
DYNAMIC ANALYSIS USING
MODE SUPERPOSITION

The Mode Shapes Used To Uncouple The
Dynamic Equilibrium Equations Need Not Be

The Exact Free-Vibration Mode Shapes

13.1  EQUATIONS TO BE SOLVED

The dynamic force equilibrium Equation (12.4) can be rewritten in the following
form as a set of N second order differential equations:
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All possible types of time-dependent loading, including wind, wave and seismic, can
be represented by a sum of “J” space vectors jf , which are not a function of time,
and J time functions g(t)j , where J cannot be greater than the number of
displacements N.

The number of dynamic degrees-of-freedom is equal to the number of lumped
masses in the system.  Many publications advocate the elimination of all massless
displacements by static condensation prior to the solution of Equation (13.1).  The
static condensation method reduces the number of dynamic equilibrium equations to
solve; however, it can significantly increase the density and the bandwidth of the
condensed stiffness matrix.  In building type structures, in which each diaphragm
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has only three lumped masses, this approach is effective and is automatically used in
building analysis programs.

For the dynamic solution of arbitrary structural systems, however, the elimination of
the massless displacement is, in general, not numerically efficient.  Therefore, the
modern versions of the SAP program do not use static condensation in order to
retain the sparseness of the stiffness matrix.

13.2  TRANSFORMATION TO MODAL EQUATIONS

The fundamental mathematical method that is used to solve Equation (13.1) is the
separation of variables.  This approach assumes the solution can be expressed in the
following form:

u Y(t) (t) =  Φ (13.2a)

Where Φ  is an “N by L” matrix containing L spatial vectors which are not a function of
time, and Y(t)  is a vector containing L functions of time.

From Equation (13.2a) it follows that

&

&

&&

&&u Y u Y(t) (t)        (t) (t) =  and  =  Φ Φ (13.2b) and (13.2c)

Prior to solution, we require that the space functions satisfy the following mass and
stiffness orthogonality conditions:

T T 2M  =  I and K  =  Φ Φ Φ Φ Ω           (13.3)

where I  is a diagonal unit matrix and 2Ω  is a diagonal matrix which may or may not

contain the free vibration frequencies.  It should be noted that the fundamentals of
mathematics place no restrictions on these vectors, other than the orthogonality
properties.  In this book all space function vectors are normalized so that the Generalized

Mass φ φn
T

nM = 1 .

After substitution of Equations (13.2) into Equation (13.1) and the pre-multiplication by
TΦ , the following matrix of L equations are produced:
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where j jp f =  TΦ  and are defined as the modal participation factors for time function

j.  The term njp  is associated with the n th mode.

For all real structures the “L x L” matrix d is not diagonal; however, in order to uncouple
the modal equations it is necessary to assume that there is no coupling between the
modes.  Therefore, it is assumed to be diagonal with the modal damping terms defined by

nn n nd  =  2ζ ω (13.5)

where n
ζ  is defined as the ratio of the damping in mode n  to the critical damping of the

mode [1].

A typical uncoupled modal equation, for linear structural systems, is of the following
form:

&& &y(t)  +  2 y(t)  +  y(t)  =  p g(t)n n n n n
2

n
j=1

J

nj jζ ω ω ∑ (13.6)

For three dimensional seismic motion, this equation can be written as

&& & && && &&y(t)  +  2 y(t)  +  y(t)  =  p u(t)  +  p u(t)  +  p u(t)n n n n n
2

n nx gx ny gy nz gzζ ω ω
(13.7)

where the three directional Mass Participation Factors are defined by

ni

T
n ip  =  -φ M  in which i is equal to x, y or z and n is the mode number.

Prior to presenting the solution of Equation (13.6) for various types of loading it is
convenient to define additional constants and functions which are summarized in
Table 13.1.  This will allow many of the equations presented in other parts of this
book to be written in a compact form.  Also, the notation reduces the tedium
involved in the algebraic derivation and verification of various equations.  In
addition, it will allow the equations to be in a form that can be easily programmed
and verified.
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13.3  RESPONSE DUE TO INITIAL CONDITIONS ONLY

If the “ n ” subscript is dropped, Equation (13.6) can be written for a typical mode
as

&& &y(t) +  2 y(t) +  y(t) =  ξω ω 2 0 (13.8)

in which the initial modal displacementy0  and velocity &y0  are specified due to

previous loading acting on the structure.   Note that the functions S t( )  and C t( ) ,

given in Table 13.1, are solutions to Equation (13.8).

