OpenSees Command
Language Manual

Software Authors:

Frank McKenna, Gregory L. Fenves, et al.

Manual Authors:

Silvia Mazzoni, Frank McKenna, Gregory L. Fenves, et al.

OpenSees release 1.6

February 2005

Printed on 27 February, 2005

Contents

Introduction

(N[0 2= 11 o] o PR TT PRI
(0] 0V, 110 | o | SR TT RO
Introduction to the Tcl command language
Tcl Commands FOrMat.......c.ovveviiiiee i
Example Tcl Commands.........ccocveeieeeiiiiiiiiiieeee e
Additional TCl RESOUICEScoviiviiiiieiiiiieeeriieee e
OpenSees Interpreter.......oooeeee e,

OpenSees

ModelBUilder ODJECE.........uvviiiiiiie e
DOmMaiN ODBJECT........eeiiiiiiiie e
Recorder ODJECLuuiiiiiiiiiiii e
ANAIYSIS ODJECT......eiiiiiiieii e

Model-Building Objects

model Command

Basic Model BUIIAET.........uueiiiiiiiieeie e
build CommMaNdcovveeeiiiiiieeee e

node Command

mass Command

constraints objects

Single-Point CONSLraiNtS..........oovviiiiiieee e
FiIX COMMANG ...
FiXX COMMANG ...
fIXY COMMANG.......ooiiiiiiiiii e
fIXZ COMMANG ...
Multi-P0oint CONSLrAINTScoeiiiiiiieiiiiiie e
equalDOF ComMmaNdccevveeeiiiiiiiiiee e e e e
rigidDiaphragm Commandcccccceevviviiiiiinnee e,
FgIdLINK CoMMANeevviiiiiiiiiiiiee e

uniaxialMaterial Command

Contents iv

EIAStiC MAterialccooeeieieie e 35
Elastic-Perfectly PIastic Material...............ueiiiiiiiiiiiiiie et 36
Elastic-Perfectly Plastic Gap Materialcooiiiiiiiiiiaiiei e 38
Parallel MAterial.............oiii ittt e e e e e e e s bbb e e e e e e e e e e anbabe e e e e e aannees 39
SEMHES MALETIAL ...eeieiiiiie ettt ettt e e sttt e e e sttt e e e snbe e e e e snbaeeeesntbeeeesbbeeesanbeeeeeane 40
[P U00 Lo o TqTo Y= (=T - SRR 42
S (T 0 1Y o1 (T 4 | PRSP 43
(0] g o3 £ (0N Y = (= - | SRR 47
Elastic-NO TeNSION MALEIIALccoiiuiiiiiiiiiii et e e 51
L 1A (=T (= (oo (Y - SR 52
ViISCOUS MALEITALuuieiiiiiiriieiiiiiit e aaaa e aa s aaaaaaannaaaanasn s nannsnsnsnsnsnsssnnnnnnnnns 54
PINCHINGZ MAEEIIAL.......ueiieiiiieie it ceiee st e e a e e e e st e e e s st e e e s nba e e e estaeaeaansaeeeeannreeeannes 55
PINCHING4 Uniaxial Material Model DiSCUSSION.........ccuiieiiiiiiiiiiiieie e issiiieeeee e e e s e ssireaeeeee e s ennes 61
FEABAS MALEITAIS ...ttt e ettt e e e e e e e e e anbb b e e e e e e e e e e ennbebeeeeeeaannnnes 73
CONCIELEOZ MALEITALeeeeeiie ettt ettt e e e e e et e e e e e e e e st bbb e e e e e e e e s annnneeaeeeaan 73
CONCIELEO3 MALEITALeeeeeiie ettt ettt e e e e e et e e e e e e e e s et bbe e e e e e e e e s annbneeaeeeaans 79
Steel02 Material -- Giuffré-Menegotto-Pinto Model with Isotropic Strain Hardening................... 83
20T oo [0 1Y o =T - PRSP 88
0] o (2 1Y o =T - PRSP 88
Hyster_1: Bilinear Hysteretic Model with Damage...........cooiviiiiiiiiiie e 89
PyTzQz Uniaxial MAteriallSccuieeiiiiiiiiiiieie e sttt e s s s e e e e e e s e e e e e e e s s s e e e e e e e e e ennenes 99
PYSIMPIEL MALEIIALceoiiiiiieeiiei ettt sttt e e et e e e s abn e e e e aae e e e enees 929
TZSIMPIEL MALETIAL.eeeeiiiiiii et et e e s sbre e e s anb e e e enees 100
QZSIMPIEL MALETTAL.....ceeiiiiiii ettt e e st b e e s ennb e e e 101
PYLIGL MAEIIAL ...t e ettt e e e e e e s e st e e e e e e e e s e s nnbeeae e e e s 102
L4 B (o [(Y oY =T - | TP PERPT PP 103
PySImMple1Gen COMMAN...........ouiiiiiiiiiiie et e e e e e e s b e e e e e e e e e s e anbbreeeaaaeas 105
TZSIMPIELGEN COMMANG........coi it e e e e e e e s e s r e e e e e s s e saenbrereeaeeesanannreees 106
nDMaterial Command 108
Elastic 1SOtropic Materiallooeiieiiiiiiiiiiiee e e e s e e e e e s s e e e e e e e annrraneeeeeenn 108
I A o o T o 1 Y 1Y = L =T T | SRR 109
Plane Stress Material ..o 109
Plate FIDer Materialcccoooooiiiiie e 110
Template Elasto-Plastic Material............ccoiiiiiiiiiiiiie e 110
FluidSolidPorousMaterial Materialoooiiiiiiiiiiiie e 115
UPAAEMALEIIAISTAGE ... eeeeeeiee ettt ettt e e e e et e e e e e e e s et e e e e e e e e e s e annnbeeeeas 116
PressurelndependMultiYield Materialooo i 117
(U] oLo Eo LAY F= L (=T A=] = Lo = PR 120
(U] oLo Eo L (=] = T =g =] (Y PR 121
PressureDependMultiYield Material.............cooeeeeiiiiiiiiiiiee e 122
(U] oLo Eo L o1V F= 1= =] = Lo = SRS 127
(U] oL Eo L (= =T =g =] () SRRSO 128
section Command 129

Contents \

L Eo TSy (RS Y o 1[0 o [P 130
0L [P Dt IS Y=ot 1 (0] o PR 131

] TS GRS YT (10] o 132
Straight Layer COMMENG ..ottt e e e e e e s st e e e e e e e e s e s snnbreaeeeaeas 138
Circular Layer COMMANGcccuuiiiiieee et e e e s s e e e e e e s s st ae e e e e e e s e s sante e e e e eaeessssannrnneeeees 139

Y =To 10 g I Yo [o | (=T F- 1 (] SRR 141
Elastic MemMBrane Plate SECHONiiiiiiieitee ettt e e s e et e e e e e e e s et e s e e e s eeaaaes 144

[Eo Y (SR o <Y G T=Tox 1o o I 144

Y[Tg=Tot 1T g T=T IS T=Tox 1 o IR 145
element Command 146
BT TSR =T 1= o TR 146
CorotatioNal TrUSS EIBMENT.......ccoeee et e e s e e e e e e e e e e s s ab e e e abaaas 147
Elastic Beam Column BIBMENT...........oiieieie et e e e e e et e s e e e e aaaas 148
NonLinear Beam-Column EIEMENES.ooiiiieii et e e e e e e e e 149
Nonlinear Beam ColumMN EIEMENT........coooiiiiiiiie et e e e e e e r e e e e e e s eeaaaes 149
Beam With HINGES EIBMENToeeiiii et e e e e e e e e e st r e e e e e e an 150
Displacement-Based Beam-Column EIEMENL.............c.ooeviiiiiiiiiiiiieece e 151

=Y o B I =T oo 11 g [T 1= o PR 152

=Y o T I =Y oo 11 [T g =T o | S 152
Zero-Length Section EIEMENTviiiiiiiiii e e e e 153
Quadrilateral EIBMENTS........ciiiii e e r e e e e e s e st e e e e e e e e s nnrraaeeaee s 154

L@ U= o [T 0 4 1= o | PRI 154

] =] I [T 0 =T 0L T 155

Bbar Plane Strain Quadrilateral Element ... 155
Enhanced Strain Quadrilateral Element..............cooooii 156

2] (10 S = (= 1 11T 41 T 157
Standard BriCK EIEMENTooeeeiii et e e e e e e e bbb e e e s e s e e et e s e e s s eeebabaanes 157

2] 0T g = o] L = (=T 0[] | P 158

Eight Node BriCK EIBMENTouiiiiiii e e e e e s e e e e e e e s s anr e e e e aeeeeanes 160
Twenty NOde BriCk EIMENL.........ooi e r e e e r e e e e e s nneeees 162

LU oL I =Y =T g1 o | PR 164
FoUurNodeQUAAUP EIEMENTooiiiiieiiiieiieee e e e e s et e e e e e e s e snnrnreeeeeee e s 165
BeamCoIUMNIOINT EIEMEBNT....... ettt e et e et e e e et e e e s e s e s eaaeeeeeaans 166
Beam-Column Joint ElEmMENt DiSCUSSIONuuiiietiee e et e et e e et e e st e e et e e e s e s e s eaaeeeeenans 171
Beam-Column Joint Element Discussion 171
block Command 193
(o] [o1ed 724 B I @da] 121 1 1= 1 (o T 194

(o] [o1ed 2T D I @da] 121 1 = (o T 196
region Command 198
Geometric Transformation Command 200
[T TST= T = T a1y (o] = Lo) 200
P-Delta TranSTOIMELIONuiiieee ettt et e e et e et e e e e et e e e e eaa s e s saa e e sateessssaseseannseseeees 206
Corotational TranNSTOrMATION.ccue ittt e e e e e e et e e et e e e et e eeeaareseaaseeeeaaeas 207
Time Series 208

Contents Vi

(006 0 15] =101 B T 4TSI (1S TTT 209
LINEAT TIME SEIIES ..ot iiieee ittt e et et e e ettt e et e e e e e e e e s et e e e eata e s saaass s st e essaansessannaeseres 209
ReCtaNQUIAY TIME SIS, ettt e et e e e e e s e bbb et e e e e e e s abbbbeeeaaaeaeaans 210
SINE TIME SIS ...ttt e e et e et et e et e e e et e e e eaa s s et s e saba s essaaa e ssaaeeeesnrasss 211
e g I T (SIS LT AT 212
pattern Command 214
{1 F= LT TN = U1 (= 1 o S 214
[z To I @011 41 g T= 1o o [N 215
LS o JX @ o1 13- T [PSP 216
(=1 (=] Mo = Vo I @a] 4 a1 010 T= 1o o IR 216
UNITOrMEXCITATION PAIEINoieeieieie ettt e e e et e e e e e e e e ea e e s esaeeesabaseessanseserees 216
MUILIPIESUPPOIT PATEIN ...ttt e e e e e e e e e e e e e e e ann e e eeaaeannes 217
fo]fe] W] ale|\Yi e)1(o] s W @e]a a1t o= 1o o TP PPTPT PP 218
el E= T I T {010 g Lo 1Y/ (0] 1] o T 218
Ta1e=Tq oTo] F=1 (=To I €] (o 18] o 1Y, o] i o] o N USSR 219
iIMPOSEdMOtION COMMANTuiiiiiiie e e e e e e e e e e e s st a e e e e e e e e e sannrnraeaeeaeeeas 219
Recorder Objects 221
[N LoT0 (ST d=Toto] (o [T CO 221
ENVEIOPENOAE RECOIUETuiiiiiiie e iiieiiee e st e e s e s e e e e e s e s s e e e e e e e s e snnanneeeeeeeeeanns 222
(D LA R =T oT0] (o (=] TP 223
L LT g LT LA R =TT 0] (o [T 224
ENVEIOPEEIEMENT RECOIUEeeiiiiiiie ittt e ettt e e e e e e s e abe e e e e e e e e e ena 226
DISPIAY RECOIUEN ...ttt e e e e ettt e e e e e e s b bbb e e e e e e e e e snnbbbeeeeaaeaaannns 227
[ad [0 = L=ToT0] {0 [T T 228
Playback COMMAN........cciiiiiiiiiieie e e e e e s e s e e e e e e e s e st r e e e e e e e e s e s sanreaaeeaeens 228
Analysis Objects 229
constraints Command 232
[T I O] 1) (= 111 234
Penalty MEthOQoeiiiie e e e e e e e e s e e e e e e e e s snnnnraneeeeeeann 234
(= To] 2= T o L= Y U] L] o] =T PP OO PR PPPPPPPPRP 235
TransSfOrMatioN METNOiiei et e et e e e e et e e e e et e e e saae e e sebeeseeatsaaees 236
numberer Command 237
Plain NUMDETEr ... 237
ROV I VLU T 0] o =T <Y T 238
system Command 239
[2F= e Lo [T L=t =1 ST 240
2 T= 1010 RST od IS T] 240
L0111 (SIS o ST 240
SPArSEGENETAI SOEo iiiiii ittt skt s et e s b e e e e 240
LT g o Ted] O 241
S o TS T o B IR @ RSP RR 241
test Command 242
N[0T g g A IO Ta] 0Tz 1 F=Y (o1 T =T T 242
Norm Displacement INCrEMENE Tccoiiiiiiiie e e e e s e e e e e e e s s st arrereeaeeeas 243
[o |V o (=T 0 0 T=] o | O S PSP PP PR 244

algorithm Command 245

Contents Vii

(g T= T Y[o] 411 1o o PP PO PPPPPOPPPRP 245
NEWLON AIGOITTNM ...ttt e e e e ettt e e e e e e s s abbre e e e e e e e annns 245
Newton with Line Search AlQOrithimoeiiiiii e 246
Modified NeWLtoN AIGOITENIM ... e e e e e e ee e e e e e 247
Krylov-Newton AlGOItNM ..o e e e e e e e e e e s e sanraeeeeeeeeanes 247

2T IR 2N o o] 111 21 1o TSP 247
[T [T o 1N o o] 111 0 o ¢ PRSPPI 248
integrator Command 249
(0= To IO o 1 1 o | S SOPRERR 250
DiSPlacemMENt CONIOL........eiiiiiiiii ettt e e et e e s st e e e e sabbe e e e abaeeeaas 251
Minimum Unbalanced Displacement NOIMM.........ccoiuiiiiiiiiiiieiieie e 252
AFC-LENGIN CONIOL ...ttt e e e e et e e e e e e s e s aanbbeeeeeaae e e e sreneees 252
LN g F= T Q1YY 1 VoY PR 253
HIIDEI-HUGNES-TAYION ...ttt e e e e e s bbb e e e e e e e e e s abebeeeeaaeaannns 254
analysis Command 256
) =i Y g T= 1] SRR 256

I LT = LA = 1] R 257
VariableTranSIENt ANAIYSIS.....cuuiiiiii e e e e e e e e s e s e e e e e s s s e e e e e e e ssrsnnbereeeeeessnnrnreees 258
rayleigh command 259
eigen Command 260
analyze Command 261
dataBase Commands 262
FileDatastore COMMANG ..o e e e e e e e e aaaes 262

ST V7= 3 O o1 1] .= [o [P PRPNE 263
(=TS (0] (=3 @] 141 1.4 F= L o 1SRRI 263
Miscellaneous Commands 264
111 8@ '] 10 - 2 o SRR 264

(=S Ao 121 1 2= 1o 1SR 265

WIPE COMMEBING ...ttt e e st e e e e b b e e e et b e e e e et b e e e e b e e e e e abeeennnees 265
WIPEANAIYSIS COMMANTiiiiiiiiiiiee ittt sttt e e e st e e s et e e s anbe e e e aneee 265

([=To [@Fo] g 1<) A @] 151 71 o Vo U 266
OEtTIME COMIMANG....... ittt e e e e e e ettt e e e e e e e s e e anbbe e e e e e e e e s e aanbbeeeeeaeeeeaannees 266
NOAEDISP COMMANToiiiiiiiiitiiit ettt e et e e e e e e e s ab bttt e e e e e s s bbbaeeeaaaeeeaanbbbeeeeaaaaeanes 266

{4 To [T TN @] 41 4= T T 1R UUUUURURS 267

PlaY COMMEANG ...t e e e e e s e s e e e e e e s e saaa b aeeeeeeeseaaatbsaeeeeeeesesnnrnneeaeans 267

How To.... 268
0T @ 0= ST 269
.DEfINE UNItS & CONSLANTS .. .eiviiiiisiiiiiiiii et s s e e e e e s s st re e e e e e s e s b e e e e e e e s e nnnneees 272
...Generate Matlab COMMANASuuiiiiiiiiiiii e nans 273
B = {1 L= ol I o o Yot =Y [V SRRSO 273

I =T Lo Il (=T € T U (1T RRRRRRRROPPPPIRS 275
BUIIAING THE MOGEL......coiiieiei et e e et e e e e e e e s abe e e e e e e e aanes 276
...Define Variables and Parameters........cooieii 276

...Build Model and Define NOAESccccooeieiiieeeie e 278

...Build Model and Define Nodes using Variables..........ccccccoviiiiieiiee e iccciiieeeee e 279

B L=y i [o (=T T | P RSRR 280

I L= i [[T 4 1=) RPN 281

Contents Viii

DEfiNING OULPUL ...ttt ettt e e s sttt e e s st b et e e e aabe e e e e sabb e e e e abbeeeesbeeeeeans 282
...Define AnalysiS-OUtput GENEIALIONeeiiiiiiiiiiiiiieei et 282
...Define Data-Plot DUrNg ANAIYSISc..uiiiiiiiiaii e 283

LT\ o = Lo RSP UUP PRI 283
.DEfINE Gravity LOAAS ... e e bre e e e e e e e s eennes 283
o RUN Gravity ANGIYSIS.....ccoiiiiiiiiiiiie et e e e e e e s e e e e e e s s e e nntraaeeeaeaeanannns 284

S = ([Y g = 1] SRR 284
...Define Static PUShOVEr ANAIYSIS.......c..uviiiiiiee s 284
...RUN Static PUShOVET ANGIYSIS.....ciiioiiiiiiiiiice st e e e e e e s nnes 285

YT L g TTo A g = Y SO 286
...Define Dynamic Ground-Motion ANAIYSISccoiiiiiiiiiiiiee e 286

...Run Dynamic Ground-Motion ANAIYSISccoiiiiiiiiiiiiee e 287

...Combine INPUt-File COMPONENTSouuiiiiiiiiiie ettt e e sbn e e e anes 287

o :RUN Parameter STUAYueiiiiiiiiii ettt e e e e e e e ab e e e e e e e e e anaeeas 288

...Run Moment-Curvature ANalySiS 0N SECLIONcciiiiiiiiiiiiiiii e 289

...Determine Natural Period & FrEQUENCYc.uuuiiiiiiaiiiiiiieiie ettt a e 291

Getting Started with OpenSees 293

1] oo (U1t i o] o FO SRR 294

DOWNIOAA OPENSEES ..covveeeeiiciiiieie e e e e ettt e e e e e st r e e e e e s s st eeeeaeesssasssteneeaeeeesnssnreenreeeeeaans 295

0T @ 0= ST T 297

Problem DefiNItIONiiii e e e e e e s e s r e e e e e s e annrraeeae e e ana 301

VT To [I 2 T 1o =T S SRERP 302

N[0 o 1= USRI 303

[1= 0 0T o] £ TP UPTP T OUPURRPTT 305

T ot o] (o L= (=P PTT R TUPPPRRPPRT 306

Summary of Model-Building INPUL FIleuuiiii e 306

(0= 1o 53 T To I Y g F= 11 L USRS 309

I o = To o =3 i1 71 1o) o (SR PPRPORPPRR 309

2. Analysis definition and fEAUIESoocciiiiii e 310

3. ANAIYSIS EXECULIONeeiiiiiiei e et e e s e e e e e e e s e e e e e e s s e b e e e e aee e s s annbeaneeeeeeaeanneees 311

LT =11 20 10 = Lo £ PR 311

SUMMArY Of GraVity LOBUS.uvviiieiiiiii ettt e e e e snnees 314

Lateral Loads -- StatiC PUSNOVETuuiiiiiiee et e e e e 315

Lateral Loads -- Cyclic Lateral LOAMccoiuiiiiiiiiiiieiiiiee ettt 316

Lateral Loads -- Dynamic ground MOIONc.oiiiuriiieiaae et siiieee e e e e e e snrnaeeeea e e as 317

Getting Going with OpenSees (under development) 321

Problem DefiNitIONiiiiii ettt e e e e e e e rr e e e anreaeean 322

V0o [I 21011 o 1T PRSPPI 323

Y= L= o] LTS3 T oo I o 1 £ PP 323

Y ToTo L= BT 1o =T R TPPRPRTPPRRN 325

Nodal Coordinates & Masses, Boundary CoNditioNScccvvveirireeiiiisiiiiiree e e seveeeeeee e 326

= U= =R PRSRRR 327

EIEMENTt CrOSS SECHION.ciiiiieiiiii et e ettt e et r e e e e e e e sttt e e e e e e s aasaeebeeeeaaeeesasnnnreeeeaaeeannes 328

Elements and Element CONNECHIVILYeiiiiiiiiiiiiiiii et 329

Gravity and other CONSIANT LOAASooiiiieiiiiiiiie et e e e e eee s 330

Summary of Defining Structural MOdelooiiiiiii e 330

Error-Checking Tip for Model BUIldiNgccooiiiiiiiiiiieeeeee et 336

= ToTo] (o LT £30 (o] A O 10 1 01U | S PSPPSR 341

Analysis Components 342

Script Utilities Library 343

Contents ixX

F= Ll =TS o TP UUT 343
RCCIICSECHONACH ... e 345
RCCIrCSECHONFEDEASICH ...cuviiiie ittt ettt s st e e e st e e e snnbaeeesnnaeeenn 346
RCFramMEDISPIAY.ICH ...ttt e e e e et e e e e e e e s e bbb b e e eaaaeaannns 348
[0 4 g T=T oL (LU T Y= L (U (8 (! PRSP 349
L= T= 1o 1Y 0 1 = (o USRI 350
01657 01 1 T 22 I PP SEPRR 352
Y L =T =T o 1153 o] =Y o S 353
LAY 25T =11 o) 1 1 o PP 353
RIgIAFrame3DdiSPIAY.tCl ... e e a e e 354
L) YT O] 1S =T) £ (TR 355
MALIADOULPULICT ...ttt et bt e e et e e e e s sabe e e e s sabb e e e e srneeeeans 356
OENPIANEFTAME.ICT ...ttt e e st e e s e bt e e e e nb e e e 356
References 359

Index 361

10

CHAPTER 1

Introduction

This document is intended to outline the basic commands currently available with the OpenSees
interpreter. This interpreter is an extension of the Tcl/Tk language for use with OpenSees.

OpensSees is an object-oriented framework for finite element analysis. OpenSees' intended
users are in the research community. A key feature of OpenSees is the interchangeability of
components and the ability to integrate existing libraries and new components into the
framework (not just new element classes) without the need to change the existing code. Core
components, that is the abstract base classes, define the minimal interface (minimal to make
adding new component classes easier but large enough to ensure all that is required can be
accommodated).

In This Chapter

NOTALION ... 10
COPYIIGNT ...eeiiiiiei . 12
Introduction to the Tcl command language 13
OpenSees INterpreter.o iciiiee e 17
Notation

The notation presented in this chapter is used throughout this document.

Input values are a string, unless the first character is a $, in which case an integer, floating point
number or variable is to be provided. In the Tcl language, variable references start with the $
character. Tcl expressions can also be used as input to the commands where the input value is
specified by the first character being a $.

Optional values are identified in enclosing <> braces.

When specifying a variable quantity of values, the command line contains (x $values). The
number of values required, x, and the types of values, $values, are specified in the description of
the command.

An arbitrary number of input values is indicated with the dot-dot-dot notation, i.e. $valuel
$value? ...

Chapter 1 Introduction 11

The OpenSees interpreter constructs objects in the order they are specified by the user. New
objects are often based on previously-defined objects. When specified as an object parameter, a
previously-defined object must have already been added to the Domain. This requirement is
specified in the description of the command arguments.

Example command:

| node $nodeTag (ndm $coords) <-mass (ndf $MassValues)>

This line executes the node command (page 28) assigns coordinates and masses to a specified
node. The $nodeTag argument is an integer tag identifying the node.The coordinate arguments
are specified with the parentheses () because the number of arguments is dependent on the
definition of the model (ndm (page 26)): two arguments in 2D and three in 3D.

The mass specification at the node definition is optional. Therefore, it is enclosed in <> braces.
The number of mass arguments is also dependent on the model definition, depending on the
number of degrees of freedom assigned to a node (ndf (page 26)).

Chapter 1 Introduction 12

Copyright

Copyright © 1999,2000 The Regents of the University of California. All Rights Reserved.

Permission to use, copy, modify, and distribute this software and its documentation for
educational, research and non-profit purposes, without fee, and without a written agreement is
hereby granted, provided that the above copyright notice, this paragraph and the following three
paragraphs appear in all copies.

Permission to incorporate this software into commercial products may be obtained by
contacting the University of California. [Bill Hoskins Office of Technology Licensing, 2150
Shattuck Avenue #150 Berkeley, CA 94720-1620, (510) 643-7201]

This software program and documentation are copyrighted by The Regents of the University of
California. The software program and documentation are supplied "as is", without any
accompanying services from The Regents. The Regents does not warrant that the operation of
the program will be uninterrupted or error-free. The end-user understands that the program was
developed for research purposes and is advised not to rely exclusively on the program for any
reason.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OF CALIFORNIA SPECIFICALLY
DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE
UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Chapter 1 Introduction 13

Introduction to the Tcl command language

The Tcl scripting language was chosen to support the OpenSees commands, which are used to
define the problem geometry, loading, formulation and solution. These commands are one-line
commands which have specific tasks, as described in this manual. The Tcl language provides
useful programming tools, such as variables manipulation, mathematical-expression evaluation
and control structures.

Tcl is a string-based scripting language which allows the following:

= Variables and variable substitution

= Mathematical-expression evaluation

= Basic control structures (if , while, for, foreach)
= Procedures

= File manipulation

More information on Tcl commands can be found at its web site: Tcl/Tk Primer
(http://dev.scriptics.com/scripting/primer.html) (http://dev.scriptics.com/scripting/primer.html)

Handy Tcl commands:

incr - Increment the value of a variable:

setal
incr a

a book reference:

Brent Welch <welch@acm.org>, Ken Jones, and Jeff Hobbs: Practical Programming in Tcl
and Tk, (http://www.beedub.com/book/) 4th Edition ISBN: 0-13-038560-3, June, 2003
(http://www.beedub.com/book/)

Chapter 1 Introduction 14

Tcl Commands Format

Tcl scripts are made up of commands separated by new lines or semicolon (;).

