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Abstract: A procedure for exploiting a two-dimensionéD) explicit, numerical computer code for the 3D formulation of dynamic
lateral soil-pile interactions is considered. The procedure is applied to two models using simultaneous computation of a series of plant
strain boundary value problems, each of which represents a horizontal layer of soil. The first model disregards the shear forces develope
between the horizontal layers, and may be considered as a generalized Winkler model. The second model takes account of these forces
coupling the behavior of the horizontal layers. Several verification problems for a single pile and pile groups in a homogeneous soil layer
modeled as a viscoelastic material were solved and compared to known solutions in order to assess the reliability of the models. Exceller
agreement was observed between results of the present analyses and existing solutions.
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Introduction tion of the technique quite simple. Furthermore, no extensive
knowledge of numerical methodsreation of stiffness matrices,
Many methods have been proposed for analysis of dynamic lat-etc) is required for implementation of the technique, and thus its
erally loaded piles and pile groups. Each method has its own use is feasible for any practicing engineer. Two models were de-
advantages and disadvantages; rigorous analytical methods angeloped using this technique; a generalized Winklercoupledl
boundary integral methods.g., Tajimi 1969; Kaynia and Kausel —model, and a coupled model. Several verification problems of
1982; Mamoon et al. 198&re restricted to viscoelastic materials single piles and pile groups under different loading conditions

and frequency domain analysis, true three-dimensi8ial finite were analyzed and the results were compared with known solu-
element method or finite difference method analyses require sig-tions in order to assess the reliability of the models. In these
nificantly large calculation time, and simple Winkler modey- verification problems, the soil was modeled as a homogeneous,

lonakis and Gazetas 19P8ave difficulty in modeling the pile-  viscoelastic material. However, the models are also applicable for
soil-pile interaction for nonlinear materials. Furthermore, most of nonlinear constitutive models. The work presented is part of

the soil-pile interaction analysis methods require computer codesbroader research; the aim of the present paper is only to introduce
designed specifically for that purpose, some of which are com- the approach. Consequently, nonlinear behavior is not considered
mercial, and others research codeg., Blaney et al. 197&he here, but will be the subject of future publications.

3D finite element research coddONSPH Kagawa 1983(the

beam-on nonlinear Winkler foundation research cBd¢NA3);

Novak et al. 1990the commercial code for pile and pile groups  Qutline of Proposed Technique

analysisPILE-3D); Wu and Finn 1997a, lta quasi-3D finite

element research code This paper describes a procedure for The technique is based on discretization of the 3D soil continuum

utilizing explicit 2D finite elementFE) and finite differenceFD) into a series of horizontal layers, each layer represented by a 2D
codes for representation of a 3D soil-pile interaction under static yoyndary value problenBVP). The initial FD grid may be di-

and dynamic loading. This technique was developed using thejged into several disconnected subgrids, thus allowing the simul-
commercially available 2D geotechnical finite difference code {aneous calculation of several BVPs. For representation of the

FLAC Ver. 3.4 (Itasca 1999 (hereafter referred to as the FD  nysical problem, a cavitfor cavities in the case of a pile group
cods. Although the procedure is not limited to this code, its user- s jnserted in each subgrid in order to model the pile cross section
available, internal programming feature makes the implementa- iy that layer. Different soil properties and/or initial stresses may
be introduced for each layer, as required. In addition, a separate
!Graduate Student, Faculty of Civil Engineering, Technion, Haifa, grid consisting of a series of connected, unsupported beam ele-
|Sf6g3|- o o _ _ ments, representing the pile, is defined. In the case of a pile group
Professor, Faculty of Civil Engineering, Technion, Haifa, Israel. ~~yyith a cap, another separate subsystem should be defined to rep-
Note. Discussion open until February 1, 2003. Separate disCusSionS,eqant the cap. The procedure advances in time, in correspon-
must be submitted for individual papers. To extend the closing date by dence with the FD explicit time marching calculation scheme, and

one month, a written request must be filed with the ASCE Managing . .
Editor. The manuscript for this paper was submitted for review and pos- develops the interaction between the twar threg systems

sible publication on June 26, 2001; approved on February 13, 2002. Thisthrough transfer of velocities and forces from piteeam nodes
paper is part of thelournal of Geotechnical and Geoenvironmental {0 the BVP’s grid point and vice versa. In each calculation cycle
Engineering Vol. 128, No. 9, September 1, 2002. ©ASCE, ISSN 1090- (time step the pile’s motion equations are solved and the veloci-
0241/2002/9-775-784/$8.8G5.50 per page. ties of each pile segment’s nodes are applied to the corresponding
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Fig. 1. Proposed proceduréa) original FLAC calculation cyclefb) modified calculation cycle(c) subgrids and beam interaction

cavity boundary nodes. Next, in the same calculation cycle, the loading. Several verification problems for different pile configu-
resulting forces acting on the cavity perimeter are extracted andrations and loading conditions are presented in the following sec-
applied to the appropriate pile segment’s nodes. These forces argions.