Table 13.1.  Summary of Notation used in Dynamic Response Equations

CONSTANTS

ω ω ξD = −1 2       ω ωξ=           ξ ξ
ξ

=
−1 2

          a
t0

2= ξ
ω ∆

a a1 01= +                a
t2

1= −
∆

     a a a D3 1 2= − −ξ ω/         a a4 1= −

a a5 0= −                   a a6 2= −        a a a D7 5 6= − −ξ ω/         a a8 5= −

a D9
2 2= −ω ω          a D10 2= ωω

FUNCTIONS

S t e tt
D( ) sin ( )= −ξω ω               &( ) ( ) ( )S t S t C tD= − +ω ω

C t e tt
D( ) cos( )= −ξω ω             & ( ) ( ) ( )C t C t S tD= − −ω ω

A t C t S t1( ) ( ) ( )= + ξ              &&( ) ( ) ( )S t a S t a C t= − −9 10

A t S t
D

2

1
( ) ( )=

ω
                    &&( ) ( ) ( )C t a C t a S t= − +9 10

A t a a t a S t a C t3 2 1 2 3 4

1
( ) [ ( ) ( )]= + + +

ω

A t a a t a S t a C t4 2 5 6 7 8

1
( ) [ ( ) ( )]= + + +

ω
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The solution of Equation (13.8) can now be written in the following compact form:

y t A t y A t y( ) ( ) ( ) &= +1 0 2 0 (13.9)

This solution can be easily verified since it satisfies Equation (13.8) and the initial
conditions.

13.4  GENERAL SOLUTION DUE TO ARBITRARY LOADING

There are many different methods available to solve the typical modal equations.
However, the use of the exact solution for a linear load over a small time increment
has been found to be the most economical and accurate method to numerically solve
this equation within computer programs.  It does not have problems with stability
and it does not introduce numerical damping.  Since most seismic ground motions
are defined as linear within 0.005 second intervals, the method is exact for this type
of loading for all frequencies.

In order to simplify the notation, all loads are added together to form a typical modal
equation of the following form:

&& &y(t) +  2 y(t) +  y(t) =  R(t)2ζ ω ω (13.10)

where the modal loading R t( )  is a piece-wise linear function as shown in Figure

13.1.

R(t)

time

R  i

R  i-1

t

 
∆ t

Figure 13.1  Typical Modal Load Function
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The equation for the linear load function within the time step is by definition

R t
t

t
R

t

t
Ri i( ) ( )= − +−1 1∆ ∆

 (13.11)

where the time t is in reference to the start of the time step.  Now the exact solution
within the time step can be written as

y t A t y A t y A t R A t Ri i i i( ) ( ) ( ) & ( ) ( )= + + +− − −1 1 2 1 3 1 4 (13.12a)

where all functions are defined in Table 13.1.   Again, the solution can be easily
verified by substitution of Equation (13.12a) into Equation (13.10).  It is apparent
that the exact modal velocity and acceleration within the time step are given by

&( ) & ( ) & ( ) &

& ( ) & ( )y t A t y A t y A t R A t Ri i i i= + + +− − −1 1 2 1 3 1 4 (13.12b)

&&( ) && ( ) && ( ) &

&& ( ) && ( )y t A t y A t y A t R A t Ri i i i= + + +− − −1 1 2 1 3 1 4 (13.12c)

Equations (13.12a, b and c) are evaluated at the end of the time increment ∆t  and
the following modal displacement, velocity and acceleration at the end of the i th
time step are given by the following set of recurrence equations:

i i-1 i-1 i iy  =  A y  +  A y  +  A R  +  A R1 2 3 1 4& − (13.13a)

i i -1 i-1 i iy  =  A y  +  A y  +  A R  +  A R& &5 6 7 1 8− (13.13b)

i i -1 i-1 i iy  =  A y  +  A y  +  A R  +  A R&& &9 10 11 1 12− (13.13c)

