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ABSTRACT 
 
This paper investigates the consequence of using Rayleigh proportional damping in the analysis of 
inelastic structural systems.  The discussion is presented theoretically, as well as by example through the 
analysis of a simple 5-story structure.  It is shown that when the stiffness portion of the system damping 
matrix is based on the original system stiffness, artificial damping is generated when the structure yields.  
When the damping matrix is based on the tangent stiffness but the Rayleigh proportionality constants are 
based on the initial stiffness, a significant but reduced amplification of damping occurs.  When the 
damping is based on the tangent stiffness and on updated frequencies based on this stiffness, virtually no 
artificial damping occurs.  The paper also investigates the influence on effective damping when localized 
yielding occurs in areas of concentrated inelasticity.  In such cases it is possible to develop artificial 
viscous damping forces that are extremely high, but that are not easy to detect.  Such artificial damping 
forces may lead to completely invalid analysis.  The paper ends with recommendations for performing 
analysis where the artificial damping is eliminated, or at least controlled. 
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1. INTRODUCTION 
 
All building structures exhibit some degree of energy loss during free vibration.  Traditionally, this energy 
loss is referred to inherent damping.  The most significant source of inherent damping is internal friction 
in the structural materials, connections, and nonstructural components (Kareem and Gurley, 1996).  
Experiments have shown that inherent damping generally increases with displacement amplitude, and is 
not frequency dependent.  Therefore, the most appropriate mathematical model for representing the 
damping is friction or hysteretic damping.  Each of these approaches require nonlinear analysis, and this is 



a serious complication when analyzing structures that are otherwise linear elastic.  To overcome this 
difficulty, analysts usually linearize the inherent damping by assuming that it is viscous.  Viscous 
damping is not amplitude dependent, but is frequency dependent.   
 
The equations of motion for a linear elastic multiple degree of freedom system with linear viscous 
damping are as follows: 
 
 ( ) ( ) ( ) ( )Mv t Cv t Kv t P t+ + =  (1) 
 
where M is the mass matrix, C is the damping matrix, K is the elastic stiffness matrix, P(t) is the dynamic 
load vector, and , , and are the displacements, velocities, and accelerations, respectively, at the 
various degrees of freedom.  Two basic approaches are available for solving the dynamic equilibrium 
equations; direct integration and modal superposition.  In both approaches, the mass and stiffness matrices 
are required.  The development of these matrices is straightforward since they are based on easily 
identified and quantified physical properties.  In the direct integration approach a damping matrix is also 
required, but the development of this matrix is not straightforward because there is no physical counterpart 
for the assumed viscous damping.  While there is no requirement that the damping matrix used in direct 
integration be classical, Rayleigh damping, which is classical, is almost universally used.   

( )v t ( )v t ( )v t

 
In the modal superposition approach the full damping matrix is not required because damping values are 
directly assigned to the individual modes.  The values in each mode may be specified arbitrarily, or 
through the use of a Caughey series (Caughey, 1960), of which Rayleigh damping is a special case.  Given 
the modal damping ratios and the undamped modes shapes of the system, the damping matrix indicated in 
equation 1 may be recovered.  There is generally no need to recover the damping matrix in ordinary 
analysis, although it may be useful to do so to understand how the form of this matrix affects the system 
response.   
 
Given the system damping matrix, whether real or virtual, the response to any given load may be 
computed with great precision.  The accuracy of the response, however, may be in question.  The 
questionable accuracy arises from unforeseen consequences of the use of the viscous damping model.  
Fortunately, when using linear viscous damping to represent inherent damping in linear elastic systems, 
the variety of unforeseen consequences is limited, and the effect on computed response is usually 
insignificant.  However, when the concept of linear viscous damping is applied to the analysis of 
structures with added damping, or to structures that behave inelastically, the variety and magnitude of 
unforeseen consequences can increase dramatically, and may lead to computed results that are invalid. 
  