The basic syntax for a Tcl command is:

command $argl $arg? ...

command name of the Tcl command or user-defined procedure

$argl $arg2 ... arguments for the command

Tcl allows any argument to be nested command:

command [nested-commandl] [nested-command?2]

where the [] are used to delimit the nested commands. The Tcl interpreter will first evaluate the
nested commands and will then evaluate the outer command with the results to the nested
commands.

The most basic command in Tcl is the set command:

| set variable $value

for example:

setab

The Tcl interpreter regards a command starting with the pond sign (#) to be a comment
statement, so it does not execute anything following the #. For example:

this command assigns the value 5 to the variable a
setab

The pound sign and the semicolon can be used together to put comments on the same line as
the command. For example:

| set a 5; # this command assigns the value 5 to the variable a

Chapter 1 Introduction

15

Example Tcl Commands

arithmetic procedure for & foreach functions
>setal >proc sum {a b} { for {seti 1} {$i < 10} {incri 1} {
1 return [expr $a + $b] puts “i equals $i”
>setb a } }
a >sum 2 3
>set b $a 5
1 >set ¢ [sum 2 3] setsum O
>expr2+ 3 5 foreach value {1 2 3 4} {
5 > set sum [expr $sum +
>expr 2 + $a $value]
3 }
>set b [expr 2 + $a] puts $sum
3 10

>

>

file manipulation

procedure & if statement

>set fileld [open tmp w]
anumber

>puts $fileld “hello”
>close $filelD

>type tmp

hello

>

>source Examplel.tcl

>proc guess {value} {
global sum
if {$value < $sum} {
puts “too low”

} else {

if {$value > $sum} {

puts “too high”

} else { puts “you got it!"}

}

> guess 9
too low

>

Chapter 1 Introduction 16

Additional Tcl Resources

Here are additional resources for Tcl:

http://www.freeprogrammingresources.com/tcl.html
(http://www.freeprogrammingresources.com/tcl.html)

(a large list of helpful resources)

http://www.tcl.tk/man/ (http://www.tcl.tk/man/)

(Tcl/Tk manual pages)

http://www.mit.edu/afs/sipb/user/golem/doc/tcltk-iap2000/TcITk1.html
(http://www.mit.edu/afs/sipb/user/golem/doc/tcltk-iap2000/TcITk1.html)

(a tutorial describing many commands by describing their implementation in a
short program)

http://www.beedub.com/book/ (http://www.beedub.com/book/)

(some sample chapters from Practical Programming in Tcl and Tk, by Welch and
Jones)

http://philip.greenspun.com/tcl/ (http://philip.greenspun.com/tcl/)

(not the most readable tutorial IMHO, but it does have Tickle-me-Elmo ;) It can be
accessed from the link below as well.)

http://www.tcl.tk/scripting/ (http://www.tcl.tk/scripting/)

Chapter 1 Introduction 17

http://hegel.ittc.ukans.edu/topics/tcltk/tutorial-noplugin/index.html
(http://hegel.ittc.ukans.edu/topics/tcltk/tutorial-noplugin/index.html)

(a short tutorial on the essential Tcl commands, also includes a manual of Tcl/Tk
commands at the website below)

http://hegel.ittc.ukans.edu/topics/linux/man-pages/index/index-mann.html
(http://hegel.ittc.ukans.edu/topics/linux/man-pages/index/index-mann.html)

http://pages.cpsc.ucalgary.ca/~saul/personal/archives/Tcl-Tk stuff/tcl examples/
(http://pages.cpsc.ucalgary.ca/~saul/personal/archives/Tcl-Tk_stuff/tcl_examples/)

(Tk widgets with screenshots)

OpenSees Interpreter

The main abstractions of OpenSees will be explained using the OpenSees interpreter. The
interpreter is an extension of the Tcl (page 14) scripting language. The OpenSees interpreter
adds commands to Tcl for finite element analysis. Each of these commands is associated
(bound) with a C++ procedure that is provided. It is this procedure that is called upon by the
interpreter to parse the command. In this document we outline only those commands which have
been added to Tcl by OpenSees.

For OpenSees we have added commands to Tcl for finite element analysis:

= Modeling — create nodes, elements, loads and constraints

= Analysis — specify the analysis procedure.

= Output specification — specify what it is you want to monitor during the analysis.
» HELP

OpenSees Documentation Web Page (http://opensees.berkeley.edu/OpenSees/primer.html)

http://opensees.berkeley.edu/cgi-bin/OpenSeesCommands.pl (http://opensees.berkeley.edu/cgi-
bin/OpenSeesCommands.pl)

18

CHAPTER 2

OpenSees

» What is OpenSees?

= « Anobject-oriented software framework for simulation applications in earthquake engineering using
finite element methods. OpenSees is not a code.

= « A communication mechanism within PEER for exchanging and building upon research
accomplishments.

= « Asopen-source software, it has the potential for a community code for earthquake engineering.

Chapter 2 OpenSees 19

my favorite:
+ You can describe a structural/geotech.
WhY OPEHSEES) component at a number of |evels:

* The library of materials _elements and analysis - element level - force-deformation model
commands 'makes OpenSEES a powerful tool for : d
numerical simulation of nonlinear structural and - section level - moment-curvature model
geotechnical systems - fiber level - material stress-strain model

* The OpenSEES library of components is ever-growin A‘ .
and at the leading edge of numerical-simulation models g MTWM

[% ! $]

+ The OpenlSEES in?erl"fcﬁe is E?sedhon a command-driven
scripting language which enables the user fo create I R ——
more-versatile ﬁlpuf files. (21 show you howl) o P Nroiai

. S(?e.nSEES is not a black box, making it a useful

ucational tool for numerical modeling

+ You can create your own material, element or analysis
tools and incorporate them into OpenSEES

+ NEES is supporting integration of OpenSEES as the
simulation component of laboratory testing

traditional code vs. OpenSEES

Traditional Code Framework of Components
1 il —
Input Language . 3
e [- |
ecow 4| | B4
Elements = || 3]
s
g
Compute Technology
4 Compute Technology
4

e |

+—— Application Program
Interface (AP}

Chapter 2 OpenSees 20

simulation-framework
components

information
technology

computation

Algorithms,
Solvers,
Farallel/distributed
computing

Simulation models,
Performance models,
Limit state models

Open-Source Community
Simulation Framework

simulation features

Model-Building - Analysis
- model - constraints
- node - humberer
- mass - system
- Constraints - test
- uniaxialMaterial - algorithm
- nDMaterial - infegrator
- section - analysis
- element - rayleigh
- block - eigen : R_ecgll;(jzr's
- region - dataBase - EnvelopeNode
- Geometric Transformation - Drift
- Time Series - Element
- pattern - EnvelopeElement
- Display
- Plot
- playback

modeling features

+ elements: .
Truss

sections:

Elastic Section
Uniaxial Section
Fiber Section

Corotational Truss
Elastic Beam Column

- NMonLinear Beam-Column - Section Aggregator

- Zero-Length - Elastic Membrane Plate
- Quadrilateral Section

- Brick - Plate Fiber Section

- FourModeQuadUP - Bidirectional Section

BeamColumnJoint

Software framework,
Databases, Visualization,
Internet/grid computation

Material, component, system models

OpenSEES features

« models:

- linear & nonlinear structural and
geotechnical models

- simulations:
- static push-over analyses
- static reversed-cyclic analyses
- dynamic time-series analyses
- uniform-support excitation
» multi-support excitation

modeling features

nD materials:

Elastic Isetropic Material

= J2 Plasticity Material

- Plane Stress Material

- Plate Fiber Material

Templare Elasto-Flastic Material
FluidSelidPoreusMaterial Material
PressureIndependMultivield Material
- PressureDependMultiYield Material

uniaxial materials:

- Elastic Material
Elastic-Perfectly Plastic Material
Elastic-Perfectly Plastic Gap Material
- Parallel Material
- Series Material
- Hardening Material
- Steel0! Material
- Concrete0l Material
- Elastic-No Tension Material
- Hysteretic Material
- Viscous Material
- PINCHIMNG4 Material
- Fedeas Materials
PyTzQz Uniaxial Materials

analysis features

+ Linear Ec’z.laﬁon Solvers -- provide the solution of the linear system of
equations Ku = P. Each solver is tailored to a specific matrix topology.

Profile SPD -- Direct profile solver for symmetric positive definite
matrices

Band General -- Direct solver for banded unsymmetric matrices

Band SPD - Direct solver for banded symmetric positive definite
matrices
Sparse General -- Direct solver for unsymmetric sparse matrices
Sparse Symmetric -- Direct solver for symmetric sparse matrices
UmfPack General -- Direct UmfPack solver for unsymmetric matrices
Full General -- Direct solver for unsymmetric dense matrices
Conjugate Gradient -- Iterative solver using the preconditioned
conjugate gradient method
- Eigenvalue Solvers -- provide the solution of the generalized eigenvalue
problem Kv = MvL
- Symmetric Arpack - Arpack solver for symmetric matrices
- Band Arpack -- Arpack solver for banded matrices

Chapter 2 OpenSees

DOF Numberers -- number the degrees of freedom in the
domain
- Plain -- Uses the numbering provided by the user
- RCM -- Renumbers the DOF to minimize the matrix band-width
using the Reverse Cuthill-McKee algorithm

Transient Integrators -- determine the next time step for an
analysis including inertial effects
- MNewmark -- The two parameter time-stepping method
developed by Newmark
- HHT -- The three parameter Hilbert-Hughes-Taylor time-

aer:Il_.T;ics Integrators -- determine the next time step for an stepping method . . _
- Load Control -- Specifies the incremental load facter o be - Central Difference — Approximates velocity and acceleration
: i by centered finite differences of displacement

applied to the loads in the domain
- Displacement Control -- Specifies the incremental
displacement at a specified DOF in the domain
- Minimum Unbalanced Displacement Norm -- Specifies the i i o . :
incremental load factor such that the residual displacement - Linear -- Uses the solution at the first iteration and continues
norm in minimized - MNewton -- Uses the tangent at the current iteration to iterate
- Arc Length -- Specifies the incremental arc-length of the to convergence
load-displacement path - Modified Newton -- Uses the tangent at the first iteration to
iterate to convergence

- Solution Algorithms -- Iterate from the last time step to the
current

OpenSees is comprised of a set of modules to perform creation of the
finite element model, specification of an analysis procedure, selection of
quantities to be monitored during the analysis, and the output of results. In
each finite element analysis, an analysis is used fo construct 4 main types
of objects, as shown

main abstractions in
O p 6 n 5 E E 5 Holds the state of the model at time t; and

(t; + dt) & is responsible for storing the
objects created by the ModelBuilder
object and for providing the Analysis and
Recorder objects access to these objects

‘ModelBuiIderH Domain H Analysis

Constructs the objects Moves the medel from
state at time 1, to state

in the model and adds ;
them to the domain. Recorder at fime and (t; + df)

Monitors user-defined
parameters in the
model during the

analysis

all this is within the
Tel interpreter & commands

domain & analysis objects

| Element | | Node | |MF=_L‘:ons1rain1| |5chonmmt| |I.oadPattern | | TlmeSerias|
[[]
[Gemevations | [Nocaiiont] [5P_consran]

| '('.‘ﬂ-igll‘ﬁlle'r ||Numw| |dellmdu| |smn;onm|| = tor | | SmﬂlleEqn]
]

Chapter 2 OpenSees 22

In This Chapter

ModelBuilder Object..........cevvvviiiiiii 22
Domain ObJeCt........coovviiiiiii e, 23
Recorder ObjecCtccccvvvvviii 24
ANalysis ODJECT..........cccuiiiiiice 24

ModelBuilder Object

The model builder constructs As in any finite element analysis, the analyst's first step is to
subdivide the body being studied into elements and nodes, to define loads acting on the
elements and nodes, and to define constraints acting on the nodes.

The ModelBuilder is the object in the program responsible for building the following objects in the
model and adding them to the domain:
= Node (page 28)

= Mass (page 29)

= Material (page 108, page 35)

= Section (page 129)

= Element (page 146)

= LoadPattern (page 214)

= TimeSeries (page 208)

= Transformation (page 200)

= Block (page 193)

= Constraint (page 232)

Chapter 2 OpenSees 23

Domain Object

The Domain object is responsible for storing the objects created by the ModelBuilder (page 22)
object and for providing the Analysis (page 229) and Recorder (page 24) objects access to these

objects.

Figure 1: Domain
Object

Domaln

i

Elerment Mode MP_Constraing BF_Constraind (LoadFattern TimeSeries

?

I I I
Elermentalload | [Modalload| BP_Constrain

hl aterial

Chapter 2 OpenSees 24

Recorder Object

The recorder object monitors user-defined parameters in the model during the analysis. This, for
example, could be the displacement history at a node in a transient analysis, or the entire state
of the model at each step of the solution procedure. Several Recorder (page 221) objects are
created by the analyst to monitor the analysis.

» What does arecorder do?

= Monitors the state of a domain component (node, element, etc.) during an analysis
= Writes this state to a file or to a database at selected intervals during the analysis
= There are also recorders for plotting and monitoring residuals

Once in a file, the information can be easily post-processed.

Analysis Object

The Analysis objects are responsible for performing the analysis. The analysis moves the model
along from state at time t to state at time t + dt. This may vary from a simple static (page 256)
linear analysis to a transient (page 257, page 258) non-linear analysis. In OpenSees each
Analysis object is composed of several component objects, which define the type of analysis
how the analysis is performed.

CHAPTER 3

Model-Building Objects

These objects are used to create the physical model.

In This Chapter

model Command..........ccovvvvviiiiiiiiiee e 26
Node ComMMANd..........ooeviiiiiiiiiiie e 28
MASS COMMANTceuiieiiiiii i e 29
CONSEraiNtS ODJECTS.uuiiieeee e 30
uniaxialMaterial Command...........ccccoevvivieiiiiniiineeeennn. 35
nDMaterial Commandocoevvieiiiiiniiieeiieeeeeeen 108
SECtion COMMANGcovviiiiiieieeeeeee e 129
element Command..........coooveeiiiiiiii e, 146
block Commandc.coovviiiiiiiiii e 193
region CommaNd..........oooiiiiiiiiiieee e 198
Geometric Transformation Command....................... 200
TIME SEIES v 208

pattern Command............ccccvvvvviviiiiiiii e 214

26

CHAPTER 4

model Command

This command is used to construct a ModelBuilder object.

Currently there is only one type of ModelBuilder accepted.

For an example of this command, refer to the Model Building Example (page 278)

In This Chapter

Basic Model BUIlAEr.........ooueeeeeeeee e 26
build Commandcoeevieiieee e 27

Basic Model Builder

This command is used to construct the BasicBuilder object.

model BasicBuilder -ndm $ndm <-ndf $ndf>

$ndm dimension of problem (1,2 or 3)
$ndf number of degrees of freedom at node (optional)
(default value depends on value of ndm:
ndm=1 -> ndf=1
ndm=2 -> ndf=3
ndm=3 -> ndf=6)

These additional commands allow for the construction of Nodes (page 28), Masses (page 29),
Materials (page 108, page 35), Sections (page 129), Elements (page 146), LoadPatterns (page
214), TimeSeries (page 208), Transformations (page 200), Blocks (page 193) and Constraints

(page 232). These additional commands are described in the subsequent chapters.

EXAMPLE:

Chapter 4 model Command

27

model basic -ndm 3 -ndf 6; # 3 spacial dimensions, 6 DOF's per node

For an example of this command, refer to the Model Building Example (page 278)

build Command

This command is used to invoke build() (????) on the ModelBuilder (page 22) object.

build

This command has no effect a BasicBuilder (page 26) object, but will on other types of
ModelBuilder (page 22) objects.

28

CHAPTER 5

node Command

This command is used to construct a Node object. It assigns coordinates and masses to the
Node object.

| node $nodeTag (ndm $coords) <-mass (ndf $MassValues)>

$nodeTag integer tag identifying node
$coords nodal coordinates (ndm (page 26) arguments)
$MassValues nodal mass corresponding to each DOF (ndf (page 26)

arguments) (optional)

The optional -mass string allows analyst the option of associating nodal mass with the node

EXAMPLE:

node 1 0.0 0.0 0.0; #x,y,zcoordinates (0,0,0) of node 1

node 2 0.0 120. 0.0; #x,y,z coordinates (0,120,0) of node 2

For an example of this command, refer to the Model Building Example (page 278)

29

CHAPTER 6

mass Command

This command is used to set the mass at a node.

| mass $nodeTag (ndf $MassValues)

$nodeTag integer tag identifying the node associated with the mass

$MassValues mass values corresponding to each nodal degrees of freedom
(ndf (page 26) values)

EXAMPLE:
mass 2 2.50.0 2.50.00.00.0; # define mass in x and z coordinates

For an example of this command, refer to the Model Building Example (page 278)

30

CHAPTER 7

constraints objects

From Cook: " A constraint either prescribes the value of a DOF (as in imposing a support
condition) or prescribes a relationship among DOF. In common terminology, a single-point
constraint sets a single DOF to a known value (often zero) and a multi-point constraint imposes
a relationship between two or more DOF.... For example, support conditions on a three-bar truss
invoke single-point constraints, while rigid links and rigid elements each invoke a multi-point
constraint.”

In This Chapter

Single-Point Constraints...........cccccevviviiiniieeeeeeennes 30
Multi-Point CONSLraintsccvvveeeiiniiiiiiieieeeeee s 33

Single-Point Constraints

The following commands construct homogeneous single-point boundary constraints.

Fix Command

This command is used to construct homogeneous single-point boundary constraints.

| fix $nodeTag (ndf $ConstrValues)

$nodeTag integer tag identifying the node to be constrained

$ConstrValues constraint type (0 or 1). ndf (page 22) values are specified,
corresponding to the ndf degrees-of-freedom.

The two constraint types are:
0 unconstrained

1 constrained

EXAMPLE:
fix 1 111111, # node 1: fully fixed

Chapter 7 constraints objects 31

fix2010010-mass 2.50.0 2.50.00.00.0; # node 2: restrain axial elongation and
torsion, translational masses in x-z plane only

For an example of this command, refer to the Model Building Example (page 278)

fixX Command

This command is used to construct multiple homogeneous single-point boundary constraints for
all nodes whose x-coordinate lies within a specified distance from a specified coordinate.

| fixX $xCoordinate (ndf $ConstrValues) <-tol $tol>

For example, this command is used when specifying boundary conditions for a series of nodes
lying in a plane parallel to the y-z plane in global coordinates.

$xCoordinate Xx-coordinate of nodes to be constrained

$ConstrValues constraint type (0 or 1). ndf (page 22) values are specified,
corresponding to the ndf degrees-of-freedom.

The two constraint types are:
0 unconstrained
1 constrained

$tol user-defined tolerance (optional, default = 1e-10)

EXAMPLE:
fixX0.0111111-tol0.1; # fully restrain all nodes in y-z plane at origin (x=0.0)

fixY Command

This command is used to construct multiple homogeneous single-point boundary constraints for
all nodes whose y-coordinate lies within a specified distance from a specified coordinate.

| fixY $yCoordinate (ndf $ConstrValues) <-tol $tol>

For example, this command is used when specifying boundary conditions for a series of nodes
lying in a plane parallel to the x-z plane in global coordinates.

Chapter 7 constraints objects 32

$yCoordinate y-coordinate of nodes to be constrained

$ConstrValues constraint type (0 or 1). ndf values are specified, corresponding
to the ndf (page 26) degrees-of-freedom.

The two constraint types are:
0 unconstrained
1 constrained

$tol user-defined tolerance (optional, default = 1e-10)

EXAMPLE:
fixY0.0111111-tol 0.1; # fully restrain all nodes in x-z plane at origin (y=0.0)

fixZ Command

This command is used to construct multiple homogeneous single-point boundary constraints for
all nodes whose z-coordinate lies within a specified distance from a specified coordinate.

| fixZ $zCoordinate (ndf $ConstrValues) <-tol $tol>

For example, this command is used when specifying boundary conditions for a series of nodes
lying in a plane parallel to the x-y plane in global coordinates.

$zCoordinate z-coordinate of nodes to be constrained

$ConstrValues constraint type (0 or 1). ndf values are specified, corresponding
to (page 26)the ndf degrees-of-freedom.

The two constraint types are:
0 unconstrained
1 constrained

$tol user-defined tolerance (optional, default = 1e-10)

EXAMPLE:
fixZ0.0111111-tol 0.1; # fully restrain all nodes in x-y plane at origin (z=0.0)

Chapter 7 constraints objects 33

Multi-Point Constraints

The following commands construct multi-point boundary constraints.

equalDOF Command

This command is used to construct a multi-point constraint between nodes.

equalDOF $rNodeTag $cNodeTag $dofl $dof2 ...

$rNodeTag integer tag identifying the retained, or master node (rNode)
$cNodeTag integer tag identifying the constrained, or slave node (cNode)
$dofl $dof2 ... nodal degrees-of-freedom that are constrained at the cNode to

be the same as those at the rNode

Valid range is from 1 through ndf (page 26), the number of
nodal degrees-of-freedom.

EXAMPLE:

equalDOF 231 35; #impose the traslational displacements in x and z directions,
and rotation about the y-axis of node 3 to be the same as those
of node 2.

rigidDiaphragm Command

This command is used to construct a number of Multi-Point Constraint (MP_Constraint) objects.
These objects will constraint certain degrees-of-freedom at the listed slave nodes to move as if
in a rigid plane with the master node.

rigidDiaphragm $perpDirn $masterNodeTag $slaveNodeTagl $slaveNodeTag?2

Chapter 7 constraints objects 34

$perpDirn direction perpendicular to the rigid plane (i.e. direction 3
corresponds to the 1-2 plane)

The rigid plane can be the 1-2, 1-3 or 2-3 plane
$masterNodeTag integer tag identifying the master node

$slaveNodeTagl nodes that are to be constrained to the master node
$slaveNodeTag? ...

NOTE: The constraint object is constructed assuming small rotations.

NOTE: The rigidDiaphragm command works only for problems in three dimensions with six-
degrees-of-freedom at the nodes (ndf (page 26) = 6).

EXAMPLE:

rigidDiaphragm 2245 6; constrain nodes 4,5,6 to move as if in the same x-z plane as node
2.

rigidLink Command

This command is used to construct a single MP_Constraint object.

| rigidLink $type $masterNodeTag $slaveNodeTag

$type string-based argument for rigid-link type:

rod only the translational degree-of-freedom will be
constrained to be exactly the same as those at
the master node

beam both the translational and rotational degrees of
freedom are constrained.

$masterNodeTag integer tag identifying the master node

$slaveNodeTag integer tag identifying the slave node to be constrained to
master node

NOTE: The constraint object constructed for the beam option assumes small rotations

EXAMPLE:

rigidLink beam 2 3; # connect node 3 to node 2 via a rigid link-beam.

35

CHAPTER 8

uniaxialMaterial Commmand

This command is used to construct a UniaxialMaterial object which represents uniaxial stress-
strain (or force-deformation) relationships.

The valid queries to any uniaxial material when creating an ElementRecorder (page 224) are
'strain,’ 'stress," and ‘tangent.’

In This Chapter

Elastic Materialcoooovveiiiiiiiiiie e 35
Elastic-Perfectly Plastic Materialccccooee. 36
Elastic-Perfectly Plastic Gap Material 38
Parallel Material..........cccoevivviiiieiiiiie e 39
Series Materialooeviviiiiiiiiiee e 40
Hardening Material.............cccevviiieiiiiiiiiee s 42
Steel0l Materialcoocuvvvieiiiiii e 43
Concrete01 Materialcoeeevieviiiiiiiieeiiieieeeeeee e 47
Elastic-No Tension Materialcccocoevveviiiivineivnnnnee. 51
Hysteretic Material............ccccovvviiiiiie 52
ViISCOUS Materialovvivniiiiiiie e 54
PINCHING4 Materialoooevvvviiiiiiiiiieeiiiee e 55
Fedeas MaterialS.........ccoooveviiieiiieie e 73
PyTzQz Uniaxial Materialscccccooveeeiivviiiiiiennnn. 99

Elastic Material

This command is used to construct an elastic uniaxial material object.

uniaxialMaterial Elastic $matTag $E <$eta>

$matTag unique material object integer tag
$E tangent
$eta damping tangent (optional, default=0.0)

Chapter 8 uniaxialMaterial Command 36

Figure 2: Elastic
Material

TE

stress or force

, L
strain or deformation

Elastic-Perfectly Plastic Material

This command is used to construct an elastic perfectly-plastic uniaxial material object.

uniaxialMaterial ElasticPP $matTag $E $epsyP <$epsyN $eps0>

$matTag uniqgue material object integer tag

$E tangent

Chapter 8 uniaxialMaterial Command 37

strain or deformation at which material reaches plastic state in

$epsyP
tension

$epsyN strain at which material reaches plastic state in compression
(optional, default: tension value)

$eps0 initial strain (optional, default: zero)

stress or force

Fepshl

I
fepsP strain or deformation
$epsﬂ

Chapter 8 uniaxialMaterial Command 38

Figure 3: Elastic-
Perfectly Plastic
Material

Elastic-Perfectly Plastic Gap Material

This command is used to construct an elastic perfectly-plastic gap uniaxial material object.

uniaxialMaterial ElasticPPGap $matTag $E $Fy $gap

$matTag unique material object integer tag

$E tangent stiffness

$Fy stress or force at which material reaches plastic state
$gap initial gap (strain or deformation)

NOTE: To create a compression-only gap element, NEGATIVE values need to be specified for
$Fy and $gap.

nk}
i) d
£k = §
i =
o w
2 g
i e
'ﬁ— W
! fgap (negative value)
PRV husmemeoas it >
strain ar deformation
tE
I : strain or defnrmatEn $Fy (negative value)
Boap
TENSION GAP COMFPRESSION GAP

Figure 4: Elastic-
Perfectly Plastic Gap
Material

Chapter 8 uniaxialMaterial Command 39

Parallel Material

This command is used to construct a parallel material object made up of an arbitrary number of
previously-constructed UniaxialMaterial (page 35) objects.

uniaxialMaterial Parallel $matTag $tagl $tag?2 ...

unique material object integer tag

$matTag
identification of materials making up the material model

$tagl $tag2 ...