The constants A1  to A12 , which are summarized in Table 13.2, need to be computed

only once for each mode.  Therefore, for each time increment only 12 multiplications
and 9 additions are required.  Modern, inexpensive personal computers can complete
one multiplication and one addition in approximately 10-6 seconds.  Hence, the
computer time required to solve for 200 steps per second for a 50 second duration
earthquake is approximately 0.01 seconds. Or, 100 modal equations can be solved in
one second of computer time.  Therefore, there is no need to consider other
numerical methods, such as the approximate Fast Fourier Transformation method or
the numerical evaluation of the Duhamel integral, to solve these equations.  Because
of the speed of this exact piece-wise linear technique, it can also be used to develop
accurate earthquake response spectra using a very small amount of computer time.
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Table 13.2.  Constants Used in Recurrence Equations (13.13)

A A t C t S t1 1= = +( ) ( ) ( )∆ ∆ ∆ξ

A A t S t
D

2 2

1= =( ) ( )∆ ∆
ω

A A t a a t a S t a C t3 3 2 1 2 3 4

1= = + + +( ) [ ( ) ( )]∆ ∆ ∆ ∆
ω

A A t a a t a S t a C t4 4 2 5 6 7 8

1= = + + +( ) [ ( ) ( )]∆ ∆ ∆ ∆
ω

A A t C t S t5 1= = +& ( ) &( ) &( )∆ ∆ ∆ξ

A A t S t
D

6 2

1= =& ( ) &( )∆ ∆
ω

A A t a a S t a C t7 3 2 2 3 4

1= = + +& ( ) [ &( ) &( )]∆ ∆ ∆
ω

A A t a a S t a C t8 4 2 6 7 8

1= = + +& ( ) [ &( ) &( )]∆ ∆ ∆
ω

A A t C t S t9 1= = +&& ( ) &&( ) &&( )∆ ∆ ∆ξ

A A t S t
D

10 2

1= =&& ( ) &&( )∆ ∆
ω

A A t a S t a C t11 3 2 3 4

1= = +&& ( ) [ &&( ) &&( )]∆ ∆ ∆
ω

A A t a S t a C t12 4 2 7 8

1= = +&& ( ) [ &&( ) &&( )]∆ ∆ ∆
ω
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13.5  SOLUTION FOR PERIODIC LOADING

The recurrence solution algorithm, summarized by Equation 13.13, is a very
efficient computational method for arbitrary, transient, dynamic loads with initial
conditions.  It is possible to use this same simple solution method for arbitrary
periodic loading as shown in Figure 13.2.  Note that the total duration of the loading
is from − ∞  to + ∞ and the loading function has the same amplitude and shape for

each typical period Tp .  Wind, sea wave and acoustic forces can produce this type

of periodic loading.  Also, dynamic live loads on bridges may also be of periodic
form.

T

pT pT pT pT
Time

F(t)

Mean
Wind
Pressure

Figure 13.2. Example of Periodic Loading

For a typical durationTp  of loading, a numerical solution, for each mode, can be

evaluated by the application of Equation (13.13) without initial conditions.  This solution
is incorrect since it does not have the correct initial conditions.  Therefore, it is necessary
for this solution y t( )  to be corrected in order that the exact solution z t( )  has the same

displacement and velocity at the beginning and end of each loading period.  In order to
satisfy the basic dynamic equilibrium equation the corrective solution x t( )  must have

the following form:

x t x A t x A t( ) ( ) & ( )= +0 1 0 2 (13.14)

where the functions are defined in Table 13.1.

The total exact solution for displacement and velocity for each mode can now be written
as

z t y t x t( ) ( ) ( )= + (13.15a)
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&( ) &( ) &( )z t y t x t= + (13.15b)

In order that the exact solution is periodic the following conditions must be satisfied:

z T zp( ) ( )= 0 (13.16a)

&( ) &( )z T zp = 0 (13.16b)

The numerical evaluation of Equation (13.14) produces the following matrix equation
which must be solved for the unknown initial conditions:

1
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1 2

1 2
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0

− −
− −
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(13.17)

The exact periodic solution for modal displacements and velocities can now be calculated
from Equations (13.15a and 13.15b).