A complete explanation and quantification of the consequences of modeling damping in structures cannot 
be presented in a single technical paper.  Hence, the scope of this paper is limited to the effects of the use 
of linear viscous damping in the response history analysis of inelastic systems.  The discussion is further 
limited to the use of Rayleigh damping.  Problems associated with the use of linear viscous damping in the 
analysis of linear elastic systems or systems which employ added damping devices are the subject of 
companion papers, in progress, but not yet submitted for publication. 
 
The paper is also limited to the discussion of two specific problems associated with the use of Rayleigh 
damping in inelastic response history analysis.  Each of these problems arise when there is a change in the 
tangent stiffness of the structure, and the effect is almost always manifested by unexpected increases in 

   



effective damping.  These increases in damping range from a few percent, to several hundred percent, and 
are extremely difficult to detect.  
 
The first problem addressed is the effect of “global” changes in stiffness on the effective damping in the 
system.  This problem was previously addressed in the paper by Leger and Dussault (1992).  The second 
problem is related to “local” changes in stiffness which occur in plastic hinges and other areas of 
concentrated inelasticity.  This problem, which is the more significant of the two, has been addressed by 
Bernal (1994).   
 
This paper attempts to bring these discussions together, and to provide a holistic perspective of the 
problem.  In most cases, the analysis and discussion is presented through use of the 5-story, 5-degree of 
freedom structure shown in Figure 1.  The structure has a tridiagonal initial stiffness matrix and a diagonal 
mass matrix. These matrices are shown at the right of the figure.  Note that the degrees of freedom are 
numbered from the top down.  The viscous dashpots in Figure 1 represent a physical model of Rayleigh 
damping, as explained later in the paper. The initial (elastic) circular frequencies of the original 
undamaged structure are provided in column two of Table 1.   
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FIGURE 1.  EXAMPLE 5-STORY STRUCTURE 

 
 

TABLE 1.  MODAL PROPERTIES OF STRUCTURE ILLUSTRATED IN FIGURE 1 
 

Circular Frequency, Rad/sec Mode 
(Original)  

No 
Damage 

(Case 1)  
Uniform 
Damage 

(Case 2) 
Varied 

Damage 
1 5.6 3.4 2.4 
2 16.2 11.5 9.8 
3 25.6 18.1 16.4 
4 32.9 23.3 23.2 
5 37.5 26.5 31.0 

 

   



2.0 RAYLEIGH DAMPING 
 
In Rayleigh damping, it is assumed that the damping matrix is proportional to mass and stiffness, as 
follows 
  (2) 0 1M KC C C a M a K= + = +
  
where the scalar coefficients a0 and a1 have units of 1/sec and sec, respectively. 
 
A physical model for Rayleigh damping is shown in Figure 1.  The dashpots between the floors represent 
the stiffness proportional damping, and the dashpots at the floor levels represent mass proportional 
damping.  Note that the mass proportional dampers produce reactions external to the structure.   
 
Using the mode shape matrix, Φ, and its transpose, equation 2 becomes   
 
  (3) 0 1

T T TC a M a KΦ Φ = Φ Φ + Φ Φ
  
Due to the orthogonality property of the mode shapes (with respect to mass and stiffness), each of the 
matrix triple products in equation 3 is diagonal.  Writing the equation for an individual mode j,  
 
 0 1j jc a m a k j= +  (4) 
 
where the lower case terms represent the generalized mass, damping, and stiffness quantities.  Dividing 
both sides of equation 4 by 2mjωj , where ωj is the undamped natural circular frequency in mode j , and 
noting that /j j jk mω =  

 10

2 2
j

j
j j j

c aa
m 2

jω
ξ

ω ω
≡ = +  (5) 

 
where ξj is the damping ratio in mode j.   
 
The damping ratio in mode j cannot be determined without knowing the coefficients a0 and a1.  These are 
determined by specifying damping ratios in any two modes, say k and n and writing equation 5 for each 
mode.  These equations, solved simultaneously for a0 and a1 are represented in matrix form in equation 6. 
Once a0 and a1 are determined, the damping ratio in any other mode(s) may be determined from equation 
5. 