The parallel material is represented graphically:

Figure 5: Parallel
Material

FrmatTag

Chapter 8 uniaxialMaterial Command 40

In a parallel model, strains are equal and stresses and stiffnesses are
additive:

” : bmatTag

stress or force
stress ar farce

Ftagl

—

htag

strain ar defurmatﬁn strain or defnrmatEn

Series Material

This command is used to construct a series material object made up of an arbitrary number of
previously-constructed UniaxialMaterial (page 35) objects.

uniaxialMaterial Series $matTag $tagl $tag? ...

$matTag uniqgue material object integer tag
$tagl $tag? ... identification of materials making up the material model

Chapter 8 uniaxialMaterial Command 41

The series material is represented graphically:

Ftag? Ftag2

§

BrnatTag

Figure 6: Series
Material

In a series model, stresses are equal and strains and flexibilities are additive:

F &

stress or force
stress or force

$tag!
FrnatTag

htag2

-
strain or defnrmatﬁn / strain or deformation

Chapter 8 uniaxialMaterial Command 42

Figure 7: Series
Material Relationship

Hardening Material

This command is used to construct a uniaxial material object with combined linear kinematic and
isotropic hardening. The model includes optional visco-plasticity using a Perzyna formulation
(REF???)

| uniaxialMaterial Hardening $matTag $E $sigmaY $H_iso $H_kin <$eta>

$matTag unique material object integer tag

$E tangent stiffness

$sigmayY yield stress or force

$H_iso isotropic hardening Modulus

$H_Kin kinematic hardening Modulus

$eta visco-plastic coefficient (optional, default=0.0)
@
E F
W i

| === TRE$H_iso+EH_kin)
$siomat | ___ TE+TH_iso+§H_kin

$E 1E

strain or defurmatﬁn

=T Faigrray
FE*(EH_iso+FH_Kim
FE+FH_iso+FH_Kin

Figure 8: Hardening
Material

Chapter 8 uniaxialMaterial Command 43

Steel01 Material

This command is used to construct a uniaxial bilinear steel material object with kinematic
hardening and optional isotropic hardening described by a non-linear evolution equation (REF:
Fedeas).

| uniaxialMaterial Steel01 $matTag $Fy $EO $b <$al $a2 $a3 $as4>

$matTag unigue material object integer tag

$Fy yield strength

$EO initial elastic tangent

$b strain-hardening ratio (ratio between post-yield tangent and

initial elastic tangent)

$al, $a2, $a3, $ad isotropic hardening parameters: (optional, default: no isotropic
hardening)

$al isotropic hardening parameter, increase of compression
yield envelope as proportion of yield strength after a
plastic strain of $a2*($Fy/EO).

$a2 isotropic hardening parameter (see explanation under
$al)

$a3 isotropic hardening parameter, increase of tension yield
envelope as proportion of yield strength after a plastic
strain of $a4*($Fy/EQ)

$a4 isotropic hardening parameter (see explanation under
$a3)

Chapter 8 uniaxialMaterial Command 44

stress or force

FhrEED

i)
=
—t

FED

strain ar defurmatﬁn

—---8Fy
BEFEN

Chapter 8 uniaxialMaterial Command 45

Figure 9: Steel01
Material -- Material
Parameters of
Monotonic Envelope

Steel01 Material -- Material Parameters of Monotonic Envelope

. { o
i] I
_ a 1

Stress [ksi
B
——

Bt _J'_._L_'__.___,__,_.—d-—
&0
-100
-0.010 0.000 0.010 0.020 0030 0.040 0.050
Strain [indin]

Figure 10: Steel01
Material -- Hysteretic
Behavior of Model w/o
Isotropic Hardening

Steel01 Material -- Hysteretic Behavior of Model w/o Isotropic Hardening

Chapter 8 uniaxialMaterial Command

46

Stress [ksi]

. i]
N . |
N (]
/ 1N
on []
N B F]
w et L LI

Strain [infin]

Chapter 8 uniaxialMaterial Command a7

Figure 11: Hysteretic
Behavior of Model with
Isotropic Hardening in
Compression

Steel01 Material -- Hysteretic Behavior of Model with Isotropic Hardening in Compression

120

100 o —-

. |

M
e
——
——

Stress [ksi]

[=]
—_._%‘——.__
r—
——

T
|
|

N
L

-B0
0010 0.000 0.010 0020 0.030 0040 0.050 0.080

Strain [infin]

Figure 12: Steel01
Material -- Hysteretic
Behavior of Steel_1
Model with Isotropic
Hardening in Tension

Steel01 Material -- Hysteretic Behavior of Steel 1 Model with Isotropic Hardening in Tension

Concrete0l1 Material

This command is used to construct a uniaxial Kent-Scott-Park concrete material object with
degraded linear unloading/reloading stiffness according to the work of Karsan-Jirsa and no

tensile strength. (REF: Fedeas).

uniaxialMaterial Concrete01 $matTag $fpc $epsc0 $fpcu $epsU

Chapter 8 uniaxialMaterial Command

48

$matTag
$fpc

$epscO
$fpcu
$epsyU

unique material object integer tag

concrete compressive strength at 28 days (compression is
negative)*

concrete strain at maximum strength*
concrete crushing strength *

concrete strain at crushing strength*

*NOTE: Compressive concrete parameters should be input as negative values.

The initial slope for this model is (2*$fpc/$epsc0)

Chapter 8 uniaxialMaterial Command 49

Figure 13: Concrete01
Material -- Material

Parameters

(i)}

i &

W

$epscO
$e|p5U FJ >
! y strain
! i
1
I :
[1
[1
[1
[1
[1
[1
| i
[1
————————————— 1-F 1~~~ #fpcu
—f———=A Hpe
2*HpeifepscO

Concrete01 Material -- Material Parameters

Chapter 8

uniaxialMaterial Command

50

Concrete Stress [Ksi]

T TS
T
N VA
RV

Concrete Strain [infin]

Chapter 8 uniaxialMaterial Command

51

Figure 14: Typical
Hysteretic Stress-
Strain Relation of

Concrete_1 Model

Typical Hysteretic Stress-Strain Relation of Concrete_1 Model

Elastic-No Tension Material

This command is used to construct a uniaxial elastic-no tension material object.

uniaxialMaterial ENT $matTag $E

$matTag unique material object integer tag
$E elastic model in compression

In tension, there is zero stress.
'y

: L
strain or deformation

1E

Figure 15: Elastic-No
Tension Material

Chapter 8 uniaxialMaterial Command 52

Hysteretic Material

This command is used to construct a uniaxial bilinear hysteretic material object with pinching of
force and deformation, damage due to ductility and energy, and degraded unloading stiffness
based on ductility.

uniaxialMaterial Hysteretic $matTag $s1p $elp $s2p $e2p <$s3p $e3p> $sin
$eln $s2n $e2n <$s3n $e3n> $pinchX $pinchY $damagel $damage?2

<$beta>

$matTag unigue material object integer tag

$slp $elp stress and strain (or force & deformation) at first point of the
envelope in the positive direction

$s2p $e2p stress and strain (or force & deformation) at second point of the
envelope in the positive direction

$s3p $e3p stress and strain (or force & deformation) at third point of the
envelope in the positive direction (optional)

$sin $eln stress and strain (or force & deformation) at first point of the
envelope in the negative direction*

$s2n $e2n stress and strain (or force & deformation) at second point of the
envelope in the negative direction*

$s3n $e3n stress and strain (or force & deformation) at third point of the
envelope in the negative direction (optional)*

$pinchX pinching factor for strain (or deformation) during reloading

$pinchY pinching factor for stress (or force) during reloading

$damagel damage due to ductility: D,(mu-1)

$damage2 damage due to energy: D,(E/E.)

$beta power used to determine the degraded unloading stiffness

based on ductility, mu®* (optional, default=0.0)

Chapter 8 uniaxialMaterial Command 53

*NOTE: negative backbone points should be entered as negative numeric values

Figure 16: Hysteretic
Material

-

(Fe2p, Fs2m ife3p, $s53m

stress ar farce

(e1p, $510 MUty

Ko

; -
strain or defarmation

(Feln, Bsim

($e3n, §=3n) ($ain, §52n

Chapter 8 uniaxialMaterial Command 54

Viscous Material

This command is used to construct a uniaxial material object with a non-linear elastic stress-
strain-rate relation given by:

stress =C(strain-rate)®",

| uniaxialMaterial Viscous $matTag $C $alpha

$matTag unigue material object integer tag
$C tangent
$alpha damping tangent

Chapter 8 uniaxialMaterial Command 55

PINCHING4 Material

This command is used to construct a uniaxial material that represents a ‘pinched’ load-
deformation response and exhibits degradation under cyclic loading. Cyclic degradation of
strength and stiffness occurs in three ways: unloading stiffness degradation, reloading stiffness
degradation, strength degradation.

uniaxialMaterial Pinching4 $matTag $ePfl $ePd1 $ePf2 $ePd2 $ePf3 $ePd3
$ePf4 $ePd4 <$eNfl $eNd1 $eNf2 $eNd2 $eNf3 $eNd3 $eNf4 $eNd4>
$rDispP $rForceP $uForceP <$rDispN $rForceN $uForceN > $gK1
$gK2 $gK3 $gK4 $gKLim $gD1 $gD2 $gD3 $gD4 $gDLim $gF1 $gF2
$gF3 $gF4 $gFLim $gE $dmgType

$matTag

$ePfl $ePf2 $ePf3
$ePf4

$ePdl $ePd2
$ePd3 $ePd4

$eNfl $eNf2 $eNf3
$eNf4

$eNd1 $eNd2
$eNd3 $eNd4

$rDispP

$rForceP

$uForceP

$rDispN

uniqgue material object integer tag

floating point values defining force points on the positive
response envelope

floating point values defining deformation points on the positive
response envelope

floating point values defining force points on the negative
response envelope (optional, default: negative of positive
envelope values)

floating point values defining deformations points on the
negative response envelope (optional, default: negative of
positive envelope values)

floating point value defining the ratio of the deformation at which
reloading occurs to the maximum historic deformation demand

floating point value defining the ratio of the force at which
reloading begins to force corresponding to the maximum historic
deformation demand

floating point value defining the ratio of strength developed upon
unloading from negative load to the maximum strength
developed under monotonic loading

floating point value defining the ratio of the deformation at which
reloading occurs to the minimum historic deformation demand
(optional, default: $rDispP)

Chapter 8 uniaxialMaterial Command

56

$rForceN

$uForceN

$gK1 $gK2 $gK3
$gK4 $gKLim

$gD1 $gD2 $gD3
$gD4 $gDLim

$gF1 $gF2 $gF3
$gF4 $gFLim

$gE

$dmgType

floating point value defining the ratio of the force at which
reloading begins to the force corresponding to the minimum
historic deformation demand (optional, default: $rForceP)

floating point value defining the ratio of the strength developed
upon unloading from a positive load to the minimum strength
developed under monotonic loading (optional, default:
$rForceP)

floating point values controlling cyclic degradation model for
unloading stiffness degradation

floating point values controlling cyclic degradation model for
reloading stiffness degradation

floating point values controlling cyclic degradation model for
strength degradation

floating point value used to define maximum energy dissipation
under cyclic loading. Total energy dissipation capacity is defined
as this factor multiplied by the energy dissipated under
monotonic loading.

string to indicate type of damage (option: “cycle”, “energy”)

Chapter 8 uniaxialMaterial Command 57

NOTE:

(a2 f{drn a))
load /\ (ePd,,ePf,) (ePd, ePf)

(rDizpP.d__ rForceP-{(
4

(ePd, 2Pf,)

{=*, uForceP-ﬂPf,Es} . ./
: ; ' deformnation >-
|

eNd,eNf, e (* uForceN.eNf,)

B# [DispN-d.. rForceN-f(d_))

' |

(eMd, eNf,)
eMd; 2Mf;)

ehgaehe) (G F(o))

Figure 1: Definition of Pinching4 Uniaxial Material Model

Damage Models:

Stiffness and strength are assumed to deteriorate due to the imposed “load” history. The same
basic equations are used to describe deterioration in strength, unloading stiffness and reloading
stiffness:

Chapter 8 uniaxialMaterial Command 58

where k; is the unloading stiffness at time t, k, is the initial unloading stiffness (for the case of no

damage), and K (defined below) is the value of the stiffness damage index at time t.

d :dmaxo'(l"_aji)

maxi

d

where “maxi js the deformation demand that defines the end of the reload cycle for increasing

deformation demand, dimaxo is the maximum historic deformation demand (which would be the
deformation demand defining the end of the reload cycle if degradation of reloading stiffness is

ignored), and o (defined below) is the value of reloading stiffness damage index at time t.

(fmax)i = (fmax)o ’ (1_ 2)

Chapter 8 uniaxialMaterial Command 59

where (s)i is the current envelope maximum strength at time t, (Fra)0 is the initial envelope

maximum strength for the case of no damage, and o, (defined below) is the value of strength
value index at time t.

The damage indices, K , o, and éfi, may be defined to be a function of displacement history
only (3dmgType = “cycle”) or displacement history and energy accumulation ($dmgType =
“energy”). For either case, all of the damage indices are computed using the same basic
equation.

If the damage indices are assumed to be a function of displacement history and energy

accumulation, the unloading stiffness damage index, K is computed as follows:

gK4
x; = {QKL (Jmax)gK3 + gKZ-(EL] J < gKLim

monotonic

where

a‘ _ma){ dmaxi dmini }
max — [}
demax defmin

Ei = J.dE
load history
Emonotonic =gE- IdE

monotonic load history

Chapter 8 uniaxialMaterial Command 60

with E..... equal to the energy required to achieve under monotonic loading the deformation that
defines failure, def,.. and def,,, the positive and negative deformations that define failure. The

other damage indices, o, and o, , are computed using the same equations with degradation
model parameters gK* replaced by gF* and gD*, as is appropriate.

The above expressions were meant for “Energy” type damage. The user specification of
“Energy” type damage implements damage due to displacement as well as energy. Other type of
damage can be activated: “Cycle” which implements damage due to displacement as well as
damage accrued due to load cycle counting. The expressions for the “Cycle” damage are given
below.

If the damage indices are assumed to be a function only of the displacement history, the

unloading stiffness damage index, K is computed as follows:
X, :(gKl- (Jmax)gKg +gK2- (Cycle)g“j < gKLim

where

a‘ _ma){ dmaxi dmini }
max — [}
defax defin

with Cycle equal to the number of cycles accrued in the loading history, def,... and def,,, the

positive and negative deformations that define failure. The other damage indices, &, and o, ,

are computed using the same equations with degradation model parameters gK* replaced by
gF* and gD*, as is appropriate.

» EXAMPLE:

main input file:

= RCyclicPinch.tcl (page 67)
supporting files:

= procUniaxialPinching.tcl (page 70)
= procRCycDAnNs.tcl (page 71)

Chapter 8 uniaxialMaterial Command 61

PINCHING4 Uniaxial Material Model
Discussion

PINCHING4 Uniaxial Material Model Discussion

The example files (RCyclicPinch.tcl (page 67), procUniaxialPinching.tcl (page 70),
procRCycDAns.tc (page 71)l) create a one-dimensional structural model consisting of a single
truss element of length 1.0 and area 1.0 (Figure 1). The Pinching4 uniaxial material model is
used to simulate the stress-strain response of the truss material. The truss is subjected to a
pseudo-static cyclic loading. Several files are provided that include different input parameters for
the Pinching4 material model and result in different load-displacement histories for the truss
structure. Refer to the documentation about the Pinching4 uniaxial material model for additional
information.

Input for the Pinching4 Uniaxial Material Model

Refer to the documentation of the Pinching4 uniaxial material model for an explanation of the
following notation.

Response Envelopes:

In these examples the pinching material model is demonstrated with two different load-
deformation response envelopes. Envelope 1 (Figure 2) defines a hardening-type response
while Envelope 2 (Figure 2) defines a softening-type response.

Envelope 1 (Figure 2):

ePd1 ePf1] [0.0001 2 —eNd1l —eNf1
ePd2 ePf2| |0.0055 6 | |-eNd2 —eNf2
ePd3 ePf3| |0.0188 7 | |-eNd3 -—eNf3

ePd4 ePf4 0.0189 7.2 —eNd4 —eNf4

Chapter 8 uniaxialMaterial Command 62

Envelope 2 (Figure 2):

ePd1 ePf1] [0.0001 2 —eNd1l —eNf1
ePd2 ePf2| |0.0055 6 | |-eNd2 —eNf2
ePd3 ePf3| |0.0188 7 | |-eNd3 —eNf3

ePd4 ePf4 0.0189 0.2 —eNd4 —eNf4

Load-Unload Response Parameters:

The form of the load-unload response, and the extent of pinching in the response history, is
defined by the following six parameters. In each of the examples, the following values are used.

[rDispP rForceP uForceP]=[rDispN rForceN uForceN]=[0.5 0.25 0.05]

Chapter 8 uniaxialMaterial Command 63

Strength and Stiffness Degradation Parameters:

The Pinching4 uniaxial material model simulates degradation of stiffness and strength under
cyclic loading. The example files demonstrate, individually and in combination, each of the two
stiffness degradation options and the one strength degradation option. The following parameters
are used to define strength and stiffness degradation, as needed, in the example files.

gkl gK2 gK3 gK4 gKLim| [1.0 02 03 02 09
gDl gD2 gD3 gD4 g¢DLim| |05 05 2.0 20 05

gF1 gF2 gF3 gF4 gFLim| |10 00 1.0 1.0 0.9
gE 10.0

Tcl Scripts:

The following tcl script files are used to run the examples:
RCyclicPinch.tcl (page 67)

procUniaxialPinching.tcl (page 70)

procRCycDAns.tcl (page 71)

Lines should be commented out as necessary within RCyclicPinch.tcl to exercise different
degradation models of the Pinching4 uniaxial material model and different load histories.

If the structure is subjected to a monotonic load history, the load-displacement history is shown
in Figure 2 results with the actual response history depending on the envelope chosen for the
material model. If the structure is subjected to a cyclic load history (Figure 3), one of the load-
displacement histories shown in Figure 4 results, with the exact response depending on the
strength and stiffness degradation model employed. In this case the damage type activated was
“Energy”. The case in which the damage type activated was “Cycle” is shown in Figure 5.

Figures:

Chapter 8 uniaxialMaterial Command 64

P&
%ﬂ

Figure 17: Structural
Model

Figure 1: Structural Model

arpalops 1

armalape 2

I:I 1 L 1 1 1 1 L 1 1
0 0.0o: o0pd 0006 0008 DO1 0012 0014 OO16 0008 O.O2
Diefonmation

Chapter 8 uniaxialMaterial Command 65

Figure 18: Response
Envelopes

Figure 2: Response Envelopes

0.5

T ! T T T T

001 |eemeeme- L C— O i s . -

g OODG e RN O s |- 0 TR ek [-

E ! :

E i EE iy D i B, R TRRIE U AR TR Dy TR RN
m 1] I 1 1 1
E : : : : : :
iy : : : : : :

= 0006 - o s PR ol ot o S B B bt e =

F 1 — LA . 1l - | - L 1 ,
. i | i i | |

1] 0.5 1 15 2 25 k| 15

paudn tirng + 10

Figure 19: Cyclic
Displacement History

Figure 3: Cyclic Displacement History

Chapter 8

uniaxialMaterial Command 66

1 L L 1
0.006 o nnne o.m 0ma
Doformation

a) Only Unloading Stiffness Degradation

L
-om

T T
— with na darmBgs

1 1 1 1
0o 41.005 1} 0.5 o.m

c) Only Strength Degradation

B
— nodemege
Ef |— with[*damage
4
2 L
-
LR [
2
-4
B
_B 1 1 1 1 1
-0Mme am 4.0 o 0.005 o0.m 0.015
Oefmation

b) Only Re-Loading Stiffness Degradatic

E miw;ﬂ: I AT
L | — a amages . _

E 7 iy

4 ey 11

1o e L
.!'fﬂiijﬁa I=-J:n-='="-__

2t 1 F”l- I j

At] . f o -ﬁl.

of| Liatias

-IEIE.EHE JII.IIZI1 JZI.IZI[E 1] EI.IZIEE EI.IIZI1 oo

Deformation

d) Both Stiffness and Strength Degradat

Chapter 8 uniaxialMaterial Command 67

Figure 20: Load-
Deformation Response
Histories ("Energy type
damage")

Figure 4: Load-Deformation Response Histories (“Energy type damage”)

I
— damage type "enemgy”
— damage type "oyTlE

Load

i
=
n
=]
=l
L
=
&=
m
[5=] =
=
o
o
=
=
=
=
n

Defrmation

Figure 21: Plot
showing Both Stiffness
and Strength
Degradation for
Damage Type
"Energy" and "Cycle"

Figure 5. Plot showing Both Stiffness and Strength Degradation for Damage Type
"Energy" and "Cycle"

RCyclicPinch.tcl

BRAHHHHH R R R R R R R R R R R R R R R AR R R R R R
HHHHHHH R

Test example for PINCHING MATERIAL

Chapter 8 uniaxialMaterial Command 68

Written: N.Mitra

Description: uniaxial material with user defined envelope (softening type used here) and damage parameters

Date: May 04 2002

Model subjected to reverse Cyclic Loading

File Name: RCyclicPinch.tcl

refer to Pinching-Type Material Model.doc for full explanation of the parameters

BHHH B R R R R R R R R R R R R R R R R R
FHRH R T

#create the ModelBuilder object

model BasicBuilder -ndm 2 -ndf 2

add nodes - command: node nodeld xCrd yCrd
nodel 0.0 0.0
node2 1.0 0.0

please keep the follwoing procedures on the same path
source procUniaxialPinching.tcl

source procRCycDAnRs.tcl

Positive/Negative envelope Stress/Load
HHH stressl stress?2 stress3 stress4
set pEnvelopeStress [list 2.0 6.0 7.0 0.2]
set nEnvelopeStress [list -2.0 -6.0 -7.0 -0.2]

#i##H Positive/Negative envelope Strain/Deformation

HitHt strainl strain2 strain3 strain4

set pEnvelopeStrain [list 0.0001 0.0055 0.0188 0.0189]
set nEnvelopeStrain [list -0.0001 -0.0055 -0.0188 -0.0189]

###H## Ratio of maximum deformation at which reloading begins
#iH Pos_env. Neg_env.

set rDisp [list 0.5 0.5]

Ratio of envelope force (corresponding to maximum deformation) at which reloading begins
HitHt Pos_env. Neg_env.
set rForce [list 0.25 0.25]

Chapter 8 uniaxialMaterial Command

69

Ratio of monotonic strength developed upon unloading
HHH Pos_env. Neg_env.
set uForce [list 0.05 0.05]

Coefficients for Unloading Stiffness degradation

HH# gammaKl gammaK2 gammakK3 gammaK4 gammaKLimit
set gammak [list 1.0 0.2 03 0.2 0.9]

#set gammaK [list 0.0 0.0 0.0 0.0 0.0]

Coefficients for Reloading Stiffness degradation

HitH gammaD1l gammaD2 gammaD3 gammaD4 gammaDLimit
set gammabD [list 0.5 05 20 20 0.5]

#set gammab [list 0.0 00 00 0.0 0.0]

Coefficients for Strength degradation

H#iH gammaFl gammaF2 gammaF3 gammaF4 gammaFLimit
set gammakF [list 1.0 00 1.0 1.0 0.9]

#set gammakF [list 0.0 0.0 0.0 0.0 0.0]

set gammak 10

material ID

set matiD 1

damage type (option: "energy", "cycle")

set dam "energy"

add the material to domain through the use of a procedure

procUniaxialPinching $matIlD $pEnvelopeStress $nEnvelopeStress $pEnvelopeStrain $nEnvelopeStrain $rDisp

$rForce $uForce $gammakK $gammaD $gammaF $gammaE $dam

add truss elements - command: element truss trussID nodel node2 A matlD

elementtruss1121.01

set the boundary conditions - command: fix nodelD xResrnt? yRestrnt?
fix111
fix201

Chapter 8 uniaxialMaterial Command 70

pattern Plain 1 Linear {
load210

recorder Node RCyclicPinchR.out disp -load -node 2 -dof 1

build the components for the analysis object
system ProfileSPD

constraints Plain

test NormDisplncr 1.0e-8 20

algorithm Newton

numberer RCM

analysis type used in the procedure is Static

set peakpts [list 0.0001 0.001 0.002 0.003 0.005 0.006 0.007 0.009 0.01 0.011 0.012 0.013]
set increments 10

set nodeTag 2

set dofTag 1

start procedure for feeding in
Reverse Cyclic loading to the model by Disp. control
procRCycDAns $increments $nodeTag $dofTag $peakpts

print the results at nodes

print node

procUniaxialPinching.tcl

BRAHHHHH R R R R R R R R R R R R R R R AR R R R R R
RRAFHHH

#

procUniaxialPinching.tcl

procedure for activating the pinching material given its parameters in the form of list
created NM (nmitra@u.washington.edu) dated : Feb 2002

B R T T R T T R B R T T T T R B R T T R T T R T R B R T R T T R R
fiaiaieeetaiany

proc procUniaxialPinching { materialTag pEnvelopeStress nEnvelopeStress pEnvelopeStrain nEnvelopeStrain rDisp
rForce uForce gammaK gammaD gammaF gammaE damage} {

Chapter 8 uniaxialMaterial Command 71

add material - command: uniaxialMaterial paramaters as shown

#uniaxialMaterial Pinching4 tag

it stress1P strainlP stress2P strain2P stress3P strain3P stress4P strain4P
HHHE stress1N strainlN stress2N strain2N stress3N strain3N stress4N straindN
HHH rDispP rForceP uForceP rDispN rForceN uForceN

HiH## gammaK1 gammakK2 gammak3 gammakK4 gammakKLimit

HitHH# gammaD1 gammaD2 gammaD3 gammaD4 gammaDLimit

HHHH gammaF1 gammaF2 gammaF3 gammaF4 gammaFLimit gammaE $damage

uniaxialMaterial Pinching4 $materialTag [lindex $pEnvelopeStress 0] [lindex $pEnvelopeStrain 0] \
[lindex $pEnvelopeStress 1] [lindex $pEnvelopeStrain 1] [lindex $pEnvelopeStress 2] \

[lindex $pEnvelopeStrain 2] [lindex $pEnvelopeStress 3] [lindex $pEnvelopeStrain 3] \

[lindex $nEnvelopeStress 0] [lindex $nEnvelopeStrain 0] \

[lindex $nEnvelopeStress 1] [lindex $nEnvelopeStrain 1] [lindex $nEnvelopeStress 2] \

[lindex $nEnvelopeStrain 2] [lindex $nEnvelopeStress 3] [lindex $nEnvelopeStrain 3]\

[lindex $rDisp 0] [lindex $rForce 0] [lindex $uForce 0] \

[lindex $rDisp 1] [lindex $rForce 1] [lindex $uForce 1]\

[lindex $gammak 0] [lindex $gammaK 1] [lindex $gammak 2] [lindex $gammak 3] [lindex $gammak 4] \
[lindex $gammab 0] [lindex $gammaD 1] [lindex $gammab 2] [lindex $gammaD 3] [lindex $gammaDb 4]\
[lindex $gammaF 0] [lindex $gammaF 1] [lindex $gammaF 2] [lindex $gammaF 3] [lindex $gammaF 4]\

$gammaE $damage

}

procRCycDAnRs.tcl

B T T R T R R B R T R R T T R R R T T R T T R T R B R T R T R R
HHHH

#

procRCycDAns.tcl

procedure for reverse cyclic displacement control analysis given the peak pts.
analysis type used : STATIC

Written : N.Mitra

B R T T R T T R B R T T T T R B R T T R T T R T R B R T R T T R R
fiaiaieeetaiany

proc procRCycDAns { incre nodeTag dofTag peakpts} {

Chapter 8 uniaxialMaterial Command

72

set x [lindex $peakpts 0]

set fir [expr $x/$incre]

integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir

create the analysis object

analysis Static

perform the analysis

analyze $incre

integrator DisplacementControl $nodeTag $dofTag 0.0 1 [expr -$fir] [expr -$fir]
analyze [expr 2*$incre]

integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir

analyze S$incre

for {set j 1} {$j < [llength $peakpts]} {incr j 1} {
set tx [lindex $peakpts $j]
set tinc [expr $tx/$fir]
set rt [expr int($tinc)]

integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir

analyze $rt

integrator DisplacementControl $nodeTag $dofTag 0.0 1 [expr -$fir] [expr -$fir]
analyze [expr 2*$rt]

integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir

analyze $rt

}

HHEHEHH A A end proCRCYCDANS.(C| #HHHEHEHIHEHHHHEHEHEHEHEH

}

Chapter 8 uniaxialMaterial Command 73

Fedeas Materials

This section lists the uniaxial material objects available from the Fedeas ML1D library developed
by F.C. Filippou. For more information see the Fedeas materials web page:

http://www.ce.berkeley.edu/~filippou/Research/Fedeas/material.htm
(http://www.ce.berkeley.edu/~filippou/Research/Fedeas/material.htm)

Further information on the Concrete01 (page 47) and Steel01 (page 43) materials described
earlier in this document can also be found at this web page. Currently, each of the following
Fedeas materials are available only on the Win32 version of OpenSees

Concrete02 Material

This command is used to construct a uniaxial concrete material object with tensile strength and
linear tension softening.

uniaxialMaterial Concrete02 $matTag $fpc $epscO $fpcu $epscu $lambda $ft

$Ets
$matTag unique material object integer tag
$fpc compressive strength*
$epscO strain at compressive strength*
$fpcu crushing strength*
$epsU strain at crushing strength*
$lambda ratio between unloading slope at $epscu and initial slope
$ft tensile strength
$Ets tension softening stiffness (absolute value) (slope of the linear

tension softening branch)

*NOTE: Compressive concrete parameters should be input as negative values.