then used in solving the pile’s equation of motion in the next time

step, producing new velocities which are again transferred to the . .

relevant cavity nodes. Fig. 1 demonstrates the concept of the pro_U_ncoupI_ed Model: Lateral Dynamic Loading of

cedure. It should be realized that, by applying the pile velocities Single Pile

to the cavity perimeter in the same calculation cycle, a full com- Neglecting the internal damping of a pile embedded in a Winkler
patibility of displacement is achieved. This formulation describes oqium. the differential equation may be written as follows
only the interaction between the pile and the horizontal layers. (Novak élnd Aboul-Ella 1978

The formulation of the BVP’s coupling and the consideration of

seismic loading will be described later. a*u(z,t) a2u(z,t)
9 Eplp—r—+ 17— Ky U(Z,) =0 @)
Kus=G[Su1(ag,v,Bs) +iSya(ag,v,Bs)] v

Uncoupled Model
whereE,l,, u, n, andk,s are the pile flexural rigidity, lateral

A 3D soil-pile interaction problem may be solved by discretiza- displacement along the pile, mass of the pile per unit length, and

tion of the soil continuum into horizontal layers, where each layer horizontal soil stiffness respectivelg,; andS,, are functions of

is represented by a different uncoupled plane strain problem. Thisthe dimensionless frequenay (= wry/Vs, wherer,=radius of

technique may be classified as a generalized Winkler approachthe pile; w=circular frequency of loading; ands=shear wave

Although it is considered approximate, its predictions are in good Velocity of the soil, Poisson’s ratiov, and material damping of

agreement with rigorous solutions, within some limitations. the soil, as given by Novak et al1978. Assuming a harmonic,

Novak (1974 was the first to use this technique for evaluating the Steady state motion(z,t)=u(z)e'*" through the pile leads to the

behavior of a single pile under lateral dynamic loading in a ho- differential equation

mogenous soil layer. He used an analytical solution of the plane a%u(2)

strain problem in conjunction with the equation of equilibrium of Epl e + (kys— pw?u(z)=0 3)

the pile. Novak and EI-Sharnouk}1983 extended these solu-

tions to the case of soil properties varying with depth. Nogami Solution of Eq.(3) results in a complexi(z) and a typical solu-

and Novak(1980 showed that, for a frequency of loading higher tion is shown in Fig. 2. As can be seen, only a certain length is

than the fundamental natural frequency of the system, the soil effective; this phenomenon is common in long piles, and is re-

medium can be treated as a Winkler model. The uncoupled modelsponsible for the length independency of the pile behavior. In the

presented herein is based on this same assumption, but it is notase of homogeneous soil properties with depth, a closed form

restricted to viscoelastic material or frequency domain analysis. solution is available. For an arbitrary variation of soil properties,

Since the BVPs are uncoupled, the formulation presented in thethere is no exact solution, but E(®) may be solved numerically.

previous paragraph needs no modification for piles laterally If the soil can be assumed to behave viscoelastically, the soil-

loaded at their heads, and only minor modification for seismic pile-structure interaction problem may be solved by representing

776  JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING / SEPTEMBER 2002



05 0 05 1
l\~
\
ﬂ
\\ 5
“a
\
141\
15 )
20
25
30 - Re[u(z)]/Re[u(0)]
2d . — imu(z)/Refu(0)]

Fig. 2. Solution shape of Eq(3) for Ep/Eg=1250,v=0.25, a,
=0.3, ps/pp=0.7 (no material damping3s="0)

the soil-pile system as an equivalent viscoelastic elenfiest

spring and dashpptConsidering two degrees of freedom at the

top of the pile(U=horizontal translation an@ =rotation one
can write the following relations for harmonic motidgiNovak

1974.