 0

1
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ξ ω ω
ξ ω ω
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It is noted that there is no requirement that the frequencies in equation 6 represent actual frequencies in the 
structural system.  Any two damping values at any two frequencies will define a damping curve. In 
practice, however, the specified frequencies and damping values are almost always selected to correspond 
to actual system frequencies. 
 
The usual approach with Rayleigh damping is to specify the a0 and a1 values for the entire system, in 
which case the damping matrix is formed internally by the program.  It is also possible (in some cases) to 

   



invoke the damping through the use of discrete dashpots, as shown in Figure 1.  The author prefers this 
method because the forces in the damping system may be easily monitored.  Finally, it is noted that some 
programs, such as Drain-2DX (Prakash, et al., 1993), allow the specification of mass and stiffness 
proportional damping terms for only those masses and elements that are selected by the user.   
 
As mentioned earlier in this paper, Rayleigh damping is a special case of Caughey damping, where the 
amping matrix is given by the following series: 

where the index b may theoretically take any integer values.  Rayleigh damping is generated by a two-
rm series with b equal to zero and one.   As discussed later in this paper, Bernal (1994) suggest the use 

epicted in Figure 1 

ting a damping ratio of 0.02 in modes 
 and 3, resulting in a0=0.183 and a1=0.00128.  Using these coefficients, the system damping matrix is as 

=0.00128 is shown in Figure 2.  In 
e figure, the mass and the stiffness proportional parts of the damping relationship are shown separately, 

d

 1[ ]bC M a M K−= ∑  (7) b
b

 

te
of equation 7 with b less than or equal to zero. 
 
2.1 Rayleigh Damping for Elastic System as D
 
Rayleigh damping was computed for the structure in Figure 1 by set
1
shown at the lower right of Figure 1.  As expected, this matrix has the same profile as the stiffness matrix.  
A physical representation of the damping matrix is shown at the left of Figure 1.  The mass proportional 
dashpots have a damping constant CM of 0.183(1.30)=0.238 k-sec/in., and the stiffness proportional 
dashpots have a damping constant CK=497(0.00128)=0.636 k-sec/in.    
 
A plot of the damping relationship of equation 5, using a0=0.183 and a1
th
where it may be seen that the mass proportional component decreases with increased frequency, and the 
stiffness proportional term increases with increased frequency.   
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FIGURE 2.  RAYLEIGH PROPORTIONAL DAMPING CURVES 

Figure 2 also shows, with vertical dashed lines, the natural frequencies of the structure, and the damping 
ratios that occur a t is impossible to 
obtain a negative damping ratio at any frequency.  However, it appears that frequency shifts to the left 

t these frequencies.  It is clear from equation 5 and Figure 2 that i

   



may result in higher than expected damping in the lower modes.  Frequency shifts, if they occur, would be 
due to changes in the stiffness matrix due to yielding.  This phenomena is examined next with respect to 
the structure of Figure 1.  
 
 
3. USING RAYLEIGH DAMPING IN INELASTIC RESPONSE 

hen the system responds inelastically, the stiffness term indicated in equation 1 changes.  These changes 
eing used.  The changes are also 

onuniform through the structure.  When Rayleigh proportional damping is used, the analyst has three 

 used throughou the response.  Hence, the damping matrix developed in 
equation 2 (repeated below as equation 8) is used for each step in the analysis.   

 
W
can be abrupt or gradual, depending on the mathematical model b
n
basic approaches to deal with the inelastic response.  These approaches, described below, are labeled A, 
B, C for future reference.  
 