Chapter 8 uniaxialMaterial Command 74

The initial slope for this model is (2*$fpc/$epscO)

Figure 22: Concrete02
Material -- Material
parameters

¢,
B 4
-
FlarbdaE, [- <t
s : P

iFepsU) $fpolly

L
¥
r

(depscO $foc)
HEF2* ¥ poifepsc

Concrete02 Material -- Material parameters

75

uniaxialMaterial Command

Chapter 8

£

arJ/ ;
AN EE
\ﬂl[ll //L =
r(rurr.f.r,lll m
] =
ﬁ”ﬁHW{ W,,M g
] =

g

-5

[18y] ssang ajalauon

Strain [indfin]

Concrete

Chapter 8

uniaxialMaterial Command

76

Figure 23: Typical
Hysteretic Stress-
Strain Relation of

Concrete_2 Model

Typical Hysteretic Stress-Strain Relation of Concrete_2 Model

Fi

7

7\

Ay

Concrete Stress [ksi]
[X]

LY
7/

==

0.005 0004 -0.003

Figure 24: Hysteretic
Stress-Strain Relation
of Concrete_2 Model in
Tension-Compression

Hysteretic Stress-Strain Relation of Concrete_2 Model in Tension-Compression

4002 00 G0 A 0002 0003

Concrete Strain [infin]

0.004

0.0

Chapter 8

uniaxialMaterial Command

77

Stress [ksi]

10

0.8

05

04

02

00

.

04

e e

p——
™

1%

1005 -0.004 0002 -0.002

L.0H
Strain [in.in]

0000

0o

0.002 0.002

Chapter 8 uniaxialMaterial Command 78

Figure 25: Hysteretic
Stress-Strain Relation
of Concrete_2 Model in
Tension-Compression
(Detail)

Hysteretic Stress-Strain Relation of Concrete_2 Model in Tension-Compression (Detail)

5 / ; —fcr--:me_l
L LI D =

=
VAN

&

Concrete Stres s [ksi]
ra £a
e]
'|—|__‘_-_
—
51..,___)_-‘-\-

4
002 0.000 0002 0.004 0.006 0005 0.040 0.0z 0.4 0.6

Concrete Strain [infin]

Figure 26: Comparison
of Hysteretic Behavior
of Concrete_1 and
Concrete_2 model

Comparison of Hysteretic Behavior of Concrete_1 and Concrete_2 model

Chapter 8 uniaxialMaterial Command 79

Concrete03 Material

This command is used to construct a uniaxial concrete material object with tensile strength and
nonlinear tension softening.

uniaxialMaterial Concrete03 $matTag $fpc $epscO $fpcu $epscu $lambda $ft

$epst0 $ft0 $beta $epstu

$matTag
$fpc
$epscO
$fpcu
$epsyU
$lambda

$ft
$epst0
$ft0
$bheta
$epstu

unique material object integer tag
compressive strength*

strain at compressive strength*
crushing strength*

strain at crushing strength*

ratio between unloading slope at $epscu and initial slope
(=2*$fpc/$epscO)

tensile strength

tensile strain at the transition from nonlinear to linear softening
tensile stress at the transition from nonlinear to linear softening
exponent of the tension softening curve

ultimate tensile strain

Chapter 8

uniaxialMaterial Command

80

*NOTE: Compressive concrete parameters should be input as negative values.

Figure 27: Concrete03
Material -- Material
Parameters

Fheta exponent

(Fepstd, 10

(hepsl) Sfpcll)

L)
&
P

ifepscl $foo)
NEF2*¥pcrfepsc

Concrete03 Material -- Material Parameters

Chapter 8 uniaxialMaterial Command 81

Stress [ksi]

5 /1

‘E:___x/

-0.00F 0004 0002 1.2 -0.001 0000 0.001 002 0003 0.004

Strain [infin]

Chapter 8 uniaxialMaterial Command 82

Figure 28: Hysteretic
stress-strain relation of
Concrete_3 model in
Tension-Compression

Hysteretic stress-strain relation of Concrete_3 model in Tension-Compression
10 1 H—

04

Stress [ksi]
=
]
= |

. —~ =7
™

04 >,

15

4005 00M 0 00 0 90RO 0 0000 00H 0.002 0003
Strain [in.in]

Figure 29: Hysteretic
stress-strain relation of
Concrete_3 model in
Tension-Compression
(Detail)

Hysteretic stress-strain relation of Concrete_3 model in Tension-Compression (Detail)

Chapter 8 uniaxialMaterial Command 83

Steel02 Material -- Giuffré-Menegotto-Pinto
Model with Isotropic Strain Hardening

This command is used to construct a uniaxial Giuffre-Menegotto-Pinto steel material object with
isotropic strain hardening.

uniaxialMaterial Steel02 $matTag $Fy $E $b $RO $cR1 $cR2 $al $a2 $a3 $asd

$matTag unique material object integer tag

$Fy yield strength

$E initial elastic tangent

$b strain-hardening ratio (ratio between post-yield tangent and

initial elastic tangent)

$RO, $cR1, $cR2 control the transition from elastic to plastic branches.
Recommended values:
$RO=between 10 and 20, $cR1=0.925, $cR2=0.15

$al, $a2, $a3, $a4 isotropic hardening parameters: (optional, default: no isotropic
hardening)

$al isotropic hardening parameter, increase of compression
yield envelope as proportion of yield strength after a
plastic strain of $a2*($Fy/EO).

$a2 isotropic hardening parameter (see explanation under
$al)

$a3 isotropic hardening parameter, increase of tension yield
envelope as proportion of yield strength after a plastic
strain of $a4*($Fy/EQ)

$a4 isotropic hardening parameter (see explanation under
$a3)

Chapter 8 uniaxialMaterial Command 84

STRESS [ksi]
B

| | |
0.002 0.004 0.006 0.008
STRAIN [in/in]

Chapter 8 uniaxialMaterial Command 85

Figure 30: Steel02
Material -- Material
Parameters of
Monotonic Envelope

Steel02 Material -- Material Parameters of Monotonic Envelope

100

A T
W/]

Stress [ksi]
[;
[
[——]

: 2 —

0010 0000 0010 0020 0030 0040 0050 0080
Strain [infin]

Figure 31: Steel02
Material -- Hysteretic
Behavior of Model w/o
Isotropic Hardening

Steel02 Material -- Hysteretic Behavior of Model w/o Isotropic Hardening

Chapter 8 uniaxialMaterial Command

86

. =
R]
_ N
W I
! 1)
NN /1]
NI ARV
L LA

0010 0000 0010 DO20 0030 0040 0050 0.080
Strain [infin]

Chapter 8 uniaxialMaterial Command 87

Figure 32: Steel02
Material -- Hysteretic
Behavior of Model with
Isotropic Hardening in
Compression

Steel02 Material -- Hysteretic Behavior of Model with Isotropic Hardening in Compression

. A |)
_ 7]]
W [
s AW,

. /] 1/

o / 7

ol L

Strain [infin]

Figure 33: Steel02
Material -- Hysteretic
Behavior of Model with
Isotropic Hardening in
Tension

Steel02 Material -- Hysteretic Behavior of Model with Isotropic Hardening in Tension

Chapter 8 uniaxialMaterial Command 88

BondO01 Material

This command is used to construct an Eligehousen bond material object without damage.(REF:
Fedeas).

uniaxialMaterial Bond01 $matTag $ulp $glp $u2p $u3p $q3p $uln $qln $u2n
$u3n $g3n $s0 $bb

Tensile bond-slip backbone parameter

$matTag unique material object integer tag

$ulp $q1p slip and bond at first detachment -- tensile bond-slip backbone

$u2p slip at start of degradation -- tensile bond-slip backbone

$u3p $q3p slip and bond at ultimate -- tensile bond-slip backbone

$uln $q1n slip and bond at first detachment -- compressive bond-slip
backbone*

$u2n slip at start of degradation -- compressive bond-slip backbone*

$u3n $g3n slip and bond at ultimate -- compressive bond-slip backbone*

$s0 unloading stiffness

$bb exponent for the first branch of the backbone (prior to first

detachment). i.e. q=u®

*NOTE: Compressive concrete parameters should be input as negative values.

Bond02 Material

This command is used to construct an Eligehousen bond material object with damage.

uniaxiaMaterial Bond02 $matTag $ulp $qip $u2p $u3p $q3p $uln $gin $u2n
$u3n $g3n $s0 $bb $alp $aln

$matTag unique material object integer tag
$ulp $q1p slip and bond at first detachment -- tensile bond-slip backbone

Chapter 8 uniaxialMaterial Command 89

$u2p slip at start of degradation -- tensile bond-slip backbone

$u3p $q3p slip and bond at ultimate -- tensile bond-slip backbone

$uln $g1ln slip and bond at first detachment -- compressive bond-slip
backbone*

$u2n slip at start of degradation -- compressive bond-slip backbone*

$u3n $g3n slip and bond at ultimate -- compressive bond-slip backbone*

$s0 unloading stiffness

$bb exponent for the first branch of the backbone (prior to first
detachment). i.e. g=u*"

$alp damage factor for positive quadrant

$aln damage factor for negative quadrant

*NOTE: Compressive concrete parameters should be input as negative values.

Hyster 1: Bilinear Hysteretic Model with
Damage

This command is used to construct a uniaxial bilinear hysteretic material object with pinching of
force and deformation, damage due to ductility and energy.

uniaxialMaterial Hyster_1 $matTag $s1p $elp $s2p $e2p $sln $eln $s2n $e2n
$pinchX $pinchY $dDELTA $dE

$matTag unigue material object integer tag

$slp $elp stress and strain (or force & deformation) at first point of the
envelope in the positive direction

$s2p $e2p stress and strain (or force & deformation) at second point of the
envelope in the positive direction

$sin $eln stress and strain (or force & deformation) at first point of the
envelope in the negative direction*

$s2n $e2n stress and strain (or force & deformation) at second point of the
envelope in the negative direction*

$pinchX pinching factor for strain (or deformation) during reloading

$pinchyY pinching factor for stress (or force) during reloading

$dDELTA damage due to ductility: D,(mu-1)

Chapter 8 uniaxialMaterial Command 20

$dE damage due to energy: D,(E/E..)

Chapter 8 uniaxialMaterial Command 91

Figure 34: Hyster_1
Material -- Material
Parameters of
Monotonic Envelope

T
L

(elp, §51p) (de2p, $s52m

stress arforce

strain or deformation

(Fe2n, §52n) (Feln, fs1n)

Hyster_1 Material -- Material Parameters of Monotonic Envelope

Chapter 8 uniaxialMaterial Command

92

Bending Mameant [k-ft]

1000

200

00

400

200

0

-200

=200

-200

-B00

-1000
0040 D020 -002 0010 0000 0010 0020 00320 0040

¥

/]

/

//

AR

B2 i
4

Fotation [rad]

Chapter 8 uniaxialMaterial Command 93

Figure 35: Hyster_1
Material -- Hysteretic
Behavior of Model
(hardening; no
damage)

Hyster_1 Material -- Hysteretic Behavior of Model (hardening; no damage)

200
e Y,

7077

) P i

| = ;aflhiil,

T 2z
%"

N v

~ Y

004 0030 0020 -0010 0000 0010 0020 0030 0040
Rotation [rad]

~

\

Bending Momeant [K-ft]

Figure 36: Hyster_1
Material -- Hysteretic
Behavior of Model
(softening; no damage)

Hyster_1 Material -- Hysteretic Behavior of Model (softening; no damage)

Chapter 8 uniaxialMaterial Command

94

Bending Mameant [k-ft]

-1000

800

00

7/
/
/

400

= //
-l
eIl

/

-500

—13
e
RNy

i

-
\

\ N
C

]
R

500 —=

0040 0030 -0020 0010 0000 0010 0020 0030 0040
Fotation [rad]

Chapter 8 uniaxialMaterial Command 95

Figure 37: Hyster_1
Material -- Hysteretic
Behavior of Model (no
damage)(hardening
and "pinching"
pinchX=0.7
pinchY=0.2)

Hyster_1 Material -- Hysteretic Behavior of Model (no damage)(hardening and "pinching”
pinchX=0.7 pinchY=0.2)

1000

200

800 ﬁ/:z/_; r/‘é
_ L7
=77)
=11 1]
T =2
yi
;A

0

Bending Mament [k-ft]
]

\ NN

-BIEIEI I //

-1000
0040 0030 -0020 0010 0000 0010 0020 0030 0040
Fotation [rad]

Figure 38: Hyster_1
Material -- Hysteretic
Behavior of Model
(hardening;
displacement damage
dDELTA=0.05)

Hyster_1 Material -- Hysteretic Behavior of Model (hardening; displacement damage
dDELTA=0.05)

Chapter 8 uniaxialMaterial Command

96

Bending Mameant [k-ft]

1000

200

00

400

200

0

-200

=200

-200

-B00

-1000
0040 D020 -002 0010 0000 0010 0020 00320 0040

i,

-
w7

/]

/

/

T

ﬂ%&
I

f

e

/4

/

/

/
L

Nhu

i

[L

Fotation [rad]

Chapter 8 uniaxialMaterial Command 97

Figure 39: Hyster_1
Material -- Hysteretic
Behavior of Model
(hardening; energy
damage dE=0.05)

Hyster_1 Material -- Hysteretic Behavior of Model (hardening; energy damage dE=0.05)

200

400

Bending Momeant [K-ft]
]
|
“\& :
e
Jkg

!
AR Ay
LAV

Ll

—

-200
004 0030 0020 -0010 0000 0010 0020 0030 0040
Rotation [rad]

Figure 40: Hyster_1
Material -- Hysteretic
Behavior of Model
(softening; "pinching",
displacement damage
dDELTA=0.05)

Hyster_1 Material -- Hysteretic Behavior of Model (softening; "pinching”, displacement damage
dDELTA=0.05)

Chapter 8 uniaxialMaterial Command 98

Bending Mameant [k-ft]

500

[
i/
. =
= sl
WIS

/’
4
_m =

004 0030 0020 -0010 0.000 0010 0020 0.030 0040
Fotation [rad]

/]

\ SNy

ol |

-800

LN

Chapter 8 uniaxialMaterial Command 99

Figure 41: Hyster_1
Material -- Hysteretic
Behavior of Model
(softening; "pinching
energy damage
dE=0.05)

Hyster_1 Material -- Hysteretic Behavior of Model (softening; "pinching" energy damage
dE=0.05)

PyTzQz Uniaxial Materials

This section describes commands that are used to construct uniaxial materials for p-y, t-z and
g-z elements for modeling soil-structure interaction developed at UC Davis.

There is available documentation on UCD COmpGeomech work within OpenSees framework at:

http://sokocalo.engr.ucdavis.edu/~jeremic/OpenSees/UCD_CG_OpenSees_Commands_2up.pd
f
(http://sokocalo.engr.ucdavis.edu/~jeremic/OpenSees/UCD_CG_OpenSees_Commands_2up.p

df)
Also, there is a more in depth writeup (lecture notes) at:

http://sokocalo.engr.ucdavis.edu/~jeremic/CG/CompGeomechanicsLectureNotes.pdf
(http://sokocalo.engr.ucdavis.edu/~jeremic/CG/CompGeomechanicsLectureNotes.pdf)

PySimplel Material

This command is used to construct a PySimplel uniaxial material object.

uniaxialMaterial PySimplel $matTag $soilType $pult $Y50 $Cd <S$c>.

Chapter 8 uniaxialMaterial Command 100

$matTag Unique material object integer tag.

$s0ilType soilType = 1 Backbone of p-y curve approximates Matlock
(1970) soft clay relation.

soilType = 2 Backbone of p-y curve approximates APl (1993)
sand relation.

$pult Ultimate capacity of the p-y material. Note that “p” or “pult” are
distributed loads [force per length of pile] in common design
equations, but are both loads for this uniaxialMaterial [i.e.,
distributed load times the tributary length of the pile].

$Y50 Displacement at which 50% of pult is mobilized in monotonic
loading.
$Cd Variable that sets the drag resistance within a fully-mobilized

gap as Cd*pult.

$c The viscous damping term (dashpot) on the far-field (elastic)
component of the displacement rate (velocity). Default = 0.0.
Nonzero c values are used to represent radiation damping
effects.

NOTE: Full documentation of the PyLiql command is found in PySimplel_documentation.pdf
(http://peer.berkeley.edu/~silvia/OpenSees/manual/documents/PyTzQzMats/PySimplel_docum
entation.PDF)

TzSimplel Material

This command is used to construct a TzSimplel uniaxial material object.

uniaxialMaterial TzSimplel $matTag $tzType $tult $z50 <$c>.

$matTag Unique material object integer tag.

$tzType tzType = 1 Backbone of t-z curve approximates Reese and
O’Neill (1987) relation.

tzType = 2 Backbone of t-z curve approximates Mosher (1984)
relation.

$tult Ultimate capacity of the t-z material. Note that “t” or “tult” are
distributed loads [force per length of pile] in common design
equations, but are both loads for this uniaxialMaterial [i.e.,
distributed load times the tributary length of the pile].

Chapter 8 uniaxialMaterial Command 101

$z50 Displacement at which 50% of tult is mobilized in monotonic
loading.
$c The viscous damping term (dashpot) on the far-field (elastic)

component of the displacement rate (velocity). Default = 0.0.
Nonzero c¢ values are used to represent radiation damping
effects.

NOTE: Full documentation of the TzLigl command is included in:
TzSimplel_documentation.PDF
(http://peer.berkeley.edu/~silvia/OpenSees/manual/documents/PyTzQzMats/TzSimplel docum
entation.PDF)

QzSimplel Material

This command is used to construct a QzSimplel uniaxial material object.

uniaxialMaterial PySimplel $matTag $qzType $qult $Y50 <$suction $c>.

$matTag Unique material object integer tag.

$soilType gzType = 1 Backbone of g-z curve approximates Reese and
O’Neill’'s (1987) relation for drilled shafts in clay.

gzType = 2 Backbone of g-z curve approximates Vijayvergiya's
(1977) relation for piles in sand.

$qult Ultimate capacity of the g-z material. Note that “q” or “qult” are
stresses [force per unit area of pile tip] in common design
equations, but are both loads for this uniaxialMaterial [i.e.,
stress times tip area).

$z50 Displacement at which 50% of pult is mobilized in monotonic
loading. Note that Vijayvergiya's relation (qzType=2) refers to a
“critical” displacement (zcrit) at which qult is fully mobilized, and
that the corresponding z50 would be 0. 125zcrit.

$suction Uplift resistance is equal to suction*qult. Default = 0.0. The
value of suction must be 0.0 to 0.1.*

$c The viscous damping term (dashpot) on the far-field (elastic)
component of the displacement rate (velocity). Default = 0.0.
Nonzero c values are used to represent radiation damping
effects.*

Chapter 8 uniaxialMaterial Command 102

NOTE: Full documentation of the QzSimplel command is found in:

QzSimplel Documentation.pdf
(http://peer.berkeley.edu/~silvia/OpenSees/manual/documents/PyTzQzMats/QzSimplel_docum
entation.PDF)

*NOTE: Optional variables suction and ¢ must either both be omitted or both be included.

PyLigl Material

This command is used to construct a PyLigl uniaxial material object.

uniaxialMaterial PyLigl $matTag $soilType $pult $Y50 $Cd $c $pRes
$solidElem1 $solidElem2.

$matTag Unique material object integer tag.

$soilType soilType = 1 Backbone of p-y curve approximates Matlock
(1970) soft clay relation.

soilType = 2 Backbone of p-y curve approximates API (1993)
sand relation.

$pult Ultimate capacity of the p-y material. Note that “p” or “pult” are
distributed loads [force per length of pile] in common design
equations, but are both loads for this uniaxialMaterial [i.e.,
distributed load times the tributary length of the pile].

$Y50 Displacement at which 50% of pult is mobilized in monotonic
loading.
$Cd Variable that sets the drag resistance within a fully-mobilized

gap as Cd*pult.

$c The viscous damping term (dashpot) on the far-field (elastic)
component of the displacement rate (velocity). Default = 0.0.
Nonzero c values are used to represent radiation damping
effects.

$pRes Minimum (or residual) p-y resistance that the material retains as
the adjacent solid soil elements liquefy (i.e. at r, = 1.0).

$solidElem1 Element object integer tag for a solid element from which
PyLigl will obtain mean effective stresses and pore pressures.

Chapter 8 uniaxialMaterial Command 103

$solidElem?2 Element object integer tag for a solid element from which
PyLigl will obtain mean effective stresses and pore pressures.

NOTE: Full documentation of the PyLigl command is found in: PyLigl_Documentation.pdf
(http://peer.berkeley.edu/~silvia/OpenSees/manual/documents/PyTzQzMats/PyLigl_documenta
tion.pdf)

NOTE: The implementation of PyLiql requires that the specified soil elements consist of
FluidSolidPorousMaterials in FourNodeQuad elements. To model the effects of liquefaction with
PyLiqgl, it is necessary to use the material stage updating command:

| updateMaterialStage —material $matNum —stage $sNum

where the argument matNum is the material number (for PyLigl) and the argument sNum is the
desired stage (valid values are 0 & 1). With sNum=0, the PyLiql behavior will be independent of
any pore pressure in the specified solidElem’s. When updateMaterialStage first sets sNum=1,
PyLigl will obtain the average mean effective stress in the two solidElem’s and treat it as the
initial consolidation stress prior to undrained loading. Thereafter, the behavior of PyLigl will
depend on the mean effective stresses (and hence excess pore pressures) in the solidElem’s.
The default value of sNum is O (i.e., sNum=0 if updateMaterialStage is not called). Note that the
updateMaterialStage command is used with some soil material models, and that sSNum=0
generally corresponds to the application of gravity loads (e.g., elastic behavior with no excess
pore pressure development) and sNum=1 generally corresponds to undrained loading (e.qg.,
plastic behavior with excess pore pressure development). The analysis for gravity loading
cannot use the "algorithm Linear" command because the relevant soil materials do not currently
work properly with this command. Instead, the "algorithm Newton" or some other option must be
used.

TzLigl Material

This command is used to construct a PyLigl uniaxial material object.

uniaxialMaterial TzLiql $matTag $soilType $tult $z50 $c $solidEleml
$solidElem2.

$matTag Unique material object integer tag.

Chapter 8 uniaxialMaterial Command

104

$tzType

$tult

$z50

$c

$solidElem1

$solidElem?2

tzType = 1 Backbone of t-z curve approximates Reese and
O’Neill (1987) relation.

tzType = 2 Backbone of t-z curve approximates Mosher (1984)
relation.

Ultimate capacity of the t-z material. Note that “t” or “tult” are
distributed loads [force per length of pile] in common design
equations, but are both loads for this uniaxialMaterial [i.e.,
distributed load times the tributary length of the pile].

Displacement at which 50% of tult is mobilized in monotonic
loading.

The viscous damping term (dashpot) on the far-field (elastic)
component of the displacement rate (velocity). Default = 0.0.
Nonzero c values are used to represent radiation damping
effects.

Element object integer tag for a solid element from which TzLiql

will obtain mean effective stresses and pore pressures.

Element object integer tag for a solid element from which TzLiql

will obtain mean effective stresses and pore pressures.