X

(friatiaefir)  ro(fgatiagfey)
ro(fostiaogfon) ra(fratiagfs)

Ueimt

X [ (I)eiwt]
whereP andM are the lateral force and moment at the pile head,
respectively; and; ; are parameters extracted from the solution

(4)

of Eqg. (3) and given by Novak(1974 for different ratios of

V¢/V, andps/p, (ratios of the soil shear wave velocity to the
longitudinal wave velocity of the pile and the density of the soil

to that of the pile, respectivelyor a dimensionless frequenay

of 0.3. A more convenient way of presenting Novak’s solution is
through reference to the Young’s modulus ratio of the pile and
soil Ep/Eg (Kuhlemeyer 1979 Table 1 shows Novak's param-

etersf; ; for a ratio of pile length to diametdr/d= 30, a;=0.3,

v=0.25, andps/p,=0.7. In order to verify the accuracy of the
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Fig. 3. Radiation damping of cavity motion in plane strain problem

solutions. No material damping was introduced into the model,
consistent with Novak’s 1974 solutions. A quigtonreflecting
boundary was defined at the model edges, in order to prevent
reflection of outward propagating waves back into the model from
the boundaries, and to allow the necessary energy radiation. First,
a plane strain model of a circular cavity motion was tested, for
verification of the FD code’s radiation damping, and the results
were compared with Novak’s paramey, [see Eq(2)], which
represents the geometriradiation damping. From these calcu-
lations, it was found that a distance of approximately 0.7 wave-
lengths is required from the cavity to the boundary in order to
provide satisfactory representation of the radiation damping. Fig.
3 shows a comparison between Novak’s results, and those ob-
tained from the FD computations; the agreement is excellent. Ku-
hlemeyer(1979 showed that Novak's; ; parameters plot against
E,/Es as a straight line on a log-log plot, and thus only a few
values are needed for evaluating the validity of the proposed
method. The FD analyses were performed at three different ratios
of Ep/Es (500, 1,250, 3,000 the results are presented in Fig. 4.
The results were obtained by using two different techniques. In
both techniques, the vibration was developed to the steady state
condition smoothly, beginning from the static state. In the first
technique, a force was applied to the pile head and displacement
at the same node was monitored; in the second technique a ve-
locity was applied to the pile head and the unbalanced force at the
same node was monitored. In the latter case no forces were trans-
ferred from the subgrid corresponding to the pile head node, and
thus it was necessary to subtract the reaction created in that sub-
grid (a velocity boundary and force boundary cannot cogxigte
results obtained from both techniques were identical. The second
technique is suitable for pile group analysis, where all pile heads
move rigidly together. Deviation of the FD solutions from No-

proposed model for dynamic problems, several runs were con-vak’s solutions are presented in Table 2. Novak’s valyefor the
ducted and the results were compared with Novak’s closed formtestedE,/Es were calculated from the power function corre-

Table 1. Novak’s Stiffness and Damping Parameters

Stiffness Parameters

Damping Parameters

Vs/VL  EplEg f111 fo1 f21 fuo fo2 f72

0.01 5,714.286 0.0032—-0.0181 0.195 0.0076—0.0262 0.135
0.02 1,428.571 0.009 —0.0362 0.275 0.0215-0.0529 0.192
0.03 634.9206 0.0166—0.0543 0.337 0.0395—-0.0793 0.235
0.04 357.1429 0.0256—-0.0724 0.389 0.0608—0.1057 0.272
0.05 228.5714 0.0358-0.0905 0.435 0.085 —0.1321 0.304

sponding to Novak’s straight line on the log-log plot. From the
comparison presented in Table 2, it can be seen that the greatest
deviation relates to the parameter; ;. Note that the distance
between the cavity, which represents the pile, and the quiet
boundary, was only 0.4 wavelengths in these calculation runs. The
use of this small distance decreased the calculation time signifi-
cantly, and thus justified the small deviation it possibly caused.

Uncoupled Model: Pile Group Interaction

The influence of pile-soil-pile interaction on the behavior of a pile
group is well known for static loading. This interaction is quite
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whereU;=head displacement of pile \>=single pile dynamic
flexibility; P;=force at the head of pilg and «;;=complex in-
teraction factor between pileand pilej for a certain vibration
mode, defined as the ratio of the dynamic displacement ofipile
due to dynamic loading on pileto the dynamic displacement of
pile j. By considering the rigidity of the pile group cap) € U;
=---=U,), one can derive the pile group complex stiffness from
Eq. (5), as follows:

K _ZP
group U - A

> 2 e =k X ey (6)
i=1j=1 i=1i=1

wherek®=single pile dynamic stiffness; angl; =elements of the
inverse of matrixa. Design values of interaction factors for dy-
namic loading were suggested, for example, by Gazetas et al.
(1991 and El-Marsafawi et al(1992. It should be pointed out
that, although the superposition method is very convenient for
practical usage, a small error in evaluating the interaction factor
will result in a much greater error in the group dynamic stiffness.
As an example, the group stiffness of &3 pile group is com-
posed of the summation of 81 values of which 72 are evaluated
from design graphs, some by interpolation functions. Winkler
models for evaluating the horizontal dynamic pile-soil-pile inter-
action in pile groups have also been developed; they all show
good agreement with more rigorous solutions based on 3D wave
propagation. The simplest Winkler based model is quite new, sug-
gested by Mylonakis and Gazet&$999, yet it is limited by
assumptions of linearity for soil and pile materials, and perfect
bonding at the soil-pile interface. A more complex model, also
based on the Winkler assumption, was proposed by El Nagger and
Novak (1996. The model accounts for nonlinear behavior of the
soil adjacent to the pile and gapping at the soil-pile interface.
Although the computational effort is quite small, a computer code
designed for that particular model is required. None of the Win-
kler model approaches used up to the present have taken account

Fig. 4. Comparison between finite difference solutions and Novak's of the disturbance caused by a pile to the waves propagating

solutions

through the soil medium. When the pile spacing is small, this
effect may be of considerable significance. Even the more rigor-
ous existing solutions relate the forces to the average displace-

simple for linear elastic material, and many expressions for evalu- ment of the soil-pile interaction segment. Rajapakse and Shah
ating it have been suggestéelg., Poulos 197)bHowever, this (1989 reviewed continuum models for elastic soil pile systems
is far from true for a pile group under dynamic loading; dynamic and referred to the averaging procedure as problematic for dy-
characteristics of pile groups are very complex, strongly fre- namic problems. They claimed that with increasing frequency
quency dependent, and often significantly different from those of models based on the cross sectional average of the displacement
a single pile(El-Marsafawi et al. 199 A superposition approach  fail to provide an accurate solution. To verify the reliability of the
is commonly employed, using complex interaction factors for two proposed method for the pile-soil-pile interaction, two simple in-
piles, in conjunction with known single pile dynamic characteris- teraction problems were considered—two fixed-head piles, and a
tics. Clearly, in using superposition, the interaction between all 3x 3 pile group. The solutions obtained from the FD analyses
the piles is approximated. The superposition method is imple- were compared with El-Marsafawi et al. 61992 solutions,
mented through a flexibility approach in conjunction with the which were based on a 3D boundary integral formulation, and
dynamic interaction factors for two piles. For a pile group one can with Mylonakis and Gazeta$1999 solutions based on a Winkler
write the following relation: model (propagation of waves in a horizontal manner onily

(Ut =\ (P} (5) C(_)njunction wit_h superpositioq. For the case of i.ntera.ction of twq

' piles, the solutions were obtained for the case in which the hori-

zontal translation of the pile head was in the direction of the line
connecting the two pile centers. These solutions are presented as
an interaction factor between the two piles in Fig. 5. The solution
for the case of the 83 pile group is presente(Fig. 6) as a

Table 2. Deviation from Novak’s Solution

Stiffness Parameters Damping Parameters

Ep/Es  fi11 for fr1 f112 foo fr2 normalized dynamic stiffness defined as the dynamic stiffness of
the pile group divided by the dynamic stiffness of a single pile
0, 0, 0, 0 — 0, — 0,
i02050 2'220//0 2220//0 é'iio//" 1310//" _2'220//" _225;’ multiplied by the number of piles in the group. In order to evalu-
’ DETD 9.L0V L84V L [T SRR 2 ate both the two-pile interaction factor and the normalized pile
3,000 10.20% 5.45% 2.42% 0.58% —3.05% —3.04%

group stiffness, the dynamic stiffness of a single pile must be
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Fig. 6. Normalized lateral dynamic stiffness ofx3 pile group

Fig. 5. Lateral interaction factors between two piles in homogeneous
soil, for normalized distancegd=2,5