Approach A) The damping matrix is computed on the basis of the initial stiffness and this 
damping matrix is t 

 
 0 1( )AC t a M a K= +  (8) 
 
This damping matrix is constant throughout the analysis.  At any step in the analysis in which the 

ngent stiffness is not equal (or proportional)
onclassical because the current mode shapes will not diagonalize K.   

ess changes.  The damping 
atrix is   

ta  to the elastic stiffness, the damping matrix will be 
n
 
Approach B)  The a0 and a1 proportionality terms are computed on the basis of the initial 
stiffness, and the damping matrix is updated each time the tangent stiffn
m
 0 1( )B tC t a M a K= +  (9) 
  
where the subscript t on the K term represent the tangent stiffness.  In this case, the damping 

atrix will be classical at each step in th
agonalize Kt. 

 is reformed on this basis (assuming that the damping ratios in the specified modes 
o not change, regardless of modal frequency).  In this case, the damping matrix is given by 

 

m e analysis because the current mode shapes will 
di
 
Approach C) The a0 and a1 terms are recomputed each time the stiffness changes, and the 
damping matrix
d

 0 1( )C t t tC t a M a K= +  (10) 
  

where the added subscript t on the a0 and a1 terms in equation 10 indicate that these are based on 
e tangent stiffness.  As with approach B, the 

nge in stiffness.  
In the following discussion the implication of the use of Rayleigh proportional damping in the analysis of 
inelasti
from th

th damping matrix will be classical. 
 
It is noted that a principal disadvantage of approach C is that the two modal frequencies ωk and ωm 
on which a0t and a1t are based (see equation 6) must be recomputed with each cha

c systems are examined from the perspective of the entire structure (global stiffness changes) and 
e perspective of local stiffness changes.     

   



 
3.1 The Effect of Global Stiffness Changes on Structures Modeled with Rayleigh Damping 
 
Given any damping matrix, classical or nonclassical, the damping values in each mode may be found by 

 of equation 
.  For classically damped systems the resulting damping ratios are exact, and for nonclassical systems 

the modal strain energy approach, shown in equation 11, which is effectively a rearrangement
3
they are approximate.   

 
2

T
j

j T

C
Mj j j

φ φ
ξ

ω φ φ
=  (11) 

 
he effects of the different methods of establishin

respect to the structure of Figure 1.  Two different cases are investigated.  In the first case the entire 
tiffness matrix is assumed to reduce to 50% of its original value.  The mode shapes for this system are 

T g damping in inelastic systems are examined with 

s
identical to those of the original system, and the frequencies for each mode are 0.5 0.707= times the 
original frequencies.  The frequencies for this uniformly damaged system are shown in column three of 
Table 1. 
 
In the second case the stiffness properties change nonuniformly along the height.  The stiffness of the 
individual levels of the structure, from top down, are 0.9, 0.7, 0.5, 0.3, and 0.1 times the original stiffness, 

spectively.  These ratios represent significant yielding at the base of the structure and little yielding at 

frequency curves for the four different approaches O, A, B, and C.  In each case the damping 
tios were computed using equation 11.  Approach O represents the original elastic system without the 

han the original values.  In fact, the damping 
alue at each revised frequency is exactly 1.414 times the original damping value at the corresponding 

re
the top.  There is no simple relationship between the modal properties of the original system and the 
system with nonuniform stiffness changes.  The frequencies for this system are shown in the last column  
of Table 1. 
 
The results for the structure with the uniform stiffness change are shown in Figure 3, which is a plot of the 
damping vs 
ra
stiffness changes. Note that the graph has two sets of vertical dashed lines.  The vertical lines that extend 
to the bottom of the plot represent the original frequencies, and the vertical lines that extend to the top of 
the plot represent the frequencies for the damaged system. 
 
