
radiation damping. Although the form of these dashpot coe
cients was based on a simple, one-dimensional ‘‘cone’’ mo
~Gazetas et al. 1993!, they were calibrated by curve-fitting resul
from rigorous, finite element analyses, where no limitation w
made on grid point movements. Reduction of degrees of free
in an implicit integral method is more computationally effecti
than it is in explicit integral methods where no factorization
matrices is necessary. Consequently, Wu and Finn’s approach
be more justified for implicit schemes than for explicit schem

Several problems with different pile configurations and loa
ing conditions are presented in the following sections for ver
cation of the proposed coupled model.

Coupled Model: Static Lateral Loading

One of the disadvantages of the uncoupled model is that it ca
model a case of static loading, since there is no solution for p
strain loading in an infinite homogeneous material@i.e., in a nu-
merical analysis the solution is boundary dependent; Bagu
et al. ~1977! studied the necessary distance of a fixed bound
for simulation of static stiffness#. However, with the coupled
model, such a static case is solvable, and was therefore chos
one of the verification problems. The analysis was conducted
a homogeneous soil modeled as a linear elastic material.
single pile was pinned at its base to a solid rock. However,
end condition had no influence on the results and the solution
be regarded as that for a floating pile, since the pile length
significantly longer than its effective length. Since the calculat
involved a linear elastic material, it was more convenient to
fine behavior of the coupling springs~Voigt elements! separately
from the constitutive relation of the soil. In order to assess ac
racy, a comparison to Poulos’s~1971a! results~based on coupling
Mindlin’s solution for a concentrated horizontal load with the p
flexure equation!, and to Kuhlemeyer’s~1979! 3D finite element
results, was conducted. The solutions are presented in Fig.
terms of Kuhlemeyer’s formulations

U5a11

P

Esr 0
1a12

M

Esr 0
2

(10)

F5a21

P

Esr 0
2 1a22

M

Esr 0
3

whereai j are parameters that are functions of the Poisson r
and (Ep /Es) ratio. Poulos presented his solutions in the form
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g

h-

y

t

as

e

y

n

U5I US

P

EsL
1I UR

M

EsL
2

(11)

F5I uS

P

EsL
2 1I uR

M

EsL
3

whereI US , I UR , I uS , and I uR are functions ofL/r 0 and the pile
flexibility factor KR5EpI p /EsL

4. Presenting Poulos’s results a
cording to Kuhlemeyer’s formulation leads to the identity

a115
I US

L/r 0
; a125a215

I UR

~L/r 0!2 ; a225
I uR

~L/r 0!3 (12)

Excellent agreement exists between the coupled model results
Kuhlemeyer’s results, the largest deviation being smaller t
5%. It should be noted that Kuhlemeyer’s results are rigoro
obtained by a real, 3D analysis where every grid point is free
move in all directions, and not only horizontally. This small d
viation might suggest that the restraint of movement in the ve
cal direction causes the soil-pile system to stiffen only sligh
The cause for deviation of Poulos’s results was explained by K
lemeyer ~1979!, and will not be discussed here. However
should be noted that some of Poulos’s results are considered
in error due to numerical discretization. Comparisons with ot
static stiffness values obtained by finite element methods
boundary integral formulation~Randolph 1981; Dobry et al
1982; Kaynia and Kausel 1991! were also conducted. The agre
ment with Randolph’s solution is more or less as with Ku
lemeyer’s solution. The deviations from Dobry et al.’s resu
~based on a finite element code developed by Blaney et al. 1!
are up to 20%. It should be noted that a similar difference ex
between the Dobry et al. and Kuhlemeyer solutions, probably
to different discretization and boundary conditions. The pres
static value of stiffness is about 10% higher than that reported
Kaynia and Kausel~1991!.

Fig. 9. Comparison of coupled model with Kuhlemeyer finite el
ment solution and Poulos’s solutions
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Coupled Model: Dynamic Lateral Loading

In order to verify the behavior of the coupled model under d
namic excitation, a simple problem of dynamic lateral load
was considered, and the results were compared with a contin
solution based on the work of Tajimi~1969!. As for the case of
static lateral loading, the analysis was conducted for a homo
neous soil, modeled as a viscoelastic material. The compar
was made for the lateral translation stiffness, as presented in
10 for the case ofL/r 0538.5, rs /rp50.625, n50.4, VS /VL

50.044 ~or Ep /Es5295.159! with material dampingbs50 and
5%. It can be seen from Fig. 10 that both the real and imagin
parts of the complex stiffness are in excellent agreement with
solution based on Tajimi’s work. It is seen from Fig. 10 that t
coupled model captures the phenomenon of decreased stif
around the natural fundamental frequencies and the overall sh
The radiation damping cutoff frequency is also well model
Since Tajimi’s~1969! formulation imperfectly captures the mate
rial damping behavior~it is taken into account only for the shea
waves traveling along the depth and not for shear waves trave
horizontally!, it was necessary to modify his formulation for mo
accurate consideration of material damping. A frequency indep
dent viscosity was introduced into the equations of the ela
continuum by complementing Lame´’s constants with their imagi-
nary ~out-of-phase! components.