the Swaves in the free fielgr,, andr,,) and ther,, stress waves

and P waves that would emanate from the pif@/ang et al.
known. This was found by calculating, with the FD code, the 1998; wherex is the horizontal direction of pile displacement
dynamic stiffness of each frequency, in the same manner that wasand z is vertical. Since this formulation decouples the vertical
employed in the single-pile dynamic analysis. For the two-pile shear propagation from the soil-pile interaction, the free field ac-
interaction, excellent agreement between the El-Marsafawi et al.celeration history may be calculated from an additional one-
(1992 solution and the FD solution exists for a normalized spac- dimensional analysis within the FD code or an external program
ing (s/d) of 5. However, less good agreement exists for normal- such asSHAKE (Idriss and Sun 1991 In this verification prob-
ized spacing of 2, although the Mylonakis and Gazetas Winkler lem, the one-dimensional vertical shear propagation was modeled
based model shows good agreement with the El-Marasafwi et al.by an additional subgrid which represents the site. A subroutine,
solution. It may be seen that this deviation increases with fre- which monitors the velocities and acceleration of each grid point
quency, implying that it is connected to the wave propagation in the free field subgrid and inserts them in tables, was written. In
factor. As mentioned previously, both the Winkler based model every time step an acceleration value for each plane strain prob-
and the 3D solutions do not comprehensively account for the pile lem was interpolated from these tables, according to depth. The
interference to wave propagation, and it is possible that the resultsacceleration value was then multiplied for each intefnat on a
from the present calculations take account of this interference.boundary grid point by its mass and was applied to it. For the
For the 3<3 pile group, general agreement exists for all the plane strain boundary grid points, a fora& defined by Eq(7)
parameters; interaction of nine piles is quite complex and thus it was added to the initiaK, static forces in order to maintain

is difficult to pinpoint the source of the observed deviations. nonreflecting boundaries
AF=ma;+C(vfi—v)S (7)
Uncoupled Model: Single-Pile Seismic Response wherem=grid point massga;; andv;;=acceleration and veloc-

ity, respectively, of the free field at the same depth;grid point
Using a Winkler based model for earthquake analysis requires anvelocity; C= coefficient that is related to th@wave andP wave
evaluation of shear wave propagation through the soil layers. velocities(depending on the direction of the applied forgemd
Since the plane strain problems are uncougtiisconnectedthe s=boundary length, which is related to the grid point. This for-
vertical propagation of shear waves must be modeled separatelynulation is very similar to that used FLAC for free field bound-
and applied indirectly to the plane strain problems. This may be aries, based on the viscous boundary developed by Lysmer and
done by applying to each grid point, at each time step, an addi- Kuhlemeyer(1969, yet the one implemented RLAC cannot be
tional force which corresponds to the horizontal acceleration in used for this formulation. It should be noted that in case a mate-
the free field at the same depth and time. For viscoelastic materialrial damping is defined externaliyot within the constitutive re-
this procedure is completely legitimate; it is equivalent to super- lation) it should be activated only on strain rates, i.e., when using
position of forces. For nonlinear materials, it is considered to be a Rayleigh damping as i®LAC, the mass proportional damping
reasonable approximation, due to the difference in the polarity of coefficient should be set to zero. If a mass proportional damping
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Fig. 7. Kinematic seismic response of single fixed-head pile in ho-
mogeneous soil layeps/p,=0.7, 3s=0.05,1=0.4)

is defined, the free field vibration modes will be overdamped,
since damping is applied both to the free field subgrid, and also to
the plane strain system masses.

For the verification problem, a fixed-head pile embedded in a
homogeneous, viscoelastic soil layer was considered. The base of ) . ) )
the soil layer was excited by a harmonic shear wave. In order to MUSt, of course, be careful in using this procedure, since the lo-
represent a homogeneous half space, the shear wave was app”eqptlor! of the boundques is crucial in de}ermmmg the static stiff-
to a quiet boundary. After reaching a steady state motion, the N€SS in @ plane strain problem. Baguelin et(&B77 have con-
amplitudes of the horizontal oscillation of the pile ciiy and ducted a theoretical study of the static lateral reaction mechanism

free field surfacdJ;; were extracted. The FD analyses were per- of piles using p_Iane strain analysis. Their r_ecommendation for_ the
formed at two different ratios of,/E, (1,000, 10,000 for a boundary locations may .be gdopted, bqt it s_hould be.appremated
complete range of frequencies. The results were compared withthat unnecessary amplification is possible in dynamic analyses.
the rigorous solution of Fan et 411991 based on the boundary However, it is p933|ble to overcome all I|m|tat|on_of flrst_ _ordt_er
integral based formulation developed by Kaynia and Kausel models by cqupllng the pllane strgln problems. This modification
(1982. The results are presented in Fig. 7 as a ratio between thelS Presented in the following section.
pile cap oscillation amplitude and the free field surface oscillation
amplitude.