13.6  PARTICIPATING MASS RATIOS

Several Building Codes require that at least 90 percent of the participating mass is
included in the calculation of response for each principal horizontal direction. This
requirement is based on a unit base acceleration in a particular direction and calculating
the base shear due to that load.  The steady state solution for this case involves no
damping or elastic forces; therefore, the modal response equations, for a unit base
acceleration in the x-direction, can be written as

n nxy  =  p&& (13.18)

The node point inertia forces, in the x-direction, for that mode are by definition

xnf  =  Mu  =  M y =  M&& &&(t) pn n nx nφ φ (13.19)

The total resisting base shear in the x-direction for mode n is the sum of all node point x
forces.  Or,

nx nx x n nx
2

V  =  - p   =  pTI M φ (13.20)
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The total base shear in the x-direction, including  L  modes, will be

x
n=1

L

nx
2

V  =  p∑ (13.21)

We can now define the participating mass in all three directions as a ratio of the total
mass in that direction by

mass
n=1

L

nx
2

x

X  =  

p

m
 

∑
∑

(13.22a)

mass
n=1

L

ny
2

y

Y  =  

p

m
 

∑
∑

(13.22b)

mass
n=1

L

nz
2

z

Z  =  

p

m
 

∑
∑

(13.22c)

If all modes are used, these ratios will all be equal to 1.0.  It is clear that the 90 percent
participation rule is intended to estimate the accuracy of a solution for base motion only.
It can not be used as an error estimator for other types of loading such as point loads
acting on the structure.  The SAP and ETABS programs produce the contribution of
each mode to these ratios.  In addition, an examination of these factors gives the engineer
an indication of the direction of the base shear associated with each mode.

13.7  STATIC LOAD PARTICIPATION RATIOS

For arbitrary loading it is useful to determine if the number of vectors used is adequate to
approximate the true response of the structural system.  One method, which the author
has proposed, is to evaluate the static displacements using a truncated set of vectors to
solve for the response due to static load patterns.  As indicated by Equation (13.1) the
loads can be written as
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  =  f g(t)
=1

J

j jF(t)
j
∑ (13.23)

If one solves the statics problem for the exact displacement uj  due to the load pattern f j

the total strain energy associated with load condition j is

E f uj j
T

j= 1

2
(13.24)

From the fundamental definition of the mode superposition method, a truncated set of
vectors defines the approximate static displacement uj  as

u yj n n
n

L

=
=

∑ φ
1

(13.25)

where, from Equation 13.6, the static modal response, neglecting inertia and damping
forces, is given by

y fn
n

n
T

j= 1
2ω

φ (13 .26)

The total strain energy associated with the truncated mode shape solution is

E f u
f

j j
T

j
n
T

j

nn

L

= =










=
∑1

2

1

2

2

1

φ
ω

(13.27)

A load participation ratio rj  can now be defined for load condition j as

r
E

Ej
j

j

= (13.28)

If this ratio is close to 1.0 the errors introduced by vector truncation will be very small.
However, if this ratio is less than 90 percent additional vectors should be used in the
analysis in order to capture the static load response.  Additional experience with this
factor is required in order to use it as an accurate error estimator for all problems.
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It has been the experience of the author that the use of exact eigenvectors is not an
accurate vector basis for the dynamic analysis of structures subjected to point loads.
Whereas, load-dependent vectors, which are defined in the following chapter, always
produce a load participation ratio of 1.0.

13.8  SUMMARY

The mode superposition method is a very powerful method used to reduce the
number of unknowns in a dynamic response analysis.  All types of loading can be
accurately approximated by piece-wise linear functions within a small time
increment.   An exact solution exists for this type of loading and this solution can be
computed with a trivial amount of computer time for equal time increments.
Therefore, there is no need to present other methods for the numerical evaluation of
modal equations when a computer program is used.

To solve for the linear dynamic response of structures subjected to periodic loading
it is only necessary to add a corrective solution to the transient solution for a typical
time period of loading.  Hence, only one numerical algorithm is required to solve a
large number of different dynamic response problems in structural engineering.

Participating mass factors can be used to estimate the number of vectors required in an
elastic seismic analysis.  The use of mass participation factors to estimate the accuracy of
a nonlinear seismic analysis can introduce significant errors; because, internal nonlinear
forces, that are in equal and opposite directions, do not produce a base shear.  A dynamic
load participation ratio is defined which can be used to estimate the number of vectors
required for other types of loading.


