
DYNAMIC ANALYSIS

                                                         Force Equilibrium Is Fundamental In
The Dynamic Analysis Of Structures

12.1  INTRODUCTION

All real physical structures, when subjected to loads or displacements, behave
dynamically.  The additional inertia forces, from Newton’s second law, are equal to
the mass times the acceleration.  If the loads or displacements are applied very
slowly then the inertia forces can be neglected and a static load analysis can be
justified.  Hence, dynamic analysis is a simple extension of static analysis.

In addition, all real structures potentially have an infinite number of displacements.
Therefore, the most critical phase of a structural analysis is to create a computer
model, with a finite number of massless members and a finite number of node (joint)
displacements, that will simulate the behavior of the real structure.  The mass of a
structural system, which can be accurately estimated, is lumped at the nodes.  Also,
for linear elastic structures the stiffness properties of the members, with the aid of
experimental data, can be approximated with a high degree of confidence.  However,
the dynamic loading, energy dissipation properties and boundary (foundation)
conditions for many structures are difficult to estimate.  This is always true for the
cases of seismic input or wind loads.

To reduce the errors that may be caused by the approximations summarized in the
previous paragraph, it is necessary to conduct many different dynamic analyses
using different computer models, loading and boundary conditions.  It is not
unrealistic to conduct 20 or more computer runs to design a new structure or to
investigate retrofit options for an existing structure.
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Because of the large number of computer runs required for a typical dynamic
analysis, it is very important that accurate and numerically efficient methods be used
within computer programs.  Some of these methods have been developed by the
author and are relatively new.  Therefore, one of the purposes of this book is to
summarize these numerical algorithms, their advantages and limitations.

12.2  DYNAMIC EQUILIBRIUM

The force equilibrium of a multi-degree-of-freedom lumped mass system as a
function of time can be expressed by the following relationship:

F F F F(t) (t) (t) (t)I D S +   +   =  (12.1)

in which the force vectors at time t  are

F(t)I is a vector of inertia forces acting on the node masses

F(t)D is a vector of viscous damping, or energy dissipation, forces

F(t)S is a vector of internal forces carried by the structure

F(t) is a vector of externally applied loads

Equation (12.1) is based on physical laws and is valid for both linear and nonlinear
systems if equilibrium is formulated with respect to the deformed geometry of the
structure.

For many structural systems, the approximation of linear structural behavior is
made in order to convert the physical equilibrium statement, Equation (12.1), to the
following set of second-order, linear, differential equations:

M u C u K u F&& &(t) (t) (t) (t)a a a +   +   =  (12.2)

in which M  is the mass matrix (lumped or consistent), C  is a viscous damping
matrix (which is normally selected to approximate energy dissipation in the real
structure) and K  is the static stiffness matrix for the system of structural elements.
The time-dependent vectors u(t)a , &u(t)a  and &&u(t)a  are the absolute node

displacements, velocities and accelerations, respectively.
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Many books on structural dynamics present several different methods of applied
mathematics to obtain the exact solution of Equation (12.2).  Within the past several
years, however, with the general availability of inexpensive, high-speed personal
computers (see Appendix Z) the exact solution of Equation (12.2) can be obtained
without the use of complex mathematical techniques.  Therefore, the modern
structural engineer, with a physical understanding of dynamic equilibrium and
energy dissipation, can perform dynamic analysis of complex structural systems.  A
strong engineering mathematical background is desirable; however, in my opinion, it
is no longer mandatory.

For seismic loading, the external loading F(t)  is equal to zero.  The basic seismic

motions are the three components of free-field ground displacements u(t)ig  that are

known at some point below the foundation level of the structure.  Therefore, we can
write Equation (12.2) in terms of the displacements u(t) , velocities &u(t)  and

accelerations &&u(t)  that are relative to the three components of free-field ground

displacements.

Therefore, the absolute displacements, velocities and accelerations can be eliminated
from Equation (12.2) by writing the following simple equations:

u u I I I(t) (t) u(t)  +  u(t)  +  u(t)a x xg y yg z zg =   +  

& & & & &u u I I I(t) (t) u(t)  +  u(t)  +  u(t)a x xg y yg z zg =   +  (12.3)

&& && && && &&u u I I I(t) (t) u(t)  +  u(t)  +  u(t)a x xg y yg z zg =   +  

where iI  is a vector with ones in the “i” directional degrees-of-freedom and zero in

all other positions.  The substitution of Equation (12.3) into Equation (12.2) allows
the node point equilibrium equations to be rewritten as

Mu Cu Ku M M M&& & && && &&(t) (t) (t) - u(t)  - u(t)  - u(t)x xg y yg z zg +   +   =  (12.4)

where M MIi i= .
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The simplified form of Equation (12.4) is possible since the rigid body velocities and
displacements associated with the base motions cause no additional damping or
structural forces to be developed.