Coupled Model: Single-Pile Seismic Response

Unlike Winkler based models, the coupled model inherently c
tures the development of shear stresses~txz and tyz!; thus no

Fig. 10. Comparison of dynamic lateral stiffness computed by fin
difference to values based on Tajimi
782 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGIN
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separate modeling of free fields is required for superposition
forces. However, in order to allow dissipation of pile vibratio
energy ~radiation damping! to the infinite soil, nonreflecting
boundaries are used together with the free field calculation. Th
boundaries are not mandatory; an alternative approach is to lo
the plane strain problem boundaries at a sufficient distance f
the pile. In this case, waves emitted from the pile will dissipa
due to material damping. For soils with low material damping
latter approach is impractical, since a large number of soil e
ments is required. Again, the formulation of the nonreflecti
boundary~free field boundary! is similar to that used inFLAC for
plane strain problems, based on the viscous boundary devel
by Lysmer and Kuhlemeyer~1969!. FLAC’s built-in free field
boundary cannot be applied to the proposed model since its
mulation is limited to a single plane strain problem where the g
represents a vertical plane. Fig. 11 demonstrates the mecha
of the free field boundary. It comprises a column of concentra
masses connected by springs~detail A! with each mass connecte
to a plane strain system through a viscous elements~detail B!. A
one-dimensional free field is modeled by discrete masses
nected by the coupling springs simultaneously with analysis
the plane strain problems. The free field motion may also
modeled by a plane strain problem~a vertical bar! with a suitable
constitutive law, but using the same springs for the free fi
calculation as for the coupling is numerically more accurate.
each time step an additional force is applied to the boundaries
the viscous element, according to the expression

DF5C~v f f2v !s (13)

where the terms are as defined in Eq.~7!. It can be noted from Eq.
~13! that if the main grid motion is identical to the free fiel
motion ~i.e., v5v f f! the dashpots~illustrated in Fig. 11! are not
exercised. However, if the main grid motion differs from that
the free field, then the dashpots act to absorb energy. Evalua
of the free field motion can also be conducted with an exter
program such asSHAKE. However, since the vertical propagatio
of the waves would be different, even slightly, from those of t
main grid, the dashpots would be unnecessarily exercised
might cause unreasonable results. The verification problem

Fig. 11. Mechanism of free field boundary condition
EERING / SEPTEMBER 2002
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sidered was identical to that of the uncoupled model. Again,
sults were compared with the rigorous solution of Fan et
~1991!, and are presented in Fig. 12. Excellent agreement is n
between the results.

Scope of Method

The presented technique and models may be used for solvi
vast variety of soil-pile interaction problems; they are not
stricted to linear elastic materials nor to homogeneous soil lay
For the uncoupled model, any desired constitutive law may
invoked by using either one of the FD code’s library of consti
tive relations, or by introducing a new relation through an inter
subroutine. However, for the coupled model, an additional s
routine must be written in order to incorporate a constitutive la
since the coupling option is a modification of the code. Soil-p
gapping may be considered by inserting an interface at the ca
boundary. Moreover, in the case of a soil in which the permea
ity is significantly higher in the horizontal direction, a full
coupled analysis of pile-soil-groundwater interaction may
solved, according to the assumption that the water pressure
dissipate only in the horizontal direction. For soil with permeab
ity equal in all directions, Nogami and Kazama~1991! showed
that analytical expressions for pile lateral stiffness in a fluid sa
rated porous medium using cylindrical plane strain conditio
yield results with accuracy very similar to those obtained
single-phase solids, which are well accepted. The method
also be used to solve loading in two directions, by assuming
the pile is linear elastic and analyzing two unsupported bea
which represent the principal axes of the pile.

Conclusions

A general approach, based on the commercial 2D finite differe
codeFLAC, for evaluating the soil-pile interaction of single pile
and pile groups under static, seismic, and lateral dynamic loa
was presented. Two models were derived using this appro
Good agreement, for both models, was obtained with true
models and Winkler models for simple verification problems.

The uncoupled model has an advantage over the true
model, since discretization along the vertical axis is determi
by the soil-pile characteristics and not only by the soil; thus few
zones need to be defined. Its main advantage over other Win

Fig. 12. Kinematic seismic response of single, fixed-head pile
homogeneous soil layer~rs /rp50.7, bs50.05,n50.4!
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type models is that the behavior of the soil may be defined b
constitutive relation, and not just by spring coefficients or emp
cal p-y curves. The coupled model may be considered an exp
sion of the uncoupled model, overcoming most of its limitation

A major advantage of the technique presented is that it
easily be implemented by any practicing engineer, with min
knowledge of numerical methods, using a computer code tha
relatively inexpensive compared with true 3D programs.
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Notation

The following symbols are used in this paper:
a0 5 dimensionless frequency;

af f , v f f 5 free field acceleration and velocity;
Ep 5 Young’s modulus of pile;
Es 5 Young’s modulus of soil;
f i , j 5 stiffness parameters of pile;
I p 5 inertia moment of pile cross section;

I US , I UR , I uS , I uR

5 Poulos’s parameters;
ks 5 single-pile stiffness;

kus 5 horizontal soil stiffness;
L 5 length of pile;

P, M 5 horizontal force and moment applied to pile’s
head;

r 0 ,d 5 radius and diameter of pile;
Su1 , Su2 5 soil stiffness parameters;

s/d 5 normalized distance between piles;
U 5 horizontal translation at head of pile;
u 5 horizontal displacement along pile;

VL 5 longitudinal wave velocity of pile;
VP , VS 5 P wave andS wave velocities of soil;

a i , j 5 interaction factors;
bs 5 material damping of soil;
e i , j 5 values of inverse matrix of interaction factors;
ls 5 single-pile flexibility;
m 5 mass of pile per unit length;
n 5 Poisson’s ratio;

rp 5 density of pile;
rs 5 density of soil;
F 5 rotation at head of pile; and
v 5 circular frequency.
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