Good agreement is observed between the results. However, ifCoupled Model

can be seen that better agreement exists for the higher ratio of ) i . . .
E,/Es. This is consistent with Nogami and Novaks980 con- A coupling of the plane strain problems is feasible by connecting

clusion that a soil medium can be treated more favorably as aShear springs and dashpots between every plane strain problem
Winkler based model for stiffer piles. grid point and the upper/lower plane strain problem grid point. A

schematic representation of coupling the plane strain problems
with springs and dashpots is presented in Fig. 8. This coupling
may or may not actually be a part of the constitutive model for the
soil. The use of springs and dashpots for homogenous elastic
The uncoupled model is based on Winkler's approach. It may be r_naterial is gquivalent to .the use of terms obtained from the equa-
classified as a first order, dynamic, subgrade model, according tolion of motion for a continuous body

Nogami et al.'s(1992 definition. Being a first order model, it is aZUj o

bounded by the first order model limitations. It encounters diffi- p WZPQ,‘Jr X 8
culties in modeling frequencies lower than the fundamental fre- '

quency of the soil medium. For machine foundations, this limita- Where u;=displacement vector; p=density; t=time; g;

tion is almost irrelevant since the frequencies involved in such = gravitation vector; and;; = stress tensor. By restricting the mo-
cases are usually considerably higher than the fundamental fre-tion to the horizontal planes, only the variation of displacement
quency of the soil. Also, for earthquakes, most of the soil-pile With depth needs to be considered for the coupling. An additional
interaction is noticeable for frequencies around the structure- force vector should be applied to the concentrated masses located
foundation resonance, which are usually higher than the funda-at the corners of the FD zonégrid point9

mental natural frequency of the ground. For floating piles, the firs_t M a0, M 0(2Ge,j+2Gné,)

order model is quite accurate. Usually, in order to overcome this = ——=—

Fig. 8. Coupling mechanism of plane strain problems

Limitations of Uncoupled Model

j

limitation of the first order dynamic model, it is modified by using p 9z P 0z

a static stiffness for frequencies lower than the natural one, and M [o2u. 9201

ignoring the radiation dampingNogami et al. 1992 A similar = _G(E}Jﬂrﬁfj) 9
procedure may be invoked in the present procedure for lateral p

loading of piles, by using a fixed boundary instead of a quiet where F;=additional force vector applied to the mash|
boundary, so that no energy is absorbed by the boundaries. One=mass value of the grid point;G=shear modulus;n
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=parameter related to the viscous damping and frequency; 1

=vertical axis; and takes the index of the horizontal axes. Re- —— Poulos V5f°'5
writing Eq. (9) using finite difference approximations of the de- : 'ftgﬂemeyer vs-g.i‘r1
s vs=U.

rivatives results in the same expression that is obtained by using
springs and dashpots with values K& G/l and C=nG/I, re-

spectively, and correcting from stress to force by applying an &
“area factor” of M/pd to the applied grid point forcél is the \ f
distance between the layers connected by the springs and dash- 0.1 alt D
pots andd is the thickness of the horizontal layer that the plane ~
strain problem representsOne can regard this model as a true N g
3D model where all the grid points are constrairiéigied) in the -&‘ y
vertical direction. Wu and Fini1997a, b presented a quasi-3D g
finite element model, where the grid point motion was fixed both %
in the vertical direction and in the direction perpendicular to the )
pile motion. However, instead of using a nonreflectigiet ©
0.01

boundary they applied dashpots to the pile shaft to model the
radiation damping. Although the form of these dashpot coeffi-
cients was based on a simple, one-dimensional “cone” model a22
(Gazetas et al. 1993they were calibrated by curve-fitting results

from rigorous, finite element analyses, where no limitation was
made on grid point movements. Reduction of degrees of freedom

12=a21

a

in an implicit integral method is more computationally effective b
than it is in explicit integral methods where no factorization of 0.001

matrices is necessary. Consequently, Wu and Finn’s approach may 100 1000 10000
be more justified for implicit schemes than for explicit schemes. Ep/Es

Several problems with different pile configurations and load- ) ) o
ing conditions are presented in the following sections for verifi- Fig- 9. Comparison of coupled model with Kuhlemeyer finite ele-
cation of the proposed coupled model. ment solution and Poulos’s solutions

M
. . U=lyg=r +I
Coupled Model: Static Lateral Loading USEL " TURE(L?