As observed from Figure 3, the effective damping values for approach A, based on the original damping 
matrix and the revised frequencies are somewhat larger t
v
original frequency.  Mathematically, the damping curve for approach A is ( ) 0.5(0.183 0.00257 )ξ ω ω ω= + .  
The mass proportional coefficient is the same as that for the original system, and the stiffness proportional 
coefficient is two times that of the original system.   Hence, the damping versus frequency curve for the 
revised system is different from that of the original system.   
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FIGURE 3.  DAMPING VS FREQUENCY FOR STRUCTURE WITH 

 UNIFORM STIFFNESS CHANGE 
 

 
The damping values for approach B, which is based on the revised system with the damping matrix based 
on the tangent stiffness and the original a0 and a1 values,  lie on the same curve as those for the original 
system.  However, the damping values at each of the revised frequencies are different than in the original 
system because the frequencies have shifted to the left in the figure. 
 
The damping values for approach C, lie on a different curve, with the equation for the curve 
being ( ) 0.5(0.129 0.00181 )ξ ω ω= + ω

                                                

.  Here, the mass coefficient is 0.707 times the mass coefficient for the 
original curve, and the stiffness coefficient is 1.414 times that for the original curve.  The damping values 
at the five revised frequencies are exactly the same as the damping values from case O using the original 
frequencies. 
 
In Figure 4, the damping ratios in each mode for approaches A, B, and C, divided by the original damping 
ratio (approach O), are plotted against mode number.  As may be seen, approach A gives a consistent ratio 
of 1.414, approach B has a varying ratio, and approach C has a ratio of exactly 1.0 for each mode. 
 
The results for the structure with the nonuniform stiffness change (Case 2) are presented in Figures 5 and 
6.  These figures plot damping ratio vs frequency, and the ratio of damping ratios vs mode number, 
respectively.    
 
As seen in Figure 5, the damping ratios for approach A, indicated by the solid diamonds, do not fall on 
any well-defined curve.  This is due to the fact that the damping matrix for this approach,  formed as a 
linear combination of mass and initial stiffness, is nonclassical1 when the stiffness changes. As may be 
seen from Figure 6, there is a considerable increase in the damping ratios for approach A.  For the lower 

 
1 For systems with very high nonclassical damping the damping ratios should theoretically be computed using a complex 
arithmetic based state-space approach instead of the modal strain energy approach.   For the case discussed herein, where the 
damping ratios are very low, there is virtually no difference between the damping ratios computed using these two approaches. 

   



modes, the damping ratio has increased by a factor of 2.5, which may have a very significant effect on the 
computed results.   
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FIGURE 4.  RATIO OF DAMPING RATIOS VS MODE NUMBER FOR STRUCTURE 

WITH UNIFORM STIFFNESS CHANGE 
 
For approach B, where the damping matrix is based on the tangent stiffness and on the original a0 and a1 
values (and is therefore classical), the damping values fall on the curve ( ) 0.5(0.183 0.00128 )ξ ω ω= + ω . 
This curve is identical to the curve for the elastic system, but the damping values have changed because 
the frequencies have changed.  As indicated in Figure 6, the damping in the first mode has effectively 
doubled, but the ratios for the other modes are close to the original values.   
 
For approach C, the damping curve in Figure 5 is given by ( ) 0.5(0.0.084 0.00213 )ξ ω ω ω= + , and the 
damping values at all frequencies are very close to those for the original system.  
 
As shown for the results of the uniform and nonuniform damage cases presented above, the actual 
damping obtained at each time step of a response history analysis depends on the method for computing 
damping (approaches A, B, or C), and on the damage state in the structure at that point in time.  It is clear 
that the largest increases in effective damping occur in approach A, where the damping matrix is based on 
the original system state.   
 
Approach B, which bases the damping matrix on the current tangent stiffness, but using the original 
proportionality coefficients a0 and a1, produces modal damping values that are different than the elastic 
system, but on the same Rayleigh damping curve as the original system.  Hence, and frequency shift to the 
left will generally result in higher damping in the mass proportional dominated lower modes, and lower 
damping in the stiffness proportional dominated higher modes.   
 