Chapter 8 uniaxialMaterial Command 105

NOTE: Full documentation of the TzLiqgl command is included in: TzLigl_ Documentation.pdf
(http://peer.berkeley.edu/~silvia/OpenSees/manual/documents/PyTzQzMats/TzLiql documentat
ion.pdf)

NOTE: The implementation of TzLigl requires that the specified soil elements consist of
FluidSolidPorousMaterials in FourNodeQuad elements. To model the effects of liquefaction with
TzLigl, it is necessary to use the material stage updating command:

updateMaterialStage —material $matNum —stage $sNum

where the argument matNum is the material number (for TzLigl) and the argument sNum is the
desired stage (valid values are 0 & 1). With sNum=0, the TzLigl behavior will be independent of
any pore pressure in the specified solidElem’s. When updateMaterialStage first sets sNum=1,
TzLigl will obtain the average mean effective stress in the two solidElem’s and treat it as the
initial consolidation stress prior to undrained loading. Thereafter, the behavior of TzLig1 will
depend on the mean effective stress (and hence excess pore pressures) in the solidElem’s. The
default value of sNum is O (i.e., SNum=0 if updateMaterialStage is not called). Note that the
updateMaterialStage command is used with some soil material models, and that SNum=0
generally corresponds to the application of gravity loads (e.g., elastic behavior with no excess
pore pressure development) and sNum=1 generally corresponds to undrained loading (e.g.,
plastic behavior with excess pore pressures development). The analysis for gravity loading
cannot use the "algorithm Linear" command because the relevant soil materials do not currently
work properly with this command. Instead, the "algorithm Newton" or some other option must be
used.

PySimplelGen Command

This command is used to construct output files containing material properties for PySimplel
uniaxial materials. The PySimplelGen command constructs PySimplel materials (Boulanger,
2003) for pre-defined zeroLength elements.

| PySimple1Gen $filel $file2 $file3 $filed $file5 <S$file6>

$filel The name of an input file containing soil and pile properties
required to define the PySimplel materials.

$file2 The name of an input file containing information about nodes
that define the mesh in the domain.

Chapter 8 uniaxialMaterial Command 106

$file3 The name of an input file containing information about the
zeroLength elements to be assigned PySimplel materials
(hereafter called p-y elements).

$filed The name of an input file containing information about the beam
column elements that are attached to p-y elements.

$file5 The name of the output file to which the PySimplel materials
are written.

$file6 The name of the output file to which the applied patterns are

written (optional).

The command has been structured such that $File2, $File3, $File4, $File5 and $File6 can be
sourced directly by OpenSees from within a master tcl file. Hence $File2, $File3 and $File4
serve two purposes:

1 They provide information to PySimplelGen to create the PySimplel materials.

2 They can be sourced directly in a master tcl file to define the nodes, zeroLength elements for
p-y materials, and pile elements, respectively.

Furthermore, $File5 and $File 6 serve the following purpose:

1 They can be sourced by OpenSees from within a master tcl file to define the PySimplel
materials and the applied patterns, respectively.

The intended use of the files is demonstrated in an example problem in the Appendix:
PySimplelGenDocumentation.pdf
(http://peer.berkeley.edu/~silvia/OpenSees/manual/documents/PyTzQzMats/PySimplelGenDoc
umentation.pdf)

TzSimplelGen Command

The TzSimplelGen command constructs TzSimplel materials (Boulanger, 2003) for pre-defined
zeroLength elements.

| TzSimplelGen $filel $file2 $file3 $filed $files <Sfile6>

$filel The name of an input file containing soil and pile properties
required to define the TzSimplel materials.

$file2 The name of an input file containing information about the
nodes that define the mesh in the domain.

Chapter 8 uniaxialMaterial Command 107

$file3 The name of an input file containing information about the
zeroLength elements that are to be assigned TzSimplel
materials (hereafter called tz elements).

$filed The name of an input file containing information about the beam
column elements that are attached to tz elements.

$file5 The name of the output file to which the TzSimplel materials
are written.

$file6 The name of the output file to which the applied patterns are

written (optional).

The command has been structured such that $File2, $File3, $File4, $File5 and $File6 can be
sourced directly from within a master tcl file. Hence $File2, $File3 and $File4 serve two
purposes:

1 They provide information to TzSimplelGen to create the TzSimplel materials.

2 They can be sourced directly in a master tcl file to define the nodes, zeroLength elements for
tz materials, and pile elements, respectively.

Furthermore, $File5 and $File6 serve the following purpose:

1 They can be sourced directly in a master tcl file to define the TzSimplel materials and the
applied patterns.

The dual use of the files is demonstrated in an example problem in the Appendix:
TzSimplelGenDocumentation.pdf
(http://peer.berkeley.edu/~silvia/OpenSees/manual/documents/PyTzQzMats/TzSimple1GenDoc
umentation.pdf)

108

CHAPTER 9

nDMaterial Command

This command is used to construct an NDMaterial object which represents stress-strain
relationships at the integration points of continuum and force-deformation elements.

The valid queries to any ND material when creating an ElementRecorder (page 224) are 'strain,’'
'stress,’ and 'tangent.’

In This Chapter

Elastic Isotropic Materialcccccvvvviiiiiiiiiiiinn, 108
J2 Plasticity Material...........ccccoeoieeiiiiiiiiiii e, 109
Plane Stress Materialcccccccvvvvviiiiiiiiiiieeee, 109
Plate Fiber Materialcccccvviiiii 110
Template Elasto-Plastic Material...................cccevvnne. 110
FluidSolidPorousMaterial Material.............ccccceeevnneee 115
PressurelndependMultiYield Material........................ 117
PressureDependMultiYield Material 122

Elastic Isotropic Material

This command is used to construct an Elasticlsotropic material object.

nDMaterial Elasticlsotropic $matTag $E $v

$matTag unique material object integer tag
$E elastic Modulus
$v Poisson's ratio

The material formulations for the Elasticlsotropic object are "ThreeDimensional," "PlaneStrain,"
"Plane Stress," "AxiSymmetric," and "PlateFiber." These are the valid strings that can be passed
to the continuum elements (page 158, page 155, page 156, page 154, page 155, page 157) for
the type parameter.

Chapter 9 nDMaterial Command 109

J2 Plasticity Material

This command is used to construct a J2Plasticity material object.

nDmaterial J2Plasticity $matTag $K $G $sig0 $siginf $delta $H

$matTag unique material object integer tag
$K bulk Modulus

$G shear Modulus

$sig0 initial yield stress

$siginf final saturation yield stress
$delta exponential hardening parameter
$H linear hardening parameter

Plane Stress Material

This command is used to construct a plane-stress material wrapper which converts any three-
dimensional material into a plane stress material via static condensation.

nDMaterial PlaneStress $matTag $threeDtag

$matTag unique material object integer tag

$threeDTag material tag for a previously-defined three-dimensional material

Chapter 9 nDMaterial Command 110

Plate Fiber Material

This command is used to construct a plate-fiber material wrapper which converts any three-
dimensional material into a plate fiber material (by static condensation) appropriate for shell
analysis.

nDMaterial PlateFiber $matTag $threeDTag

$matTag unique material object integer tag

$threeDTag material tag for a previously-defined three-dimensional material

Template Elasto-Plastic Material

This command is used to construct the template elasto-plastic material object.

nDMaterial Template3Dep $matTag $EImatTag -YS $ys -PS $ps -EPS $eps <-
ELS1 $el> <-ELT1 $et>

$matTag unique material object tag
$EImatTag previously defined elastic nDMaterial (such as Elasticlsotropic3D (page

108), PressureDependentElastic3D) tag

$ys yield surface variable, previously defined in Yield Surface (page 111) object

$ps potential surface variable, previously defined in Potential Surface (page
112) object

$eps elasto-plastic state variable, previously defined in EPState (page 114)
object

$el scalar (isotropic) evolution law variable, previously defined in Evolution
Law (page 113) object

Pet tensorial (kinematic) evolution law variable, previously defined in Evolution

Law (page 113) object

Chapter 9 nDMaterial Command 111

Yield Surface

This command sets the yield surface variable ys to be the specified type. Currently these
include: Drucker-Prager yield surface, Rounded Mohr-Coulomb (Willam-Warnke) yield surface,
von Mises yield surface, Cam-Clay yield surface and Leon yield surface.

set ys "-YieldSurfaceType <parameter list>"

Valid strings for YieldSurfaceType are DP, VM and CC.

» For Drucker-Prager yield surface

setys "-DP"

» For von Mises yield surface

setys "-VM"

» For rounded Mohr-Coulomb (Willam-Warnke) yield surface

set ys "-RMCO1"

» For Cam-Clay yield surface

set ys "-CC $M"

™M Slope of the critical state line in p-q space

» For Leon yield surface

set ys "-Leon $fc $ft $e $c”

$fc compressive strength
$ft tensile strength
$e excentricity of yield surface (usually 0.6-0.7)

$c cohesion

Chapter 9 nDMaterial Command 112

Potential Surface

This command is used to set the potential surface variable $ps to the specific surface (or directly
to the flow directions). Currently included are: Drucker-Prager potential surface, Rounded Mohr-
Coulomb (Willam-Warnke) potential surface, von Mises potential surface, Cam-Clay potential
surface and Leon potential surface.

| set ps "-PotentialSurfaceType <parameter list>"

Valid strings for PotentialSurfaceType are DP, VM and CC.

» For the Drucker-Prager potential surface

set ps "-DP"

» For the von Mises potential surface

set ps "-VM"

» For rounded Mohr-Coulomb (Willam-Warnke) potential surface

| set ps "-RMCO1"

» For the Cam-Clay potential surface

set ps "-CC $M"
™M Slope of the critical state line in p-q space

» For Leon potential surface

set ps "-Leon $fc $ft $e $c"
$fc compressive strength

Chapter 9 nDMaterial Command 113

$ft tensile strength
$e excentricity of yield surface (usually 0.6-0.7)
$c cohesion

Evolution Law

This command is used to set the evolution law variable el to the specified type. There are two
types of evolutions laws implemented: scalar (isotropic) evolution and tensorial (kinemartic)
evolution. For scalar evolution law, there are linear scalar evolution law and nonlinear scalar
evolution law. For tensorial evolution law, there are linear tensorial evolution law and nonlinear
tensorial evolution law.

set el "-EvolutionLawType <parameter list>"

Valid strings for EvolutionLawType are Leq, NLp, LEij, and NLEij

> For linear scalar evolution law

set el "-Leq $a"

» For Cam-Clay type nonlinear scalar evolution law

set el "-NLp $e_o $lambda $k

> For linear tensorial evolution law

set et "-LEij $al"

» For Armstrong-Frederick type nonlinear tensorial evolution law

set et "-NLEij $h_a $C r"

$a linear hardening coefficient
$e o initial void ratio
$lambda nonlinear evolution law constant (Cam-Clay type)

Chapter 9 nDMaterial Command 114

$k nonlinear evolution law constant (Cam-Clay type)

$al linear tensorial evolution law constant

$h_a nonlinear tensorial evolution law constant (Armstrong-Frederick type)
$C r nonlinear tensorial evolution law constant (Armstrong-Frederick type)
EPState

This command is used to set the Elasto-Plastic State, which includes two states.

» To set the initial stress tensor to variable sts, if —stressp $sts is used in eps:

set sts "$sigma_xx $sigma_xy $sigma_xz $sigma_yx $sigma_yy $sigma_yz
$sigma_zx $sigma_zy $sigma_zz"

» To assign to the Elasto-Plastic state variable eps the specified state
parameters

| set eps "<-NOD $nt> -NOS $ns $scalarl $scalar? ... <-stressp $sts>"

$sigma_xx $sigma_xy $sigma_xz Initial stress tensor components (Default = 0.0),
$sigma_yx $sigma_yy $sigma_yz
$sigma_zx $sigma_zy $sigma_zz

$nt number of tensorial internal variables
$ns number of scalar internal variables
$scalarl $scalar? ... corresponding initial values of scalar internal variables

$sts initial stresses

Chapter 9 nDMaterial Command 115

FluidSolidPorousMaterial Material

FluidSolidPorousMaterial couples the responses of two phases: fluid and solid. The fluid phase
response is only volumetric and linear elastic. The solid phase can be any NDMaterial (page
108). This material is developed to simulate the response of saturated porous media under fully
undrained condition.

nDMaterial FluidSolidPorousMaterial $tag $nd $soilMatTag
$combinedBulkModul

$tag unique material object integer tag
$nd Number of dimensions, 2 for plane-strain, and 3 for general 3D analysis.
$soilMatTag The material number for the solid phase material (previously defined).
$combinedBulkMod Combined undrained bulk modulus B. relating changes in pore pressure
ul and volumetric strain, may be approximated by:

B:xﬂfﬁﬁ

where B; is the bulk modulus of fluid phase (2.2x10° kPa for water
typically), and n the initial porosity.

NOTE:

1. Buoyant unit weight (total unit weight - fluid unit weight) should be used in definition of the
finite elements composed of a FluidSolidPorousMaterial.

2. During the application of gravity (elastic) load, the fluid phase does not contribute to the
material response.

OUTPUT INTERFACE:

The following information may be extracted for this material at given integration point, using the
OpenSees Element Recorder facility (McKenna and Fenves 2001): "stress”, "strain”, "tangent”,
or "pressure". The "pressure" option records excess pore pressure and excess pore pressure

ratio at a given material integration point.

Chapter 9 nDMaterial Command 116

updateMaterialStage

This command is used to update a PressureDependMultiYield (page 122), a
PressurelndependMultiYield (page 117), or a FluidSolidPorous (page 115) material. To conduct
a seismic analysis, two stages should be followed. First, during the application of gravity load
(and static loads if any), set material stage to 0, and material behavior is linear elastic (with G,
and B, as elastic moduli). A FluidSolidPorous (page 115) material does not contribute to the
material response if its stage is set to 0. After the application of gravity load, set material stage to
1 or 2. In case of stage 2, all the elastic material properties are then internally determined at the
current effective confinement, and remain constant thereafter. In the subsequent dynamic (fast)
loading phase(s), the deviatoric stress-strain response is elastic-plastic (stage 1) or linear-elastic
(stage 2), and the volumetric response remains linear-elastic.

| updateMaterialStage -material $tag -stage $sNum |

$tag previously-defined material object integer tag

$sNum desired stage:
0 — linear elastic,
1 - plastic,

2 — Linear elastic, with elasticity constants (shear modulus and bulk
modulus) as a function of initial effective confinement.

Chapter 9 nDMaterial Command 117

PressurelndependMultiYield Material

PressurelndependMultiYield material is an elastic-plastic material in which plasticity exhibits only
in the deviatoric stress-strain response. The volumetric stress-strain response is linear-elastic
and is independent of the deviatoric response. This material is implemented to simulate
monotonic or cyclic response of materials whose shear behavior is insensitive to the
confinement change. Such materials include, for example, organic soils or clay under fast
(undrained) loading conditions.

During the application of gravity load (and static loads if any), material behavior is linear elastic.
In the subsequent dynamic (fast) loading phase(s), the stress-strain response is elastic-plastic
(see updateMaterialStage (page 116) command). Plasticity is formulated based on the multi-
surface (nested surfaces) concept, with an associative flow rule. The yield surfaces are of the

Von Mises type.

nDmaterial PressurelndependMultiYield $tag $nd $rho $refShearModul
$refBulkModul $cohesi $peakShearStra <$frictionAng $refPress
$pressDependCoe $noYieldSurf <$gammal $Gsl ..> >

$tag
$nd
$rho

$refShearModul
(G)

$refBulkModul (B))

$cohesi (c)

$peakShearStra
(Yrmad)

$frictionAng (9)

$refPress (p')

$pressDependCoe
(d)

unique material object integer tag
Number of dimensions, 2 for plane-strain, and 3 for 3D analysis
Saturated soil mass density.

Reference low-strain shear modulus, specified at a reference mean
effective confining pressure refPress of p’, (see below).

Reference bulk modulus, specified at a reference mean effective
confining pressure refPress of p’, (see below).

Apparent cohesion at zero effective confinement.

An octahedral shear strain at which the maximum shear strength is
reached, specified at a reference mean effective confining pressure
refPress of p’. (see below).

Friction angle at peak shear strength in degrees, optional (default is
0.0).

Reference mean effective confining pressure at which G,, B,, and v.... are
defined, optional (default is 100.).

An optional non-negative constant defining variations of G and B as a
function of initial effective confinement p’; (default is 0.0):

G =6, (27 B=B (i)
2, o,

Chapter 9 nDMaterial Command 118

$noYieldSurf Number of yield surfaces, optional (must be less than 40, default is 20).
The surfaces are generated based on the hyperbolic relation defined in
Note 2 below.

$gammal $Gs1 Instead of automatic surfaces generation (Note 2), you can define

yield surfaces directly based on desired shear modulus reduction
curve. To do so, add a minus sign in front of noYieldSurf, then provide
noYieldSurf pairs of shear strain (gamma) and modulus ratio (Gs)
values. For example, to define 10 surfaces:

... -10 gammal Gsl ... gammalO Gs10 ...
See Note 3 below for some important notes.

NOTE:

1. The friction angle ¢ and cohesion c define the variation of peak (octahedral) shear strength 7,
as a function of initial effective confinement p’;:

22sin ¢ , 242
= _p i

Ty :
T 3—sin ¢ 3

2. Automatic surface generation: at a constant confinement p’, the shear stress t (octahedral) -
shear strain y (octahedral) nonlinearity is defined by a hyperbolic curve (backbone curve):

Gy

r=———
1+x/y,

where v, satisfies the following equation at p’.:

r f=
3 —sin ¢ 3 Lty ... 7.

oEX

pes 2«.551'11 g;‘u'p, i Zq,ﬁ G, Vo

3. (User defined surfaces) If the user specifies ¢=0, cohesion ¢ will be ignored. Instead, c is
defined by c=sqrt(3)*c./2, where c,, is the product of the last modulus and strain pair in the
modulus reduction curve. Therefore, it is important to adjust the backbone curve so as to render
an appropriate c.

If the user specifies ¢>0, this ¢ will be ignored. Instead, ¢ is defined as follows:

33 0, —2¢)/ p!
i1 @ = <
6+(30, —2c)/ p!

Chapter 9

If the resulting ¢<0, we set $=0 and c=sqrt(3)*c./2.

Also remember that improper modulus reduction curves can result in strain softening
response (negative tangent shear modulus), which is not allowed in the current model
formulation. Finally, note that the backbone curve varies with confinement, although the variation
is small within commonly interested confinement ranges. Backbone curves at different
confinements can be obtained using the OpenSees element recorder facility (see OUTPUT

INTERFACE below).

SUGGESTED PARAMETER VALUES

For user convenience, a table is provided below as a quick reference for selecting parameter
values. However, use of this table should be of great caution, and other information should be

incorporated wherever possible.

Soft Clay Medium Clay | Stiff Clay

rho (ton/m?) 1.3 15 1.8
refShearModul (kPa) | 1.3x10* 6.0x10* 1.5x10°
refBulkModu (kPa) 6.5x10° 3.0x10° 7.5x10°
cohesi (kPa) 18 37 75
peakShearStra 0.1 0.1 0.1
frictionAng 0 0 0
pressDependCoe 0 0 0

nDMaterial Command

Chapter 9 nDMaterial Command 120

OUTPUT INTERFACE:

The following information may be extracted for this material at a given integration point, using
the OpenSees Element Recorder facility (McKenna and Fenves 2001): "stress", "strain",

"backbone", or "tangent".

For 2D problems, the stress output follows this order: o, 6, 6., 6y, N, Where 7, is the ratio
between the shear (deviatoric) stress and peak shear strength at the current confinement
(0<=n,<=1.0). The strain output follows this order: g, &, Vs-

For 3D problems, the stress output follows this order: c,, 6, 6., Gy, Gy, 6 M. and the strain
output follows this order: €., &y, €2, Vs Yoz Yox-

The "backbone" option records (secant) shear modulus reduction curves at one or more given
confinements. The specific recorder command is as follows:

recorder Element $eleNum -file $fName -dT $deltaT material $GaussNum backbone $p1
<$p2...>

where pl, p2, ... are the confinements at which modulus reduction curves are recorded. In the
output file, corresponding to each given confinement there are two columns: shear strain y and
secant modulus G,. The number of rows equals the number of yield surfaces.

updateMaterialStage

This command is used to update a PressureDependMultiYield (page 122), a
PressurelndependMultiYield (page 117), or a FluidSolidPorous (page 115) material. To conduct
a seismic analysis, two stages should be followed. First, during the application of gravity load
(and static loads if any), set material stage to 0, and material behavior is linear elastic (with G,
and B, as elastic moduli). A FluidSolidPorous (page 115) material does not contribute to the
material response if its stage is set to 0. After the application of gravity load, set material stage to
1 or 2. In case of stage 2, all the elastic material properties are then internally determined at the
current effective confinement, and remain constant thereafter. In the subsequent dynamic (fast)
loading phase(s), the deviatoric stress-strain response is elastic-plastic (stage 1) or linear-elastic
(stage 2), and the volumetric response remains linear-elastic.

| updateMaterialStage -material $tag -stage $sNum |

$tag previously-defined material object integer tag

Chapter 9 nDMaterial Command 121

$sNum desired stage:
0 — linear elastic,
1 — plastic,

2 — Linear elastic, with elasticity constants (shear modulus and bulk
modulus) as a function of initial effective confinement.

updateParameter

This command is used to update material parameters of PressureDependMultiYield (page 122)
or PressurelndependMultiYield (page 117) material. Currently, two material parameters,
reference low-strain shear modulus G, and reference bulk modulus B,, can be modified during an

analysis.

To update G;:

| updateParameter -material $tag -refG $newVval |

To update B;:

| updateParameter -material $tag -refB $newVal |

$tag previously-defined material object integer tag

$newVal New parameter value

Chapter 9 nDMaterial Command 122

PressureDependMultiYield Material

PressureDependMultiYield material is an elastic-plastic material used for simulating the essential
response characteristics of pressure sensitive soil materials under general loading conditions.
Such characteristics include dilatancy (shear-induced volume contraction or dilation) and non-
flow liquefaction (cyclic mobility), typically exhibited in sands or silts during monotonic or cyclic
loading.

When this material is employed in regular solid elements (e.g., FourNodeQuad (page 155, page
156, page 154, page 155), Brick (page 158, page 157)), it simulates drained soil response. To
simulate soil response under fully undrained condition, this material may be either embedded in
a FluidSolidPorousMaterial (page 115), or used with the FourNodeQuadUP (page 165) element
with very low permeability. To simulate partially drained soil response, this material should be
used with the FourNodeQuadUP (page 165) element with proper permeability values.

During the application of gravity load (and static loads if any), material behavior is linear elastic.
In the subsequent dynamic (fast) loading phase(s), the stress-strain response is elastic-plastic
(see updateMaterialStage (page 116) command). Plasticity is formulated based on the multi-
surface (nested surfaces) concept, with a non-associative flow rule to reproduce dilatancy effect.
The yield surfaces are of the Drucker-Prager type.

nDMaterial PressureDependMultiYield $tag $nd $rho $refShearModul
$refBulkModul $frictionAng $peakShearStra $refPress
$pressDependCoe $PTANng $contrac $dilatl $dilat2 $liquefacl
$liguefac2 $liquefac3 <$noYieldSurf <ggammal $Gsl ...> $e $csi
$cs2 $cs3 $pa>

$tag unigue material object integer tag
$nd Number of dimensions, 2 for plane-strain, and 3 for 3D analysis.
$rho Saturated soil mass density.

$refShearModul (G) Reference low-strain shear modulus, specified at a reference mean
effective confining pressure refPress of p’, (see below).

$refBulkModul (B) Reference bulk modulus, specified at a reference mean effective
confining pressure refPress of p’, (see below).

$frictionAng (¢) Friction angle at peak shear strength, in degrees.

Chapter 9 nDMaterial Command 123

$peakShearStra
(Yma)

$refPress (p')

$pressDependCoe
(d)

$PTANG (¢e)
$contrac

$dilatl, $dilat2

$liquefacl,
$liquefac?,
$liquefac3

$noYieldSurf

An octahedral shear strain at which the maximum shear strength is
reached, specified at a reference mean effective confining pressure
refPress of p’. (see below).

Octahedral shear strain is defined as:
2 , 4 - .
¥ :%[EE = - F+ (EH =g Yle e T+ 6e,, +6¢,; +6£';]1

Reference mean effective confining pressure at which G,, B,, and ... are
defined.

A positive constant defining variations of G and B as a function of
instantaneous effective confinement p’:

G- G, (2 B=B,(2)°
-p:' .l.t;r-

Phase transformation angle, in degrees.

A non-negative constant defining the rate of shear-induced volume
decrease (contraction) or pore pressure buildup. A larger value
corresponds to faster contraction rate.

Non-negative constants defining the rate of shear-induced volume
increase (dilation). Larger values correspond to stronger dilation rate.

Parameters controlling the mechanism of liquefaction-induced perfectly
plastic shear strain accumulation, i.e., cyclic mobility. Set liquefacl =0
to deactivate this mechanism altogether.

liguefacl defines the effective confining pressure (e.g., 10 kPa) below
which the mechanism is in effect. Smaller values should be assigned to
denser sands.

liguefac2 defines the maximum amount of perfectly plastic shear strain
developed at zero effective confinement during each loading phase.
Smaller values should be assigned to denser sands.

liguefac3 defines the maximum amount of biased perfectly plastic shear
strain y, accumulated at each loading phase under biased shear loading
conditions, as v, =liquefac2 x liquefac3.

Typically, liquefac3 takes a value between 0.0 and 3.0. Smaller values
should be assigned to denser sands. See the references listed at the
end of this chapter for more information.

Number of yield surfaces, optional (must be less than 40, default is 20).
The surfaces are generated based on the hyperbolic relation defined in
Note 2 below.

Chapter 9 nDMaterial Command 124

$gammal $Gs1l Instead of automatic surfaces generation (Note 2), you can define
yield surfaces directly based on desired shear modulus reduction
curve. To do so, add a minus sign in front of noYieldSurf, then provide
noYieldSurf pairs of shear strain (gamma) and modulus ratio (Gs)
values. For example, to define 10 surfaces:

... -10 gammal Gs1 ... gammal0 Gs10 ...

See Note 3 below for some important notes.

$e Initial void ratio, optional (default is 0.6).
$csl, $cs2, $cs3, Parameters defining a straight critical-state line e, in e-p’ space.
$pa If cs3=0,

e, =csl—es2 log(p'/ p,)
else (Li and Wang, JGGE, 124(12)),
}c.s?r

e, =csl—es2(p"! p,

where p. is atmospheric pressure for normalization (typically 101 kPa in
Sl units). All four constants are optional (default values: ¢s1=0.9,
¢s2=0.02, ¢s3=0.7, pa=101).