It is important for engineers to realize that the displacements, which are normally
printed by a computer program, are relative displacements and that the fundamental
loading on the structure is foundation displacements and not externally applied loads
at the joints of the structure.  For example, the static pushover analysis of a
structure is a poor approximation of the dynamic behavior of a three dimensional
structure subjected to complex time-dependent base motions.  Also, one must
calculate absolute displacements to properly evaluate base isolation systems.

There are several different classical methods that can be used for the solution of
Equation (12.4).  Each method has advantages and disadvantages that depend on the
type of structure and loading.  To provide a general background for the various
topics presented in this book, the different numerical solution methods are
summarized below.

12.3  STEP BY STEP SOLUTION METHOD

The most general solution method for dynamic analysis is an incremental method in
which the equilibrium equations are solved at times ∆ ∆ ∆t  t  t, 2 , 3 ,  etc.  There are

a large number of different incremental solution methods.  In general, they involve a
solution of the complete set of equilibrium equations at each time increment.  In the
case of nonlinear analysis, it may be necessary to reform the stiffness matrix for the
complete structural system for each time step.  Also, iteration may be required
within each time increment to satisfy equilibrium.  As a result of the large
computational requirements it can take a significant amount of time to solve
structural systems with just a few hundred degrees-of-freedom.

In addition, artificial or numerical damping must be added to most incremental
solution methods in order to obtain stable solutions.  For this reason, engineers must
be very careful in the interpretation of the results.  For some nonlinear structures,
subjected to seismic motions, incremental solution methods are necessary.

For very large structural systems, a combination of mode superposition and
incremental methods has been found to be efficient for systems with a small number
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of nonlinear members.  This method has been incorporated in the new versions of
SAP and ETABS and will be presented in detail later in this book.

12.4  MODE SUPERPOSITION METHOD

The most common and effective approach for seismic analysis of linear structural
systems is the mode superposition method.  This method, after a set of orthogonal
vectors are evaluated, reduces the large set of global equilibrium equations to a
relatively small number of uncoupled second order differential equations.  The
numerical solution of these equations involves greatly reduced computational time.

It has been shown that seismic motions excite only the lower frequencies of the
structure.  Typically, earthquake ground accelerations are recorded at increments of
200 points per second.  Therefore, the basic loading data does not contain
information over 50 cycles per second.  Hence, neglecting the higher frequencies and
mode shapes of the system normally does not introduce errors.

12.5  RESPONSE SPECTRA ANALYSIS

The basic mode superposition method, which is restricted to linearly elastic analysis,
produces the complete time history response of joint displacements and member
forces due to a specific ground motion loading [1,2].  There are two major
disadvantages of using this approach.  First, the method produces a large amount of
output information that can require an enormous amount of computational effort to
conduct all possible design checks as a function of time.  Second, the analysis must
be repeated for several different earthquake motions in order to assure that all the
significant modes are excited, since a response spectrum for one earthquake, in a
specified direction, is not a smooth function.

There are significant computational advantages in using the response spectra method
of seismic analysis for prediction of displacements and member forces in structural
systems.  The method involves the calculation of only the maximum values of the
displacements and member forces in each mode using smooth design spectra that are
the average of several earthquake motions.  In this book, we will recommend the
CQC method to combine these maximum modal response values to obtain the most
probable peak value of displacement or force.  In addition, it will be shown that the
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SRSS and CQC3 methods of combining results from orthogonal earthquake motions
will allow one dynamic analysis to produce design forces for all members in the
structure.

12.6  SOLUTION IN THE FREQUENCY DOMAIN

The basic approach, used to solve the dynamic equilibrium equations in the
frequency domain, is to expand the external loads F(t)  in terms of Fourier series or

Fourier integrals.  The solution is in terms of complex numbers that cover the time
span from -∞  to ∞ .  Therefore, it is very effective for periodic types of loads such
as mechanical vibrations, acoustics, sea-waves and wind [1].  However, the use of
the frequency domain solution method for solving structures subjected to earthquake
motions has the following disadvantages:

1. The mathematics, for most structural engineers including myself, is difficult to
understand.  Also, the solutions are difficult to verify.

2. Earthquake loading is not periodic; therefore, it is necessary to select a long time
period in order that the solution from a finite length earthquake is completely
damped out prior to the application of the same earthquake at the start of the next
period of loading.

3. For seismic type loading the method is not numerically efficient.  The
transformation of the result from the frequency domain to the time domain, even
with the use of Fast Fourier Transformation methods, requires a significant
amount of computational effort.