Approach C always produces damping values that are close to that of the original system.  However, this 
approach may be impractical due to the necessity to recompute the modal frequencies at each step.   It is 
noted that Leger and Dussalt (1992) recommend this approach, with the further stipulation that the two 

   



frequencies at which the Rayleigh damping is set be the first mode, and the lowest mode for which the 
cumulative effective mass is 90% of the total mass.   
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FIGURE 5.  DAMPING VS FREQUENCY FOR STRUCTURE  

WITH NONUNIFORM STIFFNESS CHANGE 
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FIGURE 6.  RATIO OF DAMPING RATIOS VS MODE NUMBER FOR STRUCTURE 

WITH UNIFORM STIFFNESS CHANGE 
 
A potential problem with approaches B and C is that the stiffness component of effective damping may be 
negative if the tangent stiffness for the structure at any step in the analysis is negative.  This can occur, for 
example, when the structure has significant damage and second order (P-Delta) effects are included in the 
analysis.  One way to avoid this problem is to not include the geometric stiffness in that part of the tangent 
stiffness on which the damping is based.   
 

   



In the previous discussion, it might be inferred that the increases in damping that may occur in association 
with approaches A and B are not desirable, and should be avoided.  This is not necessarily the case.  
Consider, for example, a reinforced concrete structure.  Prior to an earthquake, the damping properties of 
the structure are uniform throughout, and may be thought of as a material property (e.g. loss modulus).  
During the earthquake the individual members (beams, columns, walls) of the structure are damaged 
nonuniformly; there is very significant damage in the hinging regions and there is minor but not 
insignificant damage in the remainder of the member.  Most analysis programs ignore the fact that the 
damage in the remainder of the member contributes to the energy dissipation, and therefore to the 
damping in the system.  Approaches A and B may be tailored to include this behavior. 
 
3.2 The Effect of Local Stiffness Changes on Structures Modeled with Rayleigh Damping 
 
For any system the global stiffness changes are an accumulation of the changes in the individual elements.   
For the idealized structure of Figure 1, the global changes were represented by arbitrary changes in the 
system stiffness matrix.  The effect of local stiffness changes are now investigated, and to facilitate this 
investigation, each story of the structure of Figure 1 has been modeled as shown in Figure 7.  In this one-
story structure the lateral flexibility has two contributions; flexural deformations of the beams and 
columns, and concentrated rotational deformations in “plastic hinges” at the beam-column intersection.  
The properties of the beams, columns, and rotational springs were set to produce a story stiffness exactly 
equal to that for the structure shown in Figure 1.   
 
As modeled, each of the one-story bents has five degrees of freedom; one lateral displacement and four 
rotations, two at each beam-column joint.  The plastic hinge rotation is equal to the difference in the 
rotations at each joint.  The only mass that is active at each level is the mass associated with the lateral 
degree of freedom, and this mass is the same as the story mass of the structure depicted in Figure 1.  There 
are no rotational masses.    
 
When five of the one-story frames of Figure 7 are stacked on top of each other, the resulting structure has 
25 degrees of freedom.  When the massless rotational degrees of freedom are condensed out, the resulting 
structure has exactly the same stiffness matrix as the structure of Figure 1.  The frequencies for the system 
are tabulated in the second column of Table 1.  Rayleigh proportional damping as based on the initial 
stiffness is set to produce 2% damping in the first and third modes.  Hence, the damping curve for the 
structure is identical to that shown in Figure 2.  The equation for this curve is 

( ) 0.5(0.183 0.00128 )ξ ω ω= + ω . 
 
A response history analysis is performed for the structure using the El-Centro ground motion scaled to 
produce a peak ground acceleration of 0.62g.  Three different sets of properties were used, with the 
principal difference being the relative stiffness contributed by the beams and columns and rotational 
springs.  These properties are listed in Table 2.  For the first case, the beams and columns are effectively 
rigid, and the rotational spring is relatively flexible.  In the last case, the spring is very rigid, and the 
beams and columns are relatively flexible.  Case 2 represents an intermediate distribution of stiffness. The 
rotational springs are assumed to yield at a moment of 11250 in-k, and there is no strain hardening after 
yield.  Under this condition, each one-story frame has an identical lateral pushover curve. 
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FIGURE 7.  DETAILED STORY MODEL FOR 5-STORY STRUCTURE 
 