NOTE:

1. The friction angle ¢ defines the variation of peak (octahedral) shear strength t, as a function
of current effective confinement p’:

2-2sin ¢ ,
S

T
3—sin ¢

Octahedral shear stress is defined as:

r=%[::rﬂ, -0, f +(J:._1- = P, <o F +60; +60% +602]1 :

2. (Automatic surface generation) At a constant confinement p’, the shear stress t (octahedral) -
shear strain y (octahedral) nonlinearity is defined by a hyperbolic curve (backbone curve):

Gy

i

rT=— "
LEriy;

Chapter 9 nDMaterial Command 125

where v, satisfies the following equation at p’.:

_24/2sin ¢y —_G Ve
3—sing - 14y /¥

=X i r

T

3. (User defined surfaces) The user specified friction angle ¢ is ignored. Instead, ¢ is defined as
follows:

?h,l@ o, p:
5+"-..I'I§ a,, p'

sin @ =
where o, is the product of the last modulus and strain pair in the modulus reduction curve.
Therefore, it is important to adjust the backbone curve so as to render an appropriate ¢. If the
resulting ¢ is smaller than the phase transformation angle ¢.:, ¢-r is set equal to ¢.

Also remember that improper modulus reduction curves can result in strain softening response
(negative tangent shear modulus), which is not allowed in the current model formulation. Finally,
note that the backbone curve varies with confinement, although the variations are small within
commonly interested confinement ranges. Backbone curves at different confinements can be
obtained using the OpenSees element recorder facility (see OUTPUT INTERFACE below).

The last five optional parameters are needed when critical-state response (flow liquefaction) is
anticipated. Upon reaching the critical-state line, material dilatancy is set to zero.

SUGGESTED PARAMETER VALUES

For user convenience, a table is provided below as a quick reference for selecting parameter
values. However, use of this table should be of great caution, and other information should be
incorporated wherever possible.

Loose Sand Medium Sand | Medium-dense Dense Sand
(15%-35%) (35%-65%) Sand (65%-85%) | (85%-100%)
rho (ton/m3) 1.7 1.9 2.0 2.1
refShearModul (kPa, | 5.5x10* 7.5x10¢ 1.0x10° 1.3x10°
at p’'=80 kPa)
refBulkModu (kPa, 1.5x10° 2.0x10° 3.0x10° 3.9x10°
at p’'=80 kPa)
frictionAng 29 33 37 40

Chapter 9 nDMaterial Command 126

peakShearStra (at 0.1 0.1 0.1 0.1
p’=80 kPa)

pressDependCoe 0.5 0.5 0.5 0.5
PTANg 27 23 20 16
contrac 0.21 0.07 0.05 0.03
dilatl 0. 0.4 0.6 0.8
dilat2 0 2 3 5
liquefacl (kPa) 10 10 5 0
liquefac2 0.02 0.01 0.003 0
liquefac3 1 1 1 0

e 0.85 0.7 0.55 0.45

OUTPUT INTERFACE:

The following information may be extracted for this material at a given integration point, using
the OpenSees Element Recorder (page 221) facility (McKenna and Fenves 2001): "stress”,

non

"strain”, "backbone", or "tangent".

For 2D problems, the stress output follows this order: o, 6,,, 6., 6., N, Where 7, is the ratio
between the shear (deviatoric) stress and peak shear strength at the current confinement
(0<=n,<=1.0). The strain output follows this order: g, &, Vx-

For 3D problems, the stress output follows this order: o, 6y, 6., Gy, Gy, G., M, and the strain
output follows this order: e, &y, €2, Vi Yoo Yox-

The "backbone" option records (secant) shear modulus reduction curves at one or more given
confinements. The specific recorder command is as follows:

recorder Element $eleNum -file $fName -dT $deltaT material $GaussNum backbone $p1
<$p2...>

where pl, p2, ... are the confinements at which modulus reduction curves are recorded. In the
output file, corresponding to each given confinement there are two columns: shear strain y and
secant modulus G,. The number of rows equals the number of yield surfaces.

Chapter 9 nDMaterial Command 127

updateMaterialStage

This command is used to update a PressureDependMultiYield (page 122), a
PressurelndependMultiYield (page 117), or a FluidSolidPorous (page 115) material. To conduct
a seismic analysis, two stages should be followed. First, during the application of gravity load
(and static loads if any), set material stage to 0, and material behavior is linear elastic (with G,
and B, as elastic moduli). A FluidSolidPorous (page 115) material does not contribute to the
material response if its stage is set to 0. After the application of gravity load, set material stage to
1 or 2. In case of stage 2, all the elastic material properties are then internally determined at the
current effective confinement, and remain constant thereafter. In the subsequent dynamic (fast)
loading phase(s), the deviatoric stress-strain response is elastic-plastic (stage 1) or linear-elastic
(stage 2), and the volumetric response remains linear-elastic.

| updateMaterialStage -material $tag -stage $sNum |

$tag previously-defined material object integer tag

$sNum desired stage:
0 — linear elastic,
1 - plastic,

2 — Linear elastic, with elasticity constants (shear modulus and bulk
modulus) as a function of initial effective confinement.

Chapter 9 nDMaterial Command 128

updateParameter

This command is used to update material parameters of PressureDependMultiYield (page 122)
or PressurelndependMultiYield (page 117) material. Currently, two material parameters,
reference low-strain shear modulus G, and reference bulk modulus B,, can be modified during an

analysis.

To update G

| updateParameter -material $tag -refG $newVval |

To update B.:

| updateParameter -material $tag -refB $newVal |

$tag previously-defined material object integer tag

$newVal New parameter value

129

CHAPTER 10

section Command

This command is used to construct a SectionForceDeformation object, hereto referred to as
Section, which represents force-deformation (or resultant stress-strain) relationships at beam-
column and plate sample points.

> What is a section?

= A section defines the stress resultant force-deformation response at a cross section of a
beam-column or plate element

= Types of sections:

. Elastic — defined by material and geometric constants

. Resultant — general nonlinear description of force-deformation response, e.g. moment-
curvature

. Fiber — section is discretized into smaller regions for which the material stress-strain

response is integrated to give resultant behavior, e.g. reinforced concrete

The valid queries to any section when creating an ElementRecorder (page 224) are ‘force' and
‘deformation."

element nWmem node
K s]

|

element

farce-deformation
[stress-straind

Chapter 10 section Command 130

Figure 42: Section
Representation

In This Chapter

Elastic SECHON.......coovveiiiie e 130
Uniaxial SECHON........oviveeiiie e 131
FiDer SECHONccveiieeeeee e 132
Section AQQregator............ueuvverrerrririrrrnnieennrenenn.. 141
Elastic Membrane Plate Sectionc.ccoevvevvvevnnnnee. 144
Plate Fiber SECtioNcovvvveiiieiiiieie e 144
Bidirectional SEeCtion..........ccovviveviiiiiieee e 145

Elastic Section

This command is used to construct an ElasticSection object.

section Elastic $secTag $E $A $iz <$ly $G $J>

$secTag unique section object tag

$E Young's Modulus

$A cross-sectional area of section

$lz second moment of area about the local z-axis

$ly second moment of area about the local y-axis (optional, used for
3D analysis)

$G Shear Modulus (optional, used for 3D analysis)

$J torsional moment of inertia of section (optional, used for 3D
analysis)

This command is useful for patch tests of the nonlinear beam-column elements (page 149). It
also allows nonlinear beam-column elements to be used for elastic analysis.

EXAMPLE:

section Elastic 1 29000 100 100000 80000 20000 100000; # create elastic section with
IDtag 1

Chapter 10 section Command 131

Uniaxial Section

This command is used to construct a UniaxialSection object which uses a previously-defined
UniaxialMaterial (page 35) object to represent a single section force-deformation response
quantity. (Formerly known as Genericld section, which is still accepted by OpenSees)

| section Uniaxial $secTag $matTag $string

$secTag

$matTag

$string
P
Mz
Vy
My
Vz
T

EXAMPLE:

unigue section object tag
previously-defined UniaxialMaterial (page 35) object

the force-deformation quantity to be modeled by this section
object. One of the following strings is used:

Axial force-deformation

Moment-curvature about section local z-axis
Shear force-deformation along section local y-axis
Moment-curvature about section local y-axis
Shear force-deformation along section local z-axis

Torsion Force-Deformation

section Uniaxial 1 1 Mz; # create sectionID-tag 1 from UniaxialMateriallD-tag 1 for the
moment-curvature about section local z-axis.

Chapter 10 section Command 132

Fiber Section

The FiberSection object is composed of Fiber objects.

A fiber section has a general geometric configuration formed by subregions of simpler, regular
shapes (e.g. quadrilateral, circular and triangular regions) called patches. In addition, layers of
reinforcement bars can be specified. The subcommands patch (page 134) and layer (page 139,
page 138) are used to define the discretization of the section into fibers. Individual fibers,
however, can also be defined using the fiber (page 133) command (During generation, the Fiber
objects are associated with uniaxialMaterial (page 35) objects, which enforce Bernoulli beam
assumptions.

The geometric parameters are defined with respect to a planar local coordinate system (y,z).
See figures.

section Fiber $secTag {
fiber <fiber arguments>
patch <patch arguments>

layer <layer arguments>

An example fiber section is shown in the Figure.

Chapter 10 section Command

133

Figure 43: Fiber
Section

cover patch

core patch

radius

Fiber Command

This command is used to construct a UniaxialFiber object and add it to the section.

| fiber $yLoc $zLoc $A $matTag

$yLoc y coordinate of the fiber in the section (local coordinate system)

Chapter 10 section Command 134

$zLoc z coordinate of the fiber in the section (local coordinate system)
$A area of fiber
$matTag material tag of the pre-defined UniaxialMaterial (page 35) object used

to represent the stress-strain for the area of the fiber

NOTE: in 2D (page 26) bending is about the local z-axis

EXAMPLE:

fiber 0.00.0 1.0 1; # create a single fiber of area 1.0 at the origin (0,0) of the section, using
materiallDtag 1

Figure 44: Fiber

Command
/ $A

[]
i i(fyloc, fzloc)

L

Y

Quadrilateral Patch Command

This command is used to construct a Patch object with a quadrilateral shape. The geometry of

the patch is defined by four vertices: |1 J K L, as illustrated in the Figure. The coordinates of each
of the four vertices is specified in sequence -- counter-clockwise.

patch quad $matTag $numSubdivld $numSubdivIK $yl $zI $yJ $zJ $yK $zK $yL
$zL

$matTag material integer tag of the previously-defined UniaxialMaterial
(page 35) object used to represent the stress-strain for the
area of the fiber

Chapter 10 section Command 135

$numSubdivid

number of subdivisions (fibers) in the 1J direction.
$numSubdivIK

number of subdivisions (fibers) in the JK direction.

Syl $zI y & z-coordinates of vertex | (local coordinate system)
$yJ $zJ y & z-coordinates of vertex J (local coordinate system)
$yK $zK y & z-coordinates of vertex K (local coordinate system)
$yL $zL

y & z-coordinates of vertex L (local coordinate system)
NOTE: in 2D (page 26) bending is about the local z-axis
EXAMPLE:

patch quad $coreMatTag 8 8 -$b -$h $b -$h $b $h -$b $h; # define core patch with 8
subdivisions within a rectange of width 2b and depth 2h

K (3K, §2K)
il
=
3
ol
=3
Z

L Byl Sl e

i
[
J (B, $2J)
&

Z
| (i, $zl)
Y

Chapter 10 section Command 136

Figure 45:
Quadrilateral Patch

Circular Patch Command

This command is used to construct a Patch object with a circular shape.

patch circ $matTag $numSubdivCirc $numSubdivRad $yCenter $zCenter
$intRad $extRad <$startAng $endAng>

$matTag

$numSubdivCirc

$numSubdivRad
$yCenter $zCenter
$intRad

$extRad

$startAng

$endAng

material integer tag of the previously-defined UniaxialMaterial
(page 35) object used to represent the stress-strain for the
area of the fiber

number of subdivisions (fibers) in the circumferential
direction.

number of subdivisions (fibers) in the radial direction.
y & z-coordinates of the center of the circle

internal radius

external radius

starting angle (optional. default=0.0)

ending angle (optional. default=360.0)

NOTE: in 2D (page 26) bending is about the local z-axis

Chapter 10 section Command 137

EXAMPLE:

patch circ $coreMatTag 8 8 0.0 0.0 0.0 $h; # define core patch with 8 subdivisions within a
whole circle of diameter 2h

srum3utidivGire=4

Chapter 10 section Command 138

Figure 46: Circular
Patch

Straight Layer Command

This command is used to construct a straight layer of reinforcing bars.

layer straight $matTag $numBars $areaBar $yStart $zStart $yEnd $zEnd

$matTag material integer tag of the previously-defined UniaxialMaterial
(page 35) object used to represent the stress-strain for the area
of the fiber

$numBars number of reinforcing bars along layer

$areaBar area of individual reinforcing bar

$yStart $zStart y and z-coordinates of starting point of reinforcing layer (local
coordinate system)

$yEnd $zEnd y and z-coordinates of ending point of reinforcing layer (local
coordinate system)

NOTE: in 2D (page 26) bending is about the local z-axis

EXAMPLE:

layer straight $steelMatTag 10 0.11 -b -h b -h; # define steel layer of 10 bars with area 0.11
at bottom of section of width 2b by 2h

Chapter 10 section Command 139

Figure 47: Straight
Layer

FrumBar=a Ja".(lﬁfEnd. $zEnd)

Circular Layer Command

This command is used to construct a circular layer of reinforcing bars.

layer circ $matTag $numBar $areaBar $yCenter $zCenter $radius <$startAng

$endAng>
$matTag material integer tag of the previously-defined
UniaxialMaterial (page 35) object used to represent the
stress-strain for the area of the fiber
$numBar number of reinforcing bars along layer

$areaBar area of individual reinforcing bar

Chapter 10 section Command 140

$yCenter $zCenter y and z-coordinates of center of reinforcing layer (local
coordinate system)

$radius radius of reinforcing layer

$startAng $endAng starting and ending angle of reinforcing layer, respectively.
(Optional, Default: a full circle is assumed 0-360)

NOTE: in 2D (page 26) bending is about the local z-axis

EXAMPLE:

layer circ $steelMatTag 10 0.11 0.0 0.0 $h 0 360; # define circular steel layer of 10 bars with
area 0.11 uniformly distributed along circumference of circle of diameter 2h

Chapter 10 section Command 141

Figure 48: Circular
Reinforcing Layer

Section Aggregator

This command is used to construct a SectionAggregator object which groups previously-defined
UniaxialMaterial (page 35) objects into a single section force-deformation model.

section Aggregator $secTag $matTagl $stringl $matTag2 $string2 <-
section $sectionTag>

$secTag unigue section object integer tag
$matTagl, previously-defined UniaxialMaterial (page 35) objects
$matTag?2 ...

$stringl, $string2 the force-deformation quantities corresponding to each section
object. One of the following strings is used:

P Axial force-deformation
Mz Moment-curvature about section local z-axis
Vy Shear force-deformation along section local y-axis
My Moment-curvature about section local y-axis
Vz Shear force-deformation along section local z-axis
T Torsion Force-Deformation
<-section specifies a previously-defined Section (page 129) object
$sectionTag> (identified by the argument $sectionTag) to which these

UniaxialMaterial (page 35) objects may be added to recursively
define a new Section (page 129) object

NOTE: The UniaxialMaterial (page 35) objects aggregated in this Section (page 129) object are
uncoupled from each other as well as from the Section (page 129) object represented by
$sectionTag, if present.

There are two main tasks that can be performed using the Section Aggregator:

Chapter 10 section Command 142

» 1. Group previously defined uniaxial materials to describe stress resultant
section behavior

Figure 49: Section
Aggregator 1

EXAMPLE:

section Aggregator 1 2 Vy 5 Mz; #create new section with IDtag 1, taking the existing material
tag 2 to represent the shear and the existing material tag 5 to represent the moment.

Chapter 10 section Command 143

» 2. Add to an existing section

Figure 50: Section
Aggregator 2

EXAMPLE:

section Aggregator 2 2 Vy -section 4; # create new section with IDtag 2, taking the existing
material tag 2 to represent the shear and adding it to the existing section tag 4, which may be a
fiber section where the interaction betweeen axial force and flexure is already considered.

Chapter 10 section Command 144

Elastic Membrane Plate Section

This command is used to construct an ElasticMembranePlateSection object, which is an
isotropic section appropriate for plate and shell analysis.

section ElasticMembranePlateSection $secTag $E $nu $h $rho

$secTag unique section object tag

$E Elastic Modulus

$nu Poisson's Ratio

$h thickness of the plate section

$rho mass density of the material (per unit volume)

Plate Fiber Section

The plate fiber section takes any plate fiber material (page 110) and, by thickness integration,
creates a plate section appropriate for shell analysis.

section PlateFiber $secTag $fiberTag $h

$secTag unigue section object tag for section being constructed
$fiberTag material tag for a previously-defined plate fiber material (page
110)

$h thickness of the plate section

Chapter 10 section Command 145

Bidirectional Section

This command is used to construct a Bidirectional section object which is the two-dimensional
generalization of a one-dimensional elasto-plastic model with linear hardening.

section Bidirectional $matTag $E $sigY $H_iso $H_kin

$matTag unique section object integer tag
$E Elastic Modulus

$sigY yield stress

$H_iso isotropic hardening Modulus
$H_Kin kinematic hardening Modulus

146

CHAPTER 11

element Command

This command is used to construct an Element object.

In This Chapter

Truss EIemMentccueiieiiiiiee e 146
Corotational Truss Element............ccooeeeviviieeiiiiinnnennns 147
Elastic Beam Column Element.........ccooovvvevviviviinnnnnne. 148
NonLinear Beam-Column Elements............ccoeeevuneeee. 149
Zero-Length Elements.........cccccceeeiiieviieeciiii e, 152
Quadrilateral EIements..............uuvvvvvviviiiieiiiiiiiiiiiinnne. 154
Brick EIBMENTS ...ouviieiiiiee e 157
FourNodeQuadUP Elementccooeeeiiiieieiiinienens 165
BeamColumnJoint Element...........cocooeviiiiiiiiiiiiiienens 166

Truss Element

This command is used to construct a truss element object. There are two ways to construct a
truss element object:

One way is to specify an area and a UniaxialMaterial (page 35) identifier:

| element truss $eleTag $iNode $jNode $A $matTag

the other is to specify a Section (page 129) identifier:

| element truss $eleTag $iNode $jNode $secTag

$eleTag unique element object tag

$iNode $jNode end nodes

$A cross-sectional area of element

$matTag tag) associated with previously-defined UniaxialMaterial (page
35

$secTag tag associated with previously-defined Section (page 129)

Chapter 11 element Command 147

When constructed with a UniaxialMaterial (page 35) object, the truss element considers strain-
rate effects, and is thus suitable for use as a damping element.

The valid queries to a truss element when creating an ElementRecorder (page 224) object are
‘axialForce," 'stiff," material matArgl matArg2...," 'section sectArgl sectArg2..." There will be more
queries after the interface for the methods involved have been developed further.

Corotational Truss Element

This command is used to construct a Corotational Truss (CorotTruss) element object. A
corotational formulation adopts a set of corotational axes which rotate with the element, thus
taking into account an exact geometric transformation between local and global frames of
reference.

There are two ways to construct a Corotational Truss element object:

One way is to specify an area and a UniaxialMaterial (page 35) identifier:

| element corotTruss $eleTag $iNode $jNode $A $matTag |

the other is to specify a Section (page 129) identifier:

| element corotTruss $eleTag $iNode $jNode $secTag |

$eleTag unique element object tag

$iNode $jNode end nodes

$A cross-sectional area of element

$matTag tag associated with previously-defined UniaxialMaterial (page
35) object

$secTag tat)g associated with previously-defined Section (page 129)
object

NOTE: When constructed with a UniaxialMaterial (page 35) object, the truss element considers
strain-rate effects, and is thus suitable for use as a damping element.

The valid queries to a corotational truss element when creating an ElementRecorder (page 224)
object are 'axialForce,' 'stiff,' 'material $matNum matArgl matArg2...," 'section $secNum
sectArgl sectArg2...'

Chapter 11 element Command 148

Elastic Beam Column Element

This command is used to construct an elasticBeamColumn element object. The arguments for
the construction of an elastic beam-column element depend on the dimension of the problem,
ndm (page 22):

For a two-dimensional problem:

| element elasticBeamColumn $eleTag $iNode $jNode $A $E $Iz $transfTag

For a three-dimensional problem:

element elasticBeamColumn $eleTag $iNode $jNode $A $E $G $J $ly $iz

$transfTag
$eleTag unique element object tag
$iNode $jNode end nodes
$A cross-sectional area of element
$E Young's Modulus
$G Shear Modulus
$J torsional moment of inertia of cross section
$lz second moment of area about the local z-axis
$ly second moment of area about the local y-axis
$transfTag identifier for previously-defined coordinate-transformation (page

200) (CrdTransf) object

The valid queries to an elastic beam-column element when creating an ElementRecorder (page
224) object are 'stiffness' and ‘force.’

Chapter 11 element Command 149

NonLinear Beam-Column Elements

There are basically two types of Nonlinear Beam-Column Elements

» Force based elements
= Distributed plasticity (nonlinearBeamColumn (page 149))
= Concentrated plasticity with elastic interior (beamWithHinges (page 150))

» Displacement based element
= Distributed plasticity with linear curvature distribution (dispBeamColumn (page 151))

*rxxererxx*NEED FIGURE BY MHS

Nonlinear Beam Column Element

This command is used to construct a nonlinearBeamColumn element object, which is based on
the non-iterative (or iterative) force formulation, and considers the spread of plasticity along the
element.

element nonlinearBeamColumn $eleTag $iNode $jNode $numintgrPts $secTag
$transfTag <-mass $massDens> <-iter $maxlters $tol>

$eleTag unique element object tag

$iNode $jNode end nodes

$numintgrPts number of integration points along the element.

$secTag identifier for previously-defined section (page 129) object

$transfTag identifier for previously-defined coordinate-transformation (page
200) (CrdTransf) object

$massDens element mass density (per unit length), from which a lumped-

mass matrix is formed (optional, default=0.0)

$maxlters maximum number of iterations to undertake to satisfy element
compatibility (optional, default=1)

$tol tolerance for satisfaction of element compatibility (optional,
default=107)

Chapter 11 element Command 150

The integration along the element is based on Gauss-Lobatto quadrature rule (two integration
points at the element ends).

The element is prismatic, i.e. the beam is represented by the section (page 129) model identified
by $secTag at each integration point.

The -iter switch enables the iterative form of the flexibility formulation. Note that the iterative
form can improve the rate of global convergence at the expense of more local element
computation.

The valid queries to a nonlinear beam-column element when creating an ElementRecorder
(page 224) object are 'force,’ 'stiffness," and 'section $secNum secArgl secArg2...' Where
$secNum refers to the integration point whose data is to be output.

Beam With Hinges Element

This command is used to construct a beamWithHinges element object, which is based on the
non-iterative (or iterative) flexibility formulation, and considers plasticity to be concentrated over
specified hinge lengths at the element ends.

The arguments for the construction of the element depend on the dimension of the problem,
ndm (page 22).

For a two-dimensional problem:

element beamWithHinges $eleTag $iNode $jNode $secTagl $HingeLengthl
$secTagJd $HingeLengthJd $E $A $l1z $transfTag <-mass $massDens> <-
iter $maxlters $tol>

For a three-dimensional problem:

element beamWithHinges $eleTag $iNode $jNode $secTagl $HingeLengthl
$secTagJd $HingeLengthJ $E $A $l1z $ly $G $J $transfTag <-mass
$massDens> <-iter $maxliters $tol>

$eleTag unique element object tag

$iNode $jNode end nodes

$secTagl identifier for previously-defined section (page 129) object
corresponding to node |

$HingelLengthl ratio of hinge length to total element length at node |

$secTagJ identifier for previously-defined section (page 129) object

corresponding to node J

$HingeLengthJ ratio of hinge length to total element length at node J

Chapter 11 element Command 151

$E Young's Modulus

$A area of element cross-section

$lz section moment of inertia about the section local z-axis

$ly section moment of inertia about the section local y-axis

$G Shear Modulus

$J torsional moment of inertia of cross section

$transfTag identifier for previously-defined coordinate-transformation (page
200) (CrdTransf) object

$massDens element mass density (per unit length), from which a lumped-

mass matrix is formed (optional, default=0.0)

$maxlters maximum number of iterations to undertake to satisfy element
compatibility (optional, default=1)

$tol tolerance for satisfaction of element compatibility (optional,
default=107)

The -iter switch enables the iterative form of the flexibility formulation. Note that the iterative
form can improve the rate of global convergence at the expense of more local element
computation.

NOTE: The elastic properties are integrated only over the beam interior, which is considered to
be linear-elastic. Forces and deformations of the inelastic regions are sampled at the hinge
midpoints, using mid-point integration.

The valid queries to a beamWithHinges element when creating an ElementRecorder (page 224)
object are 'force,’ 'stiffness," 'rotation' (hinge rotation), or 'section $secNum secArgl secArg2...'
Where $secNum refers to the integration point whose data is to be output.

Displacement-Based Beam-Column Element

This command is used to construct a dispBeamColumn element object, which is a distributed-
plasticity, displacement-based beam-column element.

element dispBeamColumn $eleTag $iNode $jNode $numintgrPts $secTag
$transfTag <-mass $massDens>

$eleTag unigue element object tag
$iNode $jNode end nodes
$numintgrPts number of integration points along the element.

$secTag identifier for previously-defined section (page 129) object

Chapter 11 element Command 152

$transfTag identifier for previously-defined coordinate-transformation (page
200) (CrdTransf) object
$massDens element mass density (per unit length), from which a lumped-

mass matrix is formed (optional, default=0.0)

The integration along the element is based on the Gauss-Legendre quadrature rule (REF???).

The element is prismatic, i.e. the beam is represented by the section model identified by
$secTag at each integration point.

The valid queries to a displacement-based beam-column element when creating an
ElementRecorder (page 224) object are ‘force,’ 'stiffness," and 'section $secNum secArgl
secArg2...' Where $secNum refers to the integration point whose data is to be output.

Zero-Length Elements

Zero-length elements connect two points at the same coordinate.