P M
(I)ZIGS@J'_IGRﬁ

(11)

One of the disadvantages of the uncoupled model is that it cannot
model a case of static loading, since there is no solution for plane
strain loading in an infinite homogeneous matefial., in a nu- wherelys, lyr, lys, andlyg are functions ol/ry and the pile
merical analysis the solution is boundary dependent; Baguelin flexibility factor KR=EpIp/ESL4. Presenting Poulos’s results ac-
et al. (1977 studied the necessary distance of a fixed boundary cording to Kuhlemeyer’s formulation leads to the identity

for simulation of static stiffnegs However, with the coupled
model, such a static case is solvable, and was therefore chosen as
one of the verification problems. The analysis was conducted for
a homogeneous soil modeled as a linear elastic material. TheExcellent agreement exists between the coupled model results and
single pile was pinned at its base to a solid rock. However, this Kuhlemeyer’s results, the largest deviation being smaller than
end condition had no influence on the results and the solution may5%. It should be noted that Kuhlemeyer’s results are rigorous,
be regarded as that for a floating pile, since the pile length was obtained by a real, 3D analysis where every grid point is free to
significantly longer than its effective length. Since the calculation move in all directions, and not only horizontally. This small de-
involved a linear elastic material, it was more convenient to de- viation might suggest that the restraint of movement in the verti-
fine behavior of the coupling sprindsoigt elements separately cal direction causes the soil-pile system to stiffen only slightly.
from the constitutive relation of the soil. In order to assess accu- The cause for deviation of Poulos’s results was explained by Kuh-
racy, a comparison to Poulo€'$971a results(based on coupling  lemeyer (1979, and will not be discussed here. However it
Mindlin’s solution for a concentrated horizontal load with the pile should be noted that some of Poulos’s results are considered to be
flexure equatiopy and to Kuhlemeyer'$1979 3D finite element in error due to numerical discretization. Comparisons with other
results, was conducted. The solutions are presented in Fig. 9 instatic stiffness values obtained by finite element methods and
terms of Kuhlemeyer’s formulations boundary integral formulationRandolph 1981; Dobry et al.
1982; Kaynia and Kausel 199%ere also conducted. The agree-
ment with Randolph’s solution is more or less as with Kuh-
lemeyer’s solution. The deviations from Dobry et al.’s results

B UL L P
Uoliry? T2 921 (Lirg)2” 9227 (Liry)®

U P + M
=ay=—— tag,——
UE 1, 12Esr(2)

(10) (based on a finite element code developed by Blaney et al.)1976
D M are up to 20%. It should be noted that a similar difference exists
_a21ESrS + aZZESrg between the Dobry et al. and Kuhlemeyer solutions, probably due

to different discretization and boundary conditions. The present
wherea;; are parameters that are functions of the Poisson ratio static value of stiffness is about 10% higher than that reported by
and E,/Ey) ratio. Poulos presented his solutions in the form Kaynia and Kause{1991).
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e
(3}
T

£s=0.00 . ) . . .
0 ' . ' . ' separate modeling of free fields is required for superposition of
0 0.05 0.1 0.15 0.2 0.25 0.3 forces. However, in order to allow dissipation of pile vibration
wrolVs energy (radiation damping to the infinite soil, nonreflecting

boundaries are used together with the free field calculation. These
Fig. 10. Comparison of dynamic lateral stiffness computed by finite boundaries are not mandatory; an alternative approach is to locate
difference to values based on Tajimi the plane strain problem boundaries at a sufficient distance from
the pile. In this case, waves emitted from the pile will dissipate
due to material damping. For soils with low material damping the
Coupled Model: Dynamic Lateral Loading latter approach is impractical, since a large number of soil ele-
ments is required. Again, the formulation of the nonreflecting
In order to verify the behavior of the coupled model under dy- boundary(free field boundaryis similar to that used ifFLAC for
namic excitation, a simple problem of dynamic lateral loading plane strain problems, based on the viscous boundary developed
was considered, and the results were compared with a continuunby Lysmer and Kuhlemeye(1969. FLAC's built-in free field
solution based on the work of Tajiniti969. As for the case of boundary cannot be applied to the proposed model since its for-
static lateral loading, the analysis was conducted for a homoge-mulation is limited to a single plane strain problem where the grid
neous soil, modeled as a viscoelastic material. The comparisonrepresents a vertical plane. Fig. 11 demonstrates the mechanism
was made for the lateral translation stiffness, as presented in Fig.of the free field boundary. It comprises a column of concentrated
10 for the case ofL/r;=38.5, ps/pp,=0.625,v=0.4, Vs/V,_ masses connected by springetail A) with each mass connected
=0.044 (or E,/E¢=295.159 with material damping3 ;=0 and to a plane strain system through a viscous elem@t@til B). A
5%. It can be seen from Fig. 10 that both the real and imaginary one-dimensional free field is modeled by discrete masses con-
parts of the complex stiffness are in excellent agreement with the nected by the coupling springs simultaneously with analysis of
solution based on Tajimi’s work. It is seen from Fig. 10 that the the plane strain problems. The free field motion may also be
coupled model captures the phenomenon of decreased stiffnessnodeled by a plane strain problgia vertical bay with a suitable
around the natural fundamental frequencies and the overall shapeconstitutive law, but using the same springs for the free field
The radiation damping cutoff frequency is also well modeled. calculation as for the coupling is numerically more accurate. At
Since Tajimi's(1969 formulation imperfectly captures the mate- each time step an additional force is applied to the boundaries via
rial damping behaviofit is taken into account only for the shear the viscous element, according to the expression
waves traveling along the depth and not for shear waves traveling AF=C(vg—v)s (13)
horizontally), it was necessary to modify his formulation for more vrTy
accurate consideration of material damping. A frequency indepen-where the terms are as defined in Ef. It can be noted from Eq.
dent viscosity was introduced into the equations of the elastic (13) that if the main grid motion is identical to the free field
continuum by complementing Larseconstants with their imagi- ~ motion (i.e., v=v¢) the dashpotgillustrated in Fig. 11 are not
nary (out-of-phasg components. exercised. However, if the main grid motion differs from that of
the free field, then the dashpots act to absorb energy. Evaluation
of the free field motion can also be conducted with an external
Coupled Model: Single-Pile Seismic Response program such aSHAKE However, since the vertical propagation
of the waves would be different, even slightly, from those of the
Unlike Winkler based models, the coupled model inherently cap- main grid, the dashpots would be unnecessarily exercised and
tures the development of shear stresggs and 7,,); thus no might cause unreasonable results. The verification problem con-
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15 type models is that the behavior of the soil may be defined by a