 

TABLE 2.  ANALYSIS PROPERTIES FOR INELASTIC RESPONSE HISTORY ANALYSIS 
 

Model 
Case 

Moment of Inertia of 
Beam and Column 

(in4) 

Rotational Stiffness of  
Bilinear Hinge 
(in-k/radian) 

1 100000000 5.60 x106

2 40000 1.046 x107

3 19000 2.885 x108

 
When an elastic analysis is performed for these systems the computed response histories are identical.  If 
the damping in the system is associated with only the five lateral degrees of freedom2, the inelastic 
responses are also identical.  When the damping matrix is based on the full 25 degree of freedom system 
the response histories are quite different.  These differences are evident in the response histories shown in 
Figure 8.  Only the first ten seconds of the computed response is shown. 
 
The roof displacement histories are shown in Figure 8(a).  The thin line in the figure is for the system with 
relatively flexible hinge springs, and the thick line is for the system with stiff springs.  The displacements, 
although different, are not tremendously different, and the analyst would have no reason to suspect the 
response given by the system modeled with stiff hinges.  The rotational velocity in the hinges at the lower 
level of the structure is given in Figure 8(b).  The differences here are more significant that in Figure 8(a).  
Note, however, that a typical analyst would not plot these rotational velocities, and he or she would still 
not be suspicious of the results.  
 
In Figure 8(c), the viscous moments histories in the lower level hinges are plotted.  Few programs that 
provide Rayleigh proportional damping have the capability to plot these curves, so the analyst may not 
even be aware that the moments exist3.  These moments are, however, extremely important.  For Model 1, 

                                                 
2 In this case the 5 by 5 damping matrix is expanded to a 25 by 25 matrix by filling massless rows and columns with zeros. 
3 It is noted that the author of this paper first became aware of the presence of these fictitious moments when he accidentally 
plotted them in a special post-processor he developed for use with Drain-2D.  It is the discovery of these moments that 
motivated this paper. 

   



which uses the more flexible hinge spring, the viscous moments are negligible.  For Model 2, and most 
particularly for Model 3, these moments are quite large, and exceed the moment capacity (11250 in-k) of 
the hinge.  These moments are completely fictitious, and do not exist in the actual structure.  They are a 
remnant of initial stiffness based Rayleigh proportional damping. 
 
The artificial viscous moments in the hinges are transferred to the beams and columns.  The viscous 
moments that are transferred into the columns appear in the output as elastic moments, and are added to 
the moment that results from the product of nodal displacements and the element stiffness.   These 
combined moments produce shears, the total of which for the lowest story is plotted in Figure 8(d).  These 
shears are the base shears.  As may be observed, the shears for Model 3 are more than twice the shears 
from Model 1, which are the correct values.   
 
The viscous moments that occur in the hinges are simply the product of the rotational deformational 
velocity, θ , the spring rotational stiffness Kθ, and the stiffness proportional damping constant a1.  When a 
spring with a reasonable stiffness is used, this product is insignificant because the stiffness proportional 
damping constant is quite low (0.00183 in the present case), as is the typical rotational velocity (less than 
1 radian/second in the current example).  The problem occurs when artificially high stiffness is used to 
model the hinges.  A similar problem may occur for friction dampers and gap elements. 
 
The problem described above occurs only when the damping is based on the initial stiffness.  When this is 
the only option in the program being used, the stiffness proportional damping constant a1 should be set to 
zero for artificially stiff elements.  Drain 2Dx provides this option, as do several other popular programs.  
If this can not be done, the analyst should attempt to reduce the stiffness of the offending element. 
 