Zero-Length Element

This command is used to construct a zeroLength element object, which is defined by two nodes
at the same location. The nodes are connected by multiple UniaxialMaterial (page 35) objects to
represent the force-deformation relationship for the element.

element zeroLength $eleTag $iNode $jNode -mat $matTagl $matTag?2 ... -dir
$dirl $dir2 ... <-orient $x1 $x2 $x3 $yp1l $yp2 $yp3>

$eleTag unigue element object tag
$iNode $jNode end nodes
$matTagl tags associated with previously-defined UniaxialMaterials (page
$matTag?2 ... 35)
$dirl $dir2 ... material directions:
1,2,3 translation along local x,y,z axes,
respectively
45,6 rotation about local x,y,z axes, respectively

the orientation vectors can be specified for the element (optional):

$x1 $x2 $x3 vector components in global coordinates defining local x-axis
(vector x)

Chapter 11 element Command 153

$ypl $yp2 $yp3 vector components in global coordinates defining vector yp
which lies in the local x-y plane for the element:

the local z-axis is defined by the cross product
between the vectors x and yp

If the optional orientation vectors are not specified, the local element axes coincide with the
global axes.

The valid queries to a zero-length element when creating an ElementRecorder (page 224) object
are ‘'force,' 'deformation,' 'stiffness,' and 'material $matNum matArgl matArg2 ...' Where
$matNum is the tag associated with the material whose data is to be output.

Zero-Length Section Element

This command is used to construct a zeroLengthSection element object, which is defined by two
nodes at the same location. The nodes are connected by a single SectionForceDeformation
(page 129) object to represent the force-deformation relationship for the element.

element zeroLengthSection $eleTag $iNode $jNode $secTag <-orient $x1 $x2

$x3 $ypl $yp2 $yp3>
$eleTag unique element object tag
$iNode $jNode end nodes
$secTag tag associated with previously-defined Section (page 129)
object

the orientation vectors can be specified for the element (optional):

$x1 $x2 $x3 vector components in global coordinates defining local x-axis
(vector x)
$ypl $yp2 $yp3 vector components in global coordinates defining vector yp

which lies in the local x-y plane for the element:

the local z-axis is defined by the cross product
between the vectors x and yp

If the optional orientation vectors are not specified, the local element axes coincide with the
global axes.

The section (page 129) force-deformation response represented by section string P acts along
the element local x-axis, and the response for code Vy along the local y-axis. The other modes
of section response follow from this orientation.

Chapter 11 element Command 154

The valid queries to a zero-length element when creating an ElementRecorder (page 224) object
are ‘force," 'deformation,’ 'stiffness,' and 'section secArgl secArg2"

Quadrilateral Elements

Quad Element

This command is used to construct a FourNodeQuad element object which uses a bilinear
isoparametric formulation.

element quad $eleTag $iNode $jNode $kNode $INode $thick $type $matTag
<$pressure $rho $bl $h2>

$eleTag unique element object tag

$iNode $jNode four nodes defining element boundaries, input in counter-
$kNode $INode clockwise order around the element.

$thick element thickness (constant)

$type string representing material behavior.

Valid options depend on the NDMaterial (page 108) object and
its available material formulations. The type parameter can be
either "PlaneStrain” or "PlaneStress."

$matTag tag associated with previously-defined NDMaterial (page 108)
object

$pressure surface pressure (???? sign convention????****)

$rho element mass density (per unit volume) from which a lumped

element mass matrix is computed (optional, default=0.0)

$b1 $b2 constant body forces defined in the isoparametric domain
(optional, default=0.0)

Consistent nodal loads are computed from the pressure and body forces.

The valid queries to a Quad element when creating an ElementRecorder (page 224) object are
'force," 'stiffness," and 'material $matNum matArgl matArg2 ..." Where $matNum refers to the
material object at the integration point corresponding to the node numbers in the isoparametric
domain.

Chapter 11 element Command 155

Shell Element

This command is used to construct a ShellMITC4 element object, which uses a bilinear
isoparametric formulation in combination with a modified shear interpolation to improve thin-plate
bending performance.

element ShelIMITC4 $eleTag $iNode $jNode $kNode $INode $secTag

$eleTag unique element object tag

$iNode $jNode four nodes defining element boundaries, input in counter-
$kNode $INode clockwise order around the element.

$secTag tag associated with previously-defined

SectionForceDeformation (page 129) object.

Typically, corresponds to some PlateFiberSection (page 144),
elastic or otherwise

Should the element be required to compute a mass matrix, a consistent translational element
mass matrix is computed. Rotational-inertia terms are ignored.

The valid queries to a shell element when creating an ElementRecorder (page 224) object are
'force," 'stiffness,' and 'material matArgl matArg2 ...'

Bbar Plane Strain Quadrilateral Element

This command is used to construct a four-node quadrilateral element object, which uses a
bilinear isoparametric formulation along with a mixed volume/pressure B-bar assumption. This
element is for plane strain problems only.

element bbarQuad $eleTag $iNode $jNode $kNode $INode $matTag

$eleTag unigue element object tag

$iNode $jNode four nodes defining element boundaries, input in counter-
$kNode $INode clockwise order around the element

$matTag tag associated with previously-defined NDMaterial (page 108)

object

Chapter 11 element Command 156

Should the element be required to compute a mass matrix, a consistent translational element
mass matrix is computed. Rotational-inertia terms are ignored.

Enhanced Strain Quadrilateral Element

This command is used to construct a four-node quadrilateral element, which uses a bilinear
isoparametric formulation with enhanced strain modes.

element enhancedQuad $eleTag $iNode $jNode $kNode $INode type $matTag

$eleTag unique element object tag

$iNode $jNode four nodes defining element boundaries, input in counter-
$kNode $INode clockwise order around the element.

type string representing material behavior.

Valid options depend on the NDMaterial (page 108) object and
its available material formulations. The type parameter can be
either "PlaneStrain” or "PlaneStress."

$matTag tag associated with previously-defined NDMaterial (page 108)
object

Should the element be required to compute a mass matrix, a consistent translational element
mass matrix is computed. Rotational-inertia terms are ignored.

The valid queries to a zero-length element when creating an ElementRecorder (page 224) object
are 'force," 'stiffness,' and 'material matArgl matArg2 ...'

Chapter 11 element Command 157

Brick Elements

Standard Brick Element

This element is used to construct an eight-node brick element object, which uses a trilinear
isoparametric formulation.

element stdBrick $eleTag $nodel $node2 $node3 $node4 $node5 $nodeb
$node7 $node8 $matTag

$eleTag unigue element object tag

$nodel $node2 eight nodes defining element boundaries, input order is shown

$node3 $nodes in the figure

$node5 $nodeb

$node7 $node8

$matTag tag associated with previously-defined NDMaterial (page 108)
object

Should the element be required to compute a mass matrix, a consistent translational element
mass matrix is computed. Rotational-inertia terms are ignored.

r 3
t
node 3 node 2

|
|

node :
i node 1
| L
! 5
1
1

I, o S .
.+ node7 node 6
y |-

'x node 8 node 5

Chapter 11 element Command 158

Figure 51: Node
Numbering for Eight-
Node Three-
Dimensional Element

Bbar Brick Element

This command is used to construct an eight-node mixed volume/pressure brick element object,
which uses a trilinear isoparametric formulation.

element bbarBrick $eleTag $nodel $node2 $node3 $node4 $node5 $nodeb
$node7 $node8 $matTag

$eleTag unique element object tag

$nodel $node2 eight nodes defining element boundaries, input order is shown
$node3 $node4 in the figure

$node5 $nodeb

$node7 $node8

$matTag tag associated with previously-defined NDMaterial (page 108)

object

Chapter 11 element Command 159

Should the element be required to compute a mass matrix, a consistent translational element
mass matrix is computed. Rotational-inertia terms are ignored

Figure 52: Node
Numbering for Eight-
Node Three-
Dimensional Element

&
t
node 3 node 2
|
|
node d
i node 1
| L
! &
|
1
I.L i, ______ b e i g b
___.-'J node 7 node 6
y |
Ll

kX node 8 node 5

Chapter 11 element Command 160

Eight Node Brick Element

The command is used to construct an eight-node three dimensional brick element object, which
is based on tensor operation.

element Brick8N $eletag $nodel $node2 $node3 $node4 $node5 $nodeb
$node7 $node8 $matTag $bfl $bf2 $bf3 $massDens

$eletag

$nodel $node2
$node3 $noded
$node5 $nodeb
$node7 $node8

$matTag

$bfl $bf2 $bf3
$massDens

unique element object tag

eight node coordinates, input order is shown in the figure

material tag associated with previsouly-defined NDMaterial
object

body force in the direction of global coordinates x, y and z
mass density (mass/volume)

The valid queries to a Brick8N element when creating an ElementRecorder (page 224) object
are 'force," 'stiffness,' stress’, 'gausspoint’ or ‘plastic’. The output is given as follows:

'stress’

‘gausspoint’

‘plastic’

the six stress components from each Gauss points are output by
the order: sigma_xx, sigma_yy, sigma_zz, sigma_Xxy,
sigma_xz,sigma_yz

the coordinates of all Gauss points are printed out

the equivalent deviatoric plastic strain from each Gauss point is
output in the same order as the coordinates are printed

Chapter 11 element Command 161

Figure 53: Node
Numbering for Eight-
Node Three-
Dimensional Element

r 3
t
node 3 node 2

|
|

node i
i node 1
| L
! 5
1
1

I.L ,i, ______ T ————— 3
_,.-'J node 7 node 6
Y / a7
Pild

'x node 8 node 5

Chapter 11 element Command 162

Twenty Node Brick Element

The element is used to construct a twenty-node three dimensional element object

element Brick20N $eletag $nodel $node2 $node3 $noded $node5 $nodeb
$node7 $node8 $node9 $nodell $nodell $nodel2 $nodell3 $nodelsd
$nodel5 $nodel6 $nodel7 $nodel8 $nodel9 $node20 $matTag $bfl

$bf2 $bf3 $massDen
$eletag unigue element object tag
$nodel $node2 twenty node coordinates, input order is shown in the figure
$node3 $node4
$node5 $nodeb
$node7 $node8
$node9 $nodel0
$nodell $nodel?
$nodel3 $nodeld
$nodel5 $nodelb
$nodel7 $nodel8
$nodel9 $node20
$matTag material tag associated with previsouly-defined NDMaterial
(page 108) object
$bfl $bf2 $bf3 body force in the direction of global coordinates x, y and z
$massDen mass density (mass/volume)

The valid queries to a Brick20N element when creating an ElementRecorder (page 224) object
are 'force," 'stiffness,' stress', 'gausspoint’ or 'plastic'. The output is given as follows:

'stress' the six stress components from each Gauss points are output by
the order: sigma_xx, sigma_yy, sigma_zz, sigma_Xxy,
sigma_xz,sigma_yz

‘gausspoint’ the coordinates of all Gauss points are printed out

'plastic’ the equivalent deviatoric plastic strain from each Gauss point is
output in the same order as the coordinates are printed

Chapter 11 element Command 163

Figure 54: Node
Numbering for Twenty-
Node Three-
Dimensional Element

Chapter 11 element Command 164

u-p-U element

This command is used to construct a u-p-U element object, which include two types: eight node
element and twenty node element.

= For eight-node element:

element Brick8BN_u_p_U $eleTag $nodel $node2 $node3 $node4 $node5
$nodeb $node7 $node8 $matTag $bfl $bf2 $bf3 $n $alpha $soildDens
$fluidDens $k1 $k2 $k3 $K_fluid $P

= For twenty-node element:

element Brick20N_u_p_U $eleTag $nodel $node2 $node3 $node4 $nodes
$nodeb $node7 $node8 $node9 $nodel0 $nodell $nodel2 $nodel3
$nodelsd $nodel5 $nodel6 $nodel7 $nodel8 $nodel9 $node20
$matTag $bfl $bf2 $bf3 $n $alpha $soildDens $fluidDens $k1 $k2 $k3

$K_fluid $P
$eleTag unique element object tag
$nodel $node2 node coordinate (either eight or twenty), input order is shown in
$node3 $nodes the figure
$node5 $nodeb
$node7 $nodes
$matTag material tag associated with previsouly-difined NDMaterial

object

$bfl $bf2 $bf3 body force in the direction of global coordinates x, y and z
$n porosity
$alpha 1-Ks/Kt (ratio of void space =1 for soils, =0.6 for concrete...)
$soildDens solid density
$fluidDens fluid density
$k1 $k1 $k3 coefficient of permeability in the direction of x, y and z
$K_fluid fluid bulk modulus

$P pressure... not used currently (set to 0.0)

Chapter 11 element Command 165

The valid queries to a BrickBN_u_p_U and Brick20N_u_p_U elements when creating an
ElementRecorder (page 224) object are 'force,' 'stiffness,’ stress', 'gausspoint’ or 'plastic’. The
output is given as follows:

'stress’ the six stress components from each Gauss points are output by
the order: sigma_xx, sigma_yy, sigma_zz, sigma_Xxy,
sigma_xz,sigma_yz

‘gausspoint’ the coordinates of all Gauss points are printed out

'plastic’ the equivalent deviatoric plastic strain from each Gauss point is
output in the same order as the coordinates are printed

FourNodeQuadUP Element

FourNodeQuadUP is a four-node plane-strain element using bilinear isoparametric formulation.
This element is implemented for simulating dynamic response of solid-fluid fully coupled
material, based on Biot's theory of porous medium. Each element node has 3 degrees-of-
freedom (DOF): DOF 1 and 2 for solid displacement (u) and DOF 3 for fluid pressure (p).

element quadUP $eleTag $iNode $jNode $kNode $INode $thick $type
$matTag $bulk $fmass $hPerm $vPerm <$bl $b2 $t>

$eleTag unigue element object tag

$iNode, $jNode, Four element node (previously defined) numbers in counter-clockwise order
$kNode, $INode around the element

$thick Element thickness

$type The string "PlaneStrain”

$matTag Tag of an NDMaterial object (previously defined) of which the element is
composed

$bulk Combined undrained bulk modulus B, relating changes in pore pressure and
volumetric strain, may be approximated by:
B =B ./n

where B; is the bulk modulus of fluid phase (2.2x10° kPa for water), and n the
initial porosity.

$fmass Fluid mass density
$hPerm Permeability coefficient in horizontal direction

$vPerm Permeability coefficient in vertical direction

Chapter 11 element Command 166

$b1, $b2 Optional body forces in horizontal and vertical directions respectively (defaults
are 0.0)
$t Optional uniform element normal traction, positive in tension (default is 0.0)

TYPICAL RANGE OF PERMEABILITY COEFFICIENT (m/s)

Gravel Sand Silty Sand Silt Clay

>1.0x10°® 31.0X10’5 ~ 1.0x10 t::I..0X10’7 ~ 1.0x10 ;I..OXlO’9 ~1.0x10 | <1.0x10°

OUTPUT INTERFACE:
Pore pressure can be recorded at an element node using OpenSees Node Recorder (page 221):
recorder Node <-file $fileName> <-time> <-node ($nodel $node2 ...)> -dof 3 vel

Note: dof 3 is for pore pressure output.

The valid queries to a quadUP element when creating an ElementRecorder (page 224) are
'force’, 'stiffness’, or 'material matNum matArgl matArg?2 ...", where matNum represents the
material object at the corresponding integration point.

BeamColumnJoint Element

This command is used to construct a two-dimensional beam-column-joint element object. The
element may be used with both two-dimensional and three-dimensional structures; however,
load is transferred only in the plane of the element.

element beamColumnJoint $eleTag $Nd1 $Nd2 $Nd3 $Nd4 $Matl $Mat2 $Mat3
$Mat4 $Mat5 $Mat6 $Mat7 $Mat8 $Mat9 $Mat10 $Matll $Mat12 $Matl3
<$eleHeightFac $eleWidthFac>

$eleTag an integer identifying the element tag in the domain
$Nd1,$Nd2,$Nd3,$ tag associated with previously defined nodes

Nd4

$Matl uniaxial material tag for left bar-slip spring at node 1

$Mat2 uniaxial material tag for right bar-slip spring at node 1

Chapter 11 element Command

167

$Mat3
$Mat4
$Mat5
$Mat6
$Mat7
$Mat8
$Mat9
$Mat10
$Mat1l
$Mat12
$Mat13
$eleHeightFac

$eleWidthFac

uniaxial material tag for interface-shear spring at node 1
uniaxial material tag for lower bar-slip spring at node 2
uniaxial material tag for upper bar-slip spring at node 2
uniaxial material tag for interface-shear spring at node 2
uniaxial material tag for left bar-slip spring at node 3
uniaxial material tag for right bar-slip spring at node 3
uniaxial material tag for interface-shear spring at node 3
uniaxial material tag for lower bar-slip spring at node 4
uniaxial material tag for upper bar-slip spring at node 4
uniaxial material tag for interface-shear spring at node 4
uniaxial material tag for shear-panel

floating point value (as a ratio to the total height of the element)
to be considered for determination of the distance in between
the tension-compression couples (optional, default: 1.0)

floating point value (as a ratio to the total width of the element)
to be considered for determination of the distance in between
the tension-compression couples (optional, default: 1.0)

Chapter 11 element Command 168

NOTE:

/7 A _Node3 .
external node bar-slip

spring (typ.)
@
Node 4 —() shear panel (Node 2
A
internal node
Node 1 interface-shear

spring (typ.)

Chapter 11 element Command 169

Figure 55:
BeamColumnJoint
Element

The valid queries to a BeamColumnJoint element when creating an ElementRecorder (page
224) are as follows:

‘internalDisplacement’ - returns the displacements of the internal joint nodes.
‘externalDisplacement’ - returns the displacement of the external joint nodes.
‘deformation’ - generates a four-column matrix in which the first column is the contribution to
the total joint shear deformation of all of the bar-slip components of the joint, the second is the
deformation contribution of the interface shear springs, the third is the deformation contribution

of the shear-panel and the fourth is the total shear deformation of the joint.

‘nodelBarSlipL’ - returns the load-deformation response history of the Bar-Slip spring on
the Left at node 1.

‘nodelBarSlipR’ - returns the load-deformation response history of the Bar-Slip spring on
the Right at node 1.

‘nodelinterfaceShear’- returns the load-deformation response history of the Interface-Shear
spring at node 1.

‘node2BarSlipB’ - returns the load-deformation response history of the Bar-Slip spring on
the Bottom at node 2.

‘node2BarSlipT’ - returns the load-deformation response history of the Bar-Slip spring on
the Top at node 2.

‘node2InterfaceShear’- returns the load-deformation response history of the Interface Shear
spring at node 1.

'node3BarSlipL’ - returns the load-deformation response history of the Bar-Slip spring on
the Left at node 3.

‘node3BarSlipR’ - returns the load-deformation response history of the Bar-Slip spring on
the Right at node 3.

‘node3InterfaceShear’- returns the load-deformation response history of the Interface-Shear
spring at node 3.

‘node4BarSlipB’ - returns the load-deformation response history of the Bar-Slip spring on
the Bottom at node 4.

‘node4BarSlipT’ - returns the load-deformation response history of the Bar-Slip spring on
the Top at node 4.

Chapter 11 element Command 170

‘node4interfaceShear’- returns the load-deformation response history of the Interface Shear
spring at node 4.

‘shearPanel’ - returns the load-deformation response history of the Shear-Panel spring.

» EXAMPLE:

main input file:

= PRLl.tcl (page 176)
supporting files:

= procMKPC.tcl (page 186)
= procUniaxialPinching.tcl (page 70)
= procRC.tcl (page 188)

Chapter 11 Beam-Column Joint Element Discussion 171

Beam-Column Joint Element Discussion

Beam-Column Joint Element
Discussion

The example files (PR1.tcl (page 176), procMKPC.tcl (page 186), procUniaxialPinching.tcl (page
70), procRC.tcl (page 188)) create a model of a RC beam column sub-assemblage (Figure 1).
The cruciform is subjected to constant gravity load at nodes 4 and 7 and pseudo-static cyclic
lateral load under displacement control at node 10. The beam-column-joint region (element
number 7) is represented using a beamColumnJoint element (Figure 2), and the beams and
columns (element numbers 1 through 6) are modeled using the nonlinearBeamColumn element.
The beam-column joint consists of 13 components that may have different material constitutive
models; in this example 9 of the 13 components utilize the nonlinear material model — Pinching4.
Figure 3 shows the displacement history for node 10.

& Mode

’//\ nonlinear beam-column
@ Element

Gravityllzlad9 @ Gravity load

Chapter 11 Beam-Column Joint Element Discussion

172

Figure 56: Cruciform
model

Figure 1: Cruciform model

Element Node 3 =
Structural Node 9

bar-slip
spring (typ.)

external node

—T—0

Element Hoded = Element Hode 2 =
Structural Node 5 J shear panel € Structural Node 6

_,W\(!dﬁ

internal node

Element Node interface-shear
Structural Node 2 spring (typ.)

Figure 57: Beam
Column Joint Element

Figure 2: Beam Column Joint Element

173

Chapter 11 Beam-Column Joint Element Discussion

=]

150

10af-------

o
“5':""""'|""' i 2 peardted) £ it Radbeh ¢ ieabeiianty oo Dbl et i Shoibrod dngl Tk Rt Pk st |

i wy peamasedgg

-100
-150

U time step

=

Chapter 11 Beam-Column Joint Element Discussion 174

Figure 58:
Displacement history
for Node 10

Figure 3: Displacement history for Node 10

Tcl Scripts:

The following tcl script files are used to run the examples:
PR1.tcl (page 176)
procMKPC.tcl (page 186)
procUniaxialPinching.tcl (page 70)
procRC.tcl (page 188)

The p-delta response of cruciform, along with the response of each of the nonlinear joint
components is shown below. The shear panel response shows the moment-curvature

relationships whereas the bar slips at the beam top and bottom are represented by the force-slip
plots (Figure 4).

175

Chapter 11 Beam-Column Joint Element Discussion

T
1
1
1
1
1
1
1
N
]
1

e i

bar top

R Ll T

10

(]

2

-1

AU, | |

zhear panel

T
'
1
|
e S B e A
'
1
1 E
. i . g m
|
1
1
'

* 10

R o e e e e o e i

B s s
'
]
1

ik AR L P SCH 1S

0.

&

.02

* 10

column bar

bar bottom

=

1

0.1

Chapter 11 Beam-Column Joint Element Discussion 176

Figure 59: Nonlinear
Joint component
response

Figure 4: Nonlinear Joint component response

Foree in N

Displacement in mm

Figure 60: P-delta
response of the
cruciform

Figure 5. P-delta response of the cruciform

PR1.tcl

HHHHHHHHH A

Test example for BEAM COLUMN ELEMENT JOINT ------- PARK RUITONG TEST SPECIMEN Unit 1
Written: N.Mitra

Description: 4 noded 12 dof element having 12 springs and a shear panel

Date: Feb 16 2003

Model consisting of a crucifix with beams and columns and a joint

Chapter 11 Beam-Column Joint Element Discussion

177

File Name: PR1.tcl
refer to Beam-Column-Joint Element.doc for full explanation of the parameters
HHH R R R R R R R R R R R R R R R R R R

#create the ModelBuilder object

model BasicBuilder -ndm 2 -ndf 3

unit name ---- PR1
set fName "PR1";

source procMKPC.tcl
source procUniaxialPinching.tcl

source procRC.tcl

all dimensions are in here as MPa (conversion factors are required in certain places)

set Strfactor 145; set Lenfactor [expr 1/25.4];

Y taken as the inplane dim. against which the bending takes place
set colY 406; set colZ 305;
set bmY 457; set bmzZ 229;

covers

set colCov 43; set bmCov1 42; set bmCov2 33; set bmCov $bmCov1;

#y,z,x dimension of the joint respectively
set JointWidth [expr $colY]; set JointHeight [expr $bmY]; set JointDepth $colZ ;
set BeamLengthin 645; set BeamLengthOut 1271; set ColumnLengthClear 1008;

set JointVolume [expr $JointWidth*$JointHeight*$JointDepth];

BHHH B R R R R B R R R R

HHHHHA AR material properties of column section
T R R R P

set CUnconfFc -45.9; set CUnconfEc -0.002;
set CTSspace 60; set CTSlength 1853.53; set CTSFy 282; set CTSarea 28.3;
set CFy 498.0; set CEs 196600.0; set CsHratio 0.004216; set CAs 201.06;

procMKPC $CUnconfFc $CUnconfEc $colY $colZ $colCov $CTSspace $CTSlength $CTSFy $CTSarea $Strfactor

$Lenfactor

Chapter 11 Beam-Column Joint Element Discussion 178

set CUnconfFcu [lindex $concreteProp 2]; set CUnconfEcu [lindex $concreteProp 3];
set CConfFc [lindex $concreteProp 4]; set CConfEc [lindex $concreteProp 5];

set CConfFcu [lindex $concreteProp 6]; set CConfEcu [lindex $concreteProp 7];

BHHH B R R R R R R R R

HHEHHHEHHHHHE A A A material properties of beam section
T SR R R R

set BUnconfFc -45.9; set BUnconfEc -0.002;
set BTSspace 80; set BTSlength 1036; set BTSFy 282; set BTSarea 28.3;
set BFy 294.0; set BEs 210400.0; set BAs 201.06; set BsHratio 0.002322;

procMKPC $BUnconfFc $BUnconfEc $bmY $bmZ $bmCov $BTSspace $BTSlength $BTSFy $BTSarea $Strfactor
$Lenfactor

set BUnconfFcu [lindex $concreteProp 2]; set BUnconfEcu [lindex $concreteProp 3]J;
set BConfFc [lindex $concreteProp 4]; set BConfEc [lindex $concreteProp 5];

set BConfFcu [lindex $concreteProp 6]; set BConfEcu [lindex $concreteProp 7];

HHH AR

HHEHHHHPHHHER AR AR details for the material models of bar slip of the beam
B HHHHHH R

set bs_fc [expr -$BUnconfFc]; set bs_fs $BFy; set bs_es $BEs; set bs_fsu 434; set bs_dbar 16; set bs_esh [expr
$BsHratio*$BEs];

set bs_wid $colZ; set bs_dep $bmY;
set bsT_nbars 5; set bsB_nbars 2;

set bs_ljoint $colY;

HHH R

HHEHHHHHHHE A A detalls for the material models of bar slip of the column
HEHEHEHEH R

set cs_fc [expr -$CUnconfFc]; set cs_fs $CFy; set cs_es $CEs; set cs_fsu 660; set cs_dbar 16; set cs_esh [expr
$CsHratio*$CEs];

set cs_wid $colZ; set cs_dep $colY;
set cs_nbars 3;

set ¢cs_ljoint $bmyY;