A F.D.- Coupled Model (Ep/Es=1000) - . : : =~ o
25 5 EB: Soupled .Modelf /Ea=10000) constitutive relation, and not just by spring coefficients or empiri
e r Rigorous Solution - Fan et al. (Ep/Es=1000) cal p-y curves. The coupled model may be considered an expan-

- = = :Rigorous Solution - Fan et al. (Ep/Es=10000)

sion of the uncoupled model, overcoming most of its limitations.
A major advantage of the technique presented is that it can
easily be implemented by any practicing engineer, with minor
knowledge of numerical methods, using a computer code that is
relatively inexpensive compared with true 3D programs.
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Notation

sidered was identical to that of the uncoupled model. Again, re- _ o
sults were compared with the rigorous solution of Fan et al. The following symbols are used in this paper:

(1992, and are presented in Fig. 12. Excellent agreement is noted a, = dimensionless frequency; _
between the results. ass, vy; = free field acceleration and velocity;

E, = Young’s modulus of pile;
E; = Young’s modulus of soil;
Scope of Method f;; = stiffness parameters of pile;
Iy = inertia moment of pile cross section;

The presented technique and models may be used for solving dus: lur: les: Ter

vast variety of soil-pile interaction problems; they are not re- = Poulos’s parameters;

stricted to linear elastic materials nor to homogeneous soil layers. k® = single-pile stiffness;

For the uncoupled model, any desired constitutive law may be kys = horizontal soil stiffness;

invoked by using either one of the FD code’s library of constitu- L = length of pile;

tive relations, or by introducing a new relation through an internal P, M = horizontal force and moment applied to pile’s
subroutine. However, for the coupled model, an additional sub- head; _ _

routine must be written in order to incorporate a constitutive law, ro,d = radius and diameter of pile;

since the coupling option is a modification of the code. Soil-pile Sut» Su2 = soil stiffness parameters; _
gapping may be considered by inserting an interface at the cavity sld = normallzed dlstanpe between plleg;
boundary. Moreover, in the case of a soil in which the permeabil- U = horizontal translation at head of pile;
ity is significantly higher in the horizontal direction, a fully u = horizontal displacement along pile;
coupled analysis of pile-soil-groundwater interaction may be Vi = longitudinal wave velocity of pile;
solved, according to the assumption that the water pressure will Ve, Vs = P wave andSwave velocities of soil;
dissipate only in the horizontal direction. For soil with permeabil- ajj = interaction factors;

ity equal in all directions, Nogami and Kazani®991) showed Bs = material damping of soil; _
that analytical expressions for pile lateral stiffness in a fluid satu- €ij = values of inverse matrix of interaction factors;
rated porous medium using cylindrical plane strain conditions A® = single-pile flexibility;

yield results with accuracy very similar to those obtained for p = mass of pile per unit length;
single-phase solids, which are well accepted. The method may v = Poisson’s ratio;

also be used to solve loading in two directions, by assuming that pp = density of pile;

the pile is linear elastic and analyzing two unsupported beams Ps = densﬁy of soil; .

which represent the principal axes of the pile. ® = rotation at head of pile; and

o = circular frequency.

Conclusions
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