Bernal (1994) analyzes a similar phenomenon in his paper.  He notes that the problem is associated with 
the fact that the nodes to which the springs are connected have no rotational mass, and suggests that a 
possible solution is to use Caughey damping with b values less than or equal to zero (see equation 7).  One 
example would be to base the damping on b = -1 and b = 0.  According to equation 7, this results in a 
damping matrix of the form .  Bernal’s suggestion has the effect of not assigning 
any stiffness proportional damping to massless degrees of freedom.   Note, however, that the problem will 
persist if some non-zero mass is assigned to the rotational degrees of freedom in the example problem.  
Another disadvantage to this approach is the use of the inverse of K in the first term.  The inverse is not 
particularly easy to compute, and it does not have the same storage profile as K.  This complicates solution 
efficiency.  If the principal goal is to eliminate those damping terms associated with massless DOF,  a 
much simpler approach is use C M

1
1C a MK M a M−

−= + 0

JJKα β= + where J is a diagonal matrix with ones at each dynamic 
DOF (with mass) and zeros at all massless DOF.  The proportionality constants α and β would be 
determined by trial and error, with the modal strain energy approach being used to find the damping in 
each mode.  It is noted that the damping matrix so-formed is nonclassical. 
 
A better solution is to use a tangent stiffness based damping, such as approach B or C described earlier.   
The best strategy, of course, is to eliminate the use of viscous damping altogether, and use frictional or 
hysteretic devices to represent inherent damping.   This does not add significant difficulty in the analysis, 
because a nonlinear approach is already necessary to accommodate the large-scale inelastic behavior.  
Additionally, frictional and hysteretic damping is much more in tune with the actual behavior of the 
structure than is viscous damping, which is entirely fictitious. 
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(a) Roof Displacement 
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(b) Hinge Rotational Velocity 
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(c) Hinge Viscous Moment 
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(d) Base Shear 

 
FIGURE 8.  RESULTS OF RESPONSE HISTORY ANALYSIS 

   



4. SUMMARY AND CONCLUSIONS 
 

In this paper the consequence of using Rayleigh proportional damping in the analysis of inelastic systems 
is discussed through theoretical development, and through example analysis of a simple 5-story structure.  
In the theoretical development, it is mentioned that the original motivation for the development of 
Rayleigh Proportional damping was to provide a damping matrix that is diagonalized by the undamped 
mode shapes.  When inelastic structures are analyzed, this benefit of proportional damping disappears. 
Nevertheless, the vast majority of commercial and research software continues to use Rayleigh damping.   
 
When it is assumed that the damping matrix is proportional to mass and initial stiffness, artificial damping 
may be generated in the lower modes, with the effective damping increasing several hundred percent.  
When the damping matrix is proportional to tangent stiffness but the proportionality coefficients are based 
on elastic stiffness, a moderate degree of artificial damping may be generated.  When the damping matrix 
is based on tangent stiffness and the proportionality constants are also based on tangent stiffness, there is 
no artificial damping.  Although significant artificial damping may be generated by use of Rayleigh 
damping, it cannot be said that the benefits are always detrimental.  For example, such increases in 
damping may be desired in the analysis of reinforced concrete structures where the additional damping 
represents damage in regions of the structure for which hysteretic energy dissipation is not provided. 
 
In some cases the use of initial stiffness proportional damping may produce extreme errors.  This occurs 
when rigid elements, used to model gap openings or plastic hinges,  have a change in state.  Following the 
change of state, large viscous damping forces may be generated.  These forces are the product of the post-
event deformational velocities multiplied by the initial stiffness and by the stiffness proportional damping 
term.  Such forces are artificial, and may be orders of magnitude greater than the actual strength of the 
element that resists the same deformations.   When the damping is based on initial stiffness, the best 
approach to avoid these artificial forces is to provide a stiffness proportional damping multiplier of zero 
for these elements.  An alternate approach is to develop an “auxiliary” damping  structure that is adjacent 
to the main structure.  The use of tangent stiffness proportional damping, when available, will also avoid 
the problem.  An even better solution would be to eliminate the use of viscous damping altogether, and 
utilize nonlinear frictional or hysteretic damping.  
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