4. The method is restricted to the solution of linear structural systems.

5. The method has been used, without sufficient theoretical justification, for the
approximate nonlinear solution of site response problems and soil/structure
interaction problems.  Typically, it is used in an iterative manner to create linear
equations.  The linear damping terms are changed after each iteration in order to
approximate the energy dissipation in the soil.  Hence, dynamic equilibrium,
within the soil, is not satisfied.
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12.7  SOLUTION OF LINEAR EQUATIONS

The step-by-step solution of the dynamic equilibrium equations, the solution in the
frequency domain, and the evaluation of eigenvectors and Ritz vectors all require the
solution of linear equations of the following form:

AX B =  (12.5)

Where A is an ’N by N’ symmetric matrix which contains a large number of zero
terms.  The ’N by M’ X displacement and B load matrices indicate that more than
one load condition can be solved at the same time.

The method used in many computer programs, including SAP2000 [5] and ETABS
[6], is based on the profile or active column method of compact storage.  Because
the matrix is symmetric, it is only necessary to form and store the first nonzero term
in each column down to the diagonal term in that column.  Therefore, the sparse
square matrix can be stored as a one dimensional array along with a N by 1 integer
array that indicates the location of each diagonal term.  If the stiffness matrix
exceeds the high-speed memory capacity of the computer a block storage form of the
algorithm exists.  Therefore, the capacity of the solution method is governed by the
low speed disk capacity of the computer.  This solution method is presented in detail
in Appendix C of this book.

12.8   UNDAMPED HARMONIC RESPONSE

The most common and very simple type of dynamic loading is the application of
steady-state harmonic loads of the following form:

F  =  f(t) (  t)sin ω (12.5)

The node point distribution of all static load patterns, f , which are not a function of
time, and the frequency of the applied loading, ω , are user specified.  Therefore,

for the case of zero damping, the exact node point equilibrium equations for the
structural system are

Mu Ku f&& sin(t) (t)  ( t) +   =  ω (12.6)
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The exact steady-state solution of this equation requires that the node point
displacements and accelerations are given by

u v u v(t) =  (t) =  - ( t) ,       ( t)sin && sinω ω ω2 (12.7)

Therefore, the harmonic node point response amplitude is given by the solution of
the following set of linear equations:

[  -  ]  =         or     =   K M v f Kv fω 2 (12.8)

It is of interest to note that the normal solution for static loads is nothing more than a
solution of this equation for zero frequency for all loads.  It is apparent that the
computational effort required for the calculation of undamped steady-state response
is almost identical to that required by a static load analysis.   Note that it is not
necessary to evaluate mode shapes or frequencies to solve for this very common type
of loading.  The resulting node point displacements and member forces vary as
sin( t)ω .  However, other types of loads that do not vary with time, such as dead
loads, must be evaluated in a separate computer run.

12.9  UNDAMPED FREE VIBRATIONS

Most structures are in a continuous state of dynamic motion because of random
loading such as wind, vibrating equipment, or human loads.  These small ambient
vibrations are normally near the natural frequencies of the structure and are
terminated by energy dissipation in the real structure.  However, special instruments
attached to the structure can easily measure the motion.  Ambient vibration field
tests are often used to calibrate computer models of structures and their foundations.

After all external loads are removed from the structure, the equilibrium equation,
which governs the undamped free vibration of a typical displaced shape v, is

   0KvvM =+&& (12.9)

At any time the displaced shape v may be a natural mode shape of the system, or
any combination of the natural mode shapes.  However, it is apparent the total
energy within an undamped free vibrating system is a constant with respect to time.
The sum of the kinetic energy and strain energy, at all points in time, is a constant
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and is defined as the mechanical energy of the dynamic system and can be
calculated from:

  EM  KvvvMv TT

2

1

2

1 += && (12.10)

12.10  SUMMARY

Dynamic analysis of three dimensional structural systems is a direct extension of
static analysis.  The elastic stiffness matrices are the same for both dynamic and
static analysis.  It is only necessary to lump the mass of the structure at the joints.
The addition of inertia forces and energy dissipation forces will satisfy dynamic
equilibrium.  The dynamic solution for steady state harmonic loading, without
damping, involves the same numerical effort as a static solution.  Classically, there
are many different mathematical methods to solve the dynamic equilibrium
equations.  However, it will later be shown in this book that the majority of both
linear and nonlinear systems can be solved with one numerical method.

Energy is fundamental in dynamic analysis.  At any point in time the external work
supplied to the system must be equal to the sum of the kinetic and strain energy plus
the energy dissipated in the system.

It is my opinion, with respect to earthquake resistant design, that we should try to
minimize the mechanical energy in the structure.  It is apparent that a rigid structure
will have only kinetic energy and zero strain energy.  On the other hand, a
completely base isolated structure will have zero kinetic energy and zero strain
energy.  A structure cannot fail if it has zero strain energy.
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