HHH A

A H#HHAH## add nodes - command: node nodeld xCrd yCrd
HEEEH T TR R R

Chapter 11 Beam-Column Joint Element Discussion 179

node 1l 0.0 0.0

node 2 0.0 $ColumnLengthClear

node 3 [expr -$BeamLengthOut-$BeamLengthin-$JointWidth/2] [expr $ColumnLengthClear+$JointHeight/2]
node 4 [expr -$BeamLengthin-$JointWidth/2] [expr $ColumnLengthClear+$JointHeight/2]

node 5 [expr -$JointWidth/2] [expr $ColumnLengthClear+$JointHeight/2]

node 6 [expr $JointWidth/2] [expr $ColumnLengthClear+$JointHeight/2]

node 7 [expr $BeamLengthin+$JointWidth/2] [expr $ColumnLengthClear+$JointHeight/2]

node 8 [expr $BeamLengthOut+$BeamLengthin+$JointWidth/2] [expr $ColumnLengthClear+$JointHeight/2]
node 9 0.0 [expr $ColumnLengthClear+$JointHeight]

node 10 0.0 [expr 2*$ColumnLengthClear+$JointHeight]

add material Properties - command: uniaxialMaterial matType matTag ...
#command: uniaxialMaterial Elastic tag? E?
uniaxialMaterial Elastic 1 10000000000.0

B R T T R T T R T R T T R T T R R TR R T R T R T

HitHHHAHHHHHHHHE inelastic beam column elements

BRAHHHHH R R R R R R AR A

uniaxialMaterial Concrete01 10 $BUnconfFc $BUnconfEc $BUnconfFcu $BUnconfEcu

uniaxialMaterial Concrete01 20 $BConfFc $BConfEc $BConfFcu $BConfEcu

uniaxialMaterial Steel02 30 $BFy $BEs $BsHratio 18.5 0.925 0.15 0.0 0.4 0.0 0.5

uniaxialMaterial Concrete01 40 $CUnconfFc $CUnconfEc $CUnconfFcu $CUnconfEcu

uniaxialMaterial Concrete01 50 $CConfFc $CConfEc $CConfFcu $CConfEcu

uniaxialMaterial Steel02 60 $CFy $CEs $CsHratio 18.5 0.925 0.15 0.0 0.4 0.0 0.5

A for columns M T T
set z [expr $colZ/2.0]; set y [expr $colY/2.0];

section Fiber 1 {

patch rect 50 8 1 [expr $colCov-$y] [expr $colCov-$z] [expr $y-$colCov] [expr $z-$colCov]
patchrect402 1 [expr -$y] [expr $colCov-$z] [expr $colCov-$y] [expr $z-$colCov]
patchrect 40 21 [expr $y-$colCov] [expr $colCov-$z] [expr $y] [expr $z-$colCov]

Chapter 11 Beam-Column Joint Element Discussion 180

patchrect 408 1 [expr -$y] [expr -$z] [expr $y] [expr $colCov-$z]
patch rect 40 81 [expr -$y] [expr $z-$colCov] [expr $y] [expr $2]

layer straight 60 3 $CAs [expr $y-$colCov] [expr $colCov-$z] [expr $y-$colCov] [expr $z-$colCov]
layer straight 60 2 $CAs 0.0 [expr $colCov-$z] 0.0 [expr $z-$colCov]
layer straight 60 3 $CAs [expr $colCov-$y] [expr $colCov-$z] [expr $colCov-$y] [expr $z-$colCov]

}

HEHHEHERH R for beams TG L
set z [expr $bmZ/2.0]; set y [expr $bmY/2.0];

section Fiber 2 {
patch rect208 1 [expr $bmCov1l-$y] [expr $bmCov1-$z] [expr $y-$bmCovl] [expr $z-$bmCovl]

patchrect 102 1 [expr -$y] [expr $bmCovl-$z] [expr $bmCovl-$y] [expr $z-$bmCovl]
patchrect 1021 [expr $Sy-$bmCov1] [expr $bmCov1-$z] [expr $y] [expr $z-$bmCov1]
patchrect 108 1 [expr -$y] [expr -$z] [expr $y] [expr $bmCovl-$z]

patchrect 108 1 [expr -$y] [expr $z-$bmCovl] [expr $y] [expr $2]

layer straight 30 3 $BAs [expr $y-$bmCovl] [expr $bmCov1-$z] [expr $y-$bmCovi] [expr $z -
$bmCov1l]

layer straight 30 2 $BAs [expr $y-S8bomCovl-$bmCov2] [expr $bmCovl-$z] [expr $y-SbmCovl-$bmCov2]
[expr $z - $bmCov1]

layer straight 30 2 $BAs [expr $bmCovl1-$y] [expr $bmCov1-$z] [expr $bmCov1-$y] [expr $z -
$bhmCovi]

}

HEHEHEHEEAH T T T]
add geometric transformation -command: geomTransf transfType ...
geomTransf Linear tag?

geomTransf Linear 1

geomTransf Linear 2

element nonlinearBeamColumn 112512

element nonlinearBeamColumn 291051 2

Chapter 11 Beam-Column Joint Element Discussion 181

element nonlinearBeamColumn 334321
element nonlinearBeamColumn 445221
element nonlinearBeamColumn 567221

element nonlinearBeamColumn 678321

##H## end element formation as well as material defination for beams and columns ###HHHHHHEHHHHHHHHHHHEE
B R R R R R R R

for beam bottom
set matiD1 21
set matlD2 22

uniaxialMaterial BarSlip $matID1 $bs_fc $bs_fs $bs_es $bs_fsu $bs_esh $bs_dbar $bs_ljoint $bsB_nbars $bs_wid
$bs_dep strong beamBot

uniaxialMaterial BarSlip $matlD2 $bs_fc $bs_fs $bs_es $bs_fsu $bs_esh $bs_dbar $bs_ljoint $bsB_nbars $bs_wid
$bs_dep strong beamBot

%%%%%%%%%%%%%%% equivalent statement can be made in other way

#uniaxialMaterial BarSlip $matID1 $bs_fc $bs_fs $bs_es $bs_fsu $bs_esh $bs_dbar $bs_ljoint $bsB_nbars $bs_wid
$bs_dep 1.0 strong beamBot damage

#uniaxialMaterial BarSlip $matlD2 $bs_fc $bs_fs $bs_es $bs_fsu $bs_esh $bs_dbar $bs_ljoint $bsB_nbars $bs_wid
$bs_dep 1.0 strong beamBot damage

for beam top
set matiD3 31
set matiD4 32

uniaxialMaterial BarSlip $matID3 $bs_fc $bs_fs $bs_es $bs_fsu $bs_esh $bs_dbar $bs_ljoint $bsT_nbars $bs_wid
$bs_dep strong beamTop

uniaxialMaterial BarSlip $matlD4 $bs_fc $bs_fs $bs_es $bs_fsu $bs_esh $bs_dbar $bs_ljoint $bsT_nbars $bs_wid
$bs_dep strong beamTop

%%%%%%%%%%%%%%% equivalent statement can be made in other way

#uniaxialMaterial BarSlip $matlD3 $bs_fc $bs_fs $bs_es $bs_fsu $bs_esh $bs_dbar $bs_ljoint $bsT_nbars $bs_wid
$bs_dep 1.0 strong beamTop damage

#uniaxialMaterial BarSlip $matlD4 $bs_fc $bs_fs $bs_es $bs_fsu $bs_esh $bs_dbar $bs_ljoint $bsT_nbars $bs_wid
$bs_dep 1.0 strong beamTop damage

for columns

set matID5 41

Chapter 11 Beam-Column Joint Element Discussion 182

set matlD6 42
set matlD7 43
set matlD8 44

uniaxialMaterial BarSlip $matlD5 $cs_fc $cs_fs $cs_es $cs_fsu $cs_esh $cs_dbar $cs_ljoint $cs_nbars $cs_wid
$cs_dep strong column

uniaxialMaterial BarSlip $matlD6 $cs_fc $cs_fs $cs_es $cs_fsu $cs_esh $cs_dbar $cs_ljoint $cs_nbars $cs_wid
$cs_dep strong column

uniaxialMaterial BarSlip $matID7 $cs_fc $cs_fs $cs_es $cs_fsu $cs_esh $cs_dbar $cs_ljoint $cs_nbars $cs_wid
$cs_dep strong column

uniaxialMaterial BarSlip $matlD8 $cs_fc $cs_fs $cs_es $cs_fsu $cs_esh $cs_dbar $cs_ljoint $cs_nbars $cs_wid
$cs_dep strong column

%%%%%%%%%%%%%%% equivalent statement can be made in other way

#uniaxialMaterial BarSlip $matID5 $cs_fc $cs_fs $cs_es $cs_fsu $cs_esh $cs_dbar $cs_ljoint $cs_nbars $cs_wid
$cs_dep 1.0 strong column damage

#uniaxialMaterial BarSlip $matlD6 $cs_fc $cs_fs $cs_es $cs_fsu $cs_esh $cs_dbar $cs_ljoint $cs_nbars $cs_wid
$cs_dep 1.0 strong column damage

#uniaxialMaterial BarSlip $matlD7 $cs_fc $cs_fs $cs_es $cs_fsu $cs_esh $cs_dbar $cs_ljoint $cs_nbars $cs_wid
$cs_dep 1.0 strong column damage

#uniaxialMaterial BarSlip $matlD8 $cs_fc $cs_fs $cs_es $cs_fsu $cs_esh $cs_dbar $cs_ljoint $cs_nbars $es_wid
$cs_dep 1.0 strong column damage

HHHHHH AR end material formation for bar slip
FEEEH T R R

THEHHHHRHHHERHHHER AR material for shear panel
B HH R

Positive/Negative envelope Stress

set pl 2.1932; set p2 4.0872; set p3 4.4862; set p4 [expr $p3*le-3];

H#Hit stressl stress2 stress3 stress4

set pEnvStrsp [list [expr $pl*$JointVolume] [expr $p2*$JointVolume] [expr $p3*$JointVolume] [expr
$p4*$JointVolume]]

set nEnvStrsp [list [expr -$pl*$JointVolume] [expr -$p2*$JointVolume] [expr -$p3*$JointVolume] [expr -
$p4*$JointVolume]]

Positive/Negative envelope Strain

#H strainl strain2 strain3 strain4

set pEnvStnsp [list 0.0002 0.004465 0.0131 0.0269]
set nEnvStnsp [list -0.0002 -0.004465 -0.0131 -0.0269]

Chapter 11 Beam-Column Joint Element Discussion

183

Ratio of maximum deformation at which reloading begins
H#H# Pos_env. Neg_env.
set rDispsp [list 0.25 0.25]

Ratio of envelope force (corresponding to maximum deformation) at which reloading begins
H#iH Pos_env. Neg_env.

set rForcesp [list 0.15 0.15]

Ratio of monotonic strength developed upon unloading
H#it# Pos_env. Neg_env.
set uForcesp [list 0.0 0.0]

Coefficients for Unloading Stiffness degradation

gammakKl gammaK2 gammaK3 gammaK4 gammaKLimit

set gammakKsp [list 1.13364492409642 0.0 0.10111033064469 0.0 0.91652498468618]
#set gammakKsp [list 0.0 0.0 0.0 0.0 0.0]

Coefficients for Reloading Stiffness degradation

HH# gammaDl1 gammaD2 gammaD3 gammaD4 gammaDLimit
setgammaDsp [list 0.12 0.0 0.23 0.0 0.95]

#set gammaDsp [list 0.0 0.0 0.0 0.0 0.0]

Coefficients for Strength degradation

RHH gammaFl gammaF2 gammaF3 gammaF4 gammaFLimit
setgammaFsp [list 1.11 0.0 0.319 0.0 0.125]

#set gammaFsp [list 0.0 0.0 0.0 0.0 0.0]

set gammakEsp 10.0

uniaxialMaterial Pinching4 5 [lindex $pEnvStrsp 0] [lindex $pEnvStnsp 0] \
[lindex $pEnvStrsp 1] [lindex $pEnvStnsp 1] [lindex $pEnvStrsp 2] \
[lindex $pEnvStnsp 2] [lindex $pEnvStrsp 3] [lindex $pEnvStnsp 3]\
[lindex $nEnvStrsp 0] [lindex $nEnvStnsp 0] \

Chapter 11 Beam-Column Joint Element Discussion 184

[lindex $nEnvStrsp 1] [lindex $nEnvStnsp 1] [lindex $nEnvStrsp 2] \

[lindex $nEnvStnsp 2] [lindex $nEnvStrsp 3] [lindex $nEnvStnsp 3]\

[lindex $rDispsp 0] [lindex $rForcesp 0] [lindex $uForcesp 0] \

[lindex $rDispsp 1] [lindex $rForcesp 1] [lindex $uForcesp 1]\

[lindex $gammakKsp 0] [lindex $gammaKsp 1] [lindex $gammakKsp 2] [lindex $gammaksp 3] [lindex $gammakKsp 4] \
[lindex $gammaDsp 0] [lindex $gammaDsp 1] [lindex $gammaDsp 2] [lindex $gammaDsp 3] [lindex $gammaDsp 4] \
[lindex $gammaFsp 0] [lindex $gammaFsp 1] [lindex $gammaFsp 2] [lindex $gammaFsp 3] [lindex $gammaFsp 4] \

$gammaEsp energy

HEHHHHH AR end material formation for shear panel
HHH R R R R R R R R

##element BeamColumnJoint tag? iNode? jNode? kNode? INode? matTagl? matTag2? matTag3? matTag4?

#H matTag5? matTag6? matTag7? matTag8? matTag9? matTagl0? matTagll? matTagl2? matTagl3?
<element Height factor?> <element Width factor?>

please note: the four nodes are in anticlockwise direction around the element

it requires material tags for all 13 different components within the element.

the first 12 being that of spring and the last of the shear panel

element beamColumnJoint 726 95414212131143441223215
#element beamColumnJoint 726951111111111111

%%%%%%%%%%%%%%% equivalent statement can be made in other way
#element beamColumnJoint 726 954142121311434412232151.01.0
#element beamColumnJoint 7269511111111111111.01.0

set the boundary conditions - command: fix nodelD xResrnt? yRestrnt?
fix1110
fix2000
fix3010
fix4000
fix5000
fix 6000
fix 7000
fix8010
fix9000

Chapter 11

Beam-Column Joint Element Discussion

185

fix10000

pattern Plain 2 Linear {
load 4 0 -55000 0 -const
load 7 0 -55000 O -const

system ProfileSPD
constraints Plain

integrator LoadControl 0100
test NormDisplincr 1e-8 150
algorithm Newton

numberer RCM

analysis Static

analyze 1

loadConst -time 0.0

pattern Plain 1 Linear {
#load nd? Fx? Fy? Mz?
load 10100

set rbbt "_RBbt"; set rbtp *_RBtp"; set dicbr "_DLCbr"; set sp "_Sp"; set jdf "_Jdf";

set Ibbt *_LBbt"; set Ibtp "_LBtp"; set drcbr "_DRCbr"; set ulcbr "_ULCbr"; set urcbr *_URCbr";

set RBbt [concat $fName$rbbt]; set RBtp [concat $fName$rbtp]; set Sp [concat $fName$sp];

set LBbt [concat $fName$Ibbt]; set LBtp [concat $fName$lbtp]; set DLCbr [concat $fName$dicbr];

set DRCbr [concat $fName$drcbr]; set URCbr [concat $fNameS$urcbr]; set ULCbr [concat $fNameS$ulcbr];

set Jdf [concat $fName$jdf];

recorder Node $fName.out disp -load -node 10 -dof 1

recorder Element 7 -file $RBbt.out node2BarSlipB stressStrain

recorder Element 7 -file $RBtp.out node2BarSlipT stressStrain

recorder Element 7 -file $LBbt.out node4BarSlipB stressStrain

recorder Element 7 -file $LBtp.out node4BarSIipT stressStrain

recorder Element 7 -file $DLCbr.out node1BarSlipL stressStrain

recorder Element 7 -file $DRCbr.out node1BarSlipR stressStrain

recorder Element 7 -file $ULCbr.out node3BarSlipL stressStrain

Chapter 11 Beam-Column Joint Element Discussion 186

recorder Element 7 -file $URCbr.out node3BarSlipR stressStrain
recorder Element 7 -file $Sp.out shearpanel stressStrain

recorder Element 7 -file $Jdf.out deformation

set peakpts [list 0.1 10 10 30 30 45 45 60 60 75 75 90 90 105 105]
set increment 10

set nodeTag 10

set dofTag 1

procRC $increment $nodeTag $dofTag $peakpts

print the results at node and at all elements
print node

#print element

procMKPC.tcl

HHH R
HHHHHHHH

#

procMKPC.tcl

procedure for evaluating the confined concrete material envelope points based upon the modified
kent park procedure. The procedure takes in the unconfined concrete and confining steel properties.
#i# created : NM (nmitra@u.washington.edu) dated: Dec. 2002

RRAHHHHH R R R R R R R A R R R R R R R AR R R R R R
HHHHHHHH

proc procMKPC { CUnconfFc CUnconfEc Y Z Cov TSspace TSlength TSFy TSarea Strfactor Lenfactor } {

set CUnconfEcu -0.004;

set SecWid [expr $Lenfactor*$Z]; set SecDep [expr $Lenfactor*$Y]; set cover [expr $Lenfactor*$Cov];
set UFc [expr -$Strfactor*$CUnconfFc]; set Ue0 [expr -$CUnconfEc]; set Uecu [expr -$CUnconfEcu];
set hoopSpc [expr $Lenfactor*$TSspace]; set hoopLngth [expr $Lenfactor*$TSlength;

set hoopFy [expr $Strfactor*$TSFy]; set hoopArea [expr $TSarea*$Lenfactor*$Lenfactor];

ratio of volume of rectangular steel hoops to volumne of concrete core measured to outside of peripheral hoops
set rhoS [expr ($hoopLngth*$hoopArea)/(($SecWid-2*$cover)*($SecDep-2*$cover)*$hoopSpc)l;
width of concrete core measured to outside of peripheral hoop

set b [expr $SecWid - 2*$cover];

Chapter 11 Beam-Column Joint Element Discussion 187

set temp [expr $b/$hoopSpc]

set e50u [expr (3+0.002*$UFc)/($UFc - 1000)]; set e50h [expr 3*$rhoS*pow($temp,0.5)/4];
set Zm [expr 0.5*($UFc-1000)/(3+0.002*$UFc)]; set Z [expr 0.5/($e50u + $e50h - $Ue0)];
set K [expr (1 + $rhoS*$hoopFy/$UFc)];

unconfined ultimate compressive strength
set UFcu [expr -SUFc*(1-$Zm*($Uecu-$Ue0))/$Strfactor];
#cracking strain in confined concrete
set Ce0 [expr -$K*$Ue0];
cracking stress in confined concrete
set CFc [expr -$K*$UFc/$Strfactor];
ultimate stress in confined concrete
set CFcu [expr 0.2*$CFc];
ultimate strain in confined concrete

set Cecu [expr -(0.8/$Z - $Ce0)];

global concreteProp;

set concreteProp [list $CUnconfFc $CUnconfEc $UFcu $CUnconfEcu $CFc $Ce0 $CFcu $Cecul];

#puts [lindex $concreteProp 0]

return $concreteProp;

}

procUniaxialPinching.tcl

BHHH B R R R R R R R R R R R R R R R R R
HHHHBHHH

#

procUniaxialPinching.tcl

procedure for activating the pinching material given its parameters in the form of list
created NM (nmitra@u.washington.edu) dated : Feb 2002

HHHH R
HHHHRHHH

proc procUniaxialPinching { materialTag pEnvelopeStress nEnvelopeStress pEnvelopeStrain nEnvelopeStrain rDisp
rForce uForce gammaK gammabD gammaF gammaE damage} {

add material - command: uniaxialMaterial paramaters as shown

#uniaxialMaterial Pinching4 tag

Chapter 11 Beam-Column Joint Element Discussion 188

HHHE stress1P strainlP stress2P strain2P stress3P strain3P stress4P straindP
HitHHE stress1N strainlN stress2N strain2N stress3N strain3N stress4N strain4N
HHHH rDispP rForceP uForceP rDispN rForceN uForceN

HitH gammaK1 gammakK2 gammak3 gammak4 gammakKLimit

HitH gammaD1 gammaD2 gammaD3 gammaD4 gammaDLimit

HHHH gammaF1 gammaF2 gammaF3 gammaF4 gammaFLimit gammaE $damage

uniaxialMaterial Pinching4 $materialTag [lindex $pEnvelopeStress 0] [lindex $pEnvelopeStrain 0]\
[lindex $pEnvelopeStress 1] [lindex $pEnvelopeStrain 1] [lindex $pEnvelopeStress 2] \

[lindex $pEnvelopeStrain 2] [lindex $pEnvelopeStress 3] [lindex $pEnvelopeStrain 3] \

[lindex $nEnvelopeStress 0] [lindex $nEnvelopeStrain 0] \

[lindex $nEnvelopeStress 1] [lindex $nEnvelopeStrain 1] [lindex $nEnvelopeStress 2] \

[lindex $nEnvelopeStrain 2] [lindex $nEnvelopeStress 3] [lindex $nEnvelopeStrain 3] \

[lindex $rDisp 0] [lindex $rForce 0] [lindex $uForce 0]\

[lindex $rDisp 1] [lindex $rForce 1] [lindex $uForce 1]\

[lindex $gammaK 0] [lindex $gammaK 1] [lindex $gammaK 2] [lindex $gammaK 3] [lindex $gammaKk 4] \
[lindex $gammaD 0] [lindex $gammab 1] [lindex $gammab 2] [lindex $gammab 3] [lindex $gammaD 4] \
[lindex $gammaF 0] [lindex $gammaF 1] [lindex $gammaF 2] [lindex $gammaF 3] [lindex $gammaF 4]\

$gammaE $damage

}

procRC.tcl

HHHH B R
HHHHBRHHARH

#

procRC.tcl

procedure for setting up a reversed cycle loading scheme. The input are mainly the

peak points for the loading.

The procedure primarily uses Displacement control for loading, if it fails uses ArcLength control
created : NM (nmitra@u.washington.edu) dated: Sep 2002

HHH
RHHHBRHHARH

proc procRC { incre nodeTag dofTag peakpts } {

Chapter 11 Beam-Column Joint Element Discussion

189

set displayTag O;

set numTimes 150;

set x [lindex $peakpts 0];

set dU [expr $x/$incre];

#set dUO [expr $dU/1000];

set dUO [expr $dU/10000];

integrator DisplacementControl $nodeTag $dofTag 0.0 1 $dU $dU
analysis Static

analyze $incre

integrator DisplacementControl $nodeTag $dofTag 0.0 1 [expr -$dU] [expr -$dU]

analyze [expr 2*$incre]

integrator DisplacementControl $nodeTag $dofTag 0.0 1 $dU $dU

analyze $incre

end the first peak pt start for others

for {set j 1} {$j < [llength $peakpts]} {incrj 1} {
sety [lindex $peakpts $j]
set dSt [expr $y/$dU]

set dS [expr int($dSt)]

test NormDisplIncr 1e-8 $numTimes $displayTag
algorithm Newton

HHHEHEHHHEHE Start loading cyCle #HHHHHHHEHIHEHHHHR

settO;

while {$t != $dS} {
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $dU $dU
set ok [analyze 1]

incrt1;

if {$ok =0} {
if {$t == $dS} {break};

Chapter 11 Beam-Column Joint Element Discussion 190

puts "Displacement control failed trying Arc-Length control”
set currentDisp [nodeDisp $nodeTag $dofTag]
puts "Current Displacement is $currentDisp"
algorithm Linear
test NormDisplncr 1e-6 $numTimes $displayTag
#algorithm ModifiedNewton
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $dUO $dUO
integrator DisplacementControl $nodeTag $dofTag 0.0 10 $dUO $dUO
integrator ArcLength [expr $dUQ] 1.0

set ok [analyze 1]
analyze 1
}
puts "that worked back to regular Newton "

test NormDisplincr 1e-8 $numTimes $displayTag

algorithm Newton

HHHHEHHIHHE A end of loading cycle, start unloading cycle ##H####H

settO;

while {$t != [expr 2*$dS]} {

integrator DisplacementControl $nodeTag $dofTag 0.0 1 [expr -$dU] [expr -$dU]

set ok [analyze 1]

incrt1;
if {$ok != 0} {
if {$t == [expr 2*$dS]} {break};
puts "Displacement control failed trying Arc-Length control"
set currentDisp [nodeDisp $nodeTag $dofTag]
puts "Current Displacement is $currentDisp”
algorithm Linear
test NormDisplincr 1e-6 $numTimes $displayTag
#algorithm ModifiedNewton
integrator DisplacementControl $nodeTag $dofTag 0.0 1 [expr -$dUO] [expr -
$dUO0]
integrator DisplacementControl $nodeTag $dofTag 0.0 10 [expr -$dUQ] [expr -

$dUo]

Chapter 11 Beam-Column Joint Element Discussion

191

integrator ArcLength [expr $dUQ] 1.0

set ok [analyze 1]
analyze 1
}
puts "that worked back to regular Newton "

test NormDisplincr 1e-8 $numTimes $displayTag
algorithm Newton

A end of unloading cycle, start reloading cycle #Ht#H#HHHH#H

settO;

while {$t != $dS} {
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $dU $dU
set ok [analyze 1]

incrt1;

if {$ok != 0} {
if {$t == $dS} {break};
puts "Displacement control failed trying Arc-Length control"
set currentDisp [nodeDisp $nodeTag $dofTag]
puts "Current Displacement is $currentDisp”
algorithm Linear
test NormDisplncr 1e-6 $numTimes $displayTag
#algorithm ModifiedNewton
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $dUO $dUO
integrator DisplacementControl $nodeTag $dofTag 0.0 10 $dUO $dUO
integrator ArcLength [expr $dU0] 1.0
set ok [analyze 1]
analyze 1
}
puts "that worked back to regular Newton "
test NormDisplncr 1e-8 $numTimes $displayTag
algorithm Newton

A reloading cycle completed ###HHHHHIHHEHHIHH AT

Chapter 11 Beam-Column Joint Element Discussion 192

if {$ok == 0} {
puts "analysis succesful at $y mm displacement";
}else {

puts "analysis could not proceed fine beyond $y mm displacement”;

193

CHAPTER 12

block Command

The block command is used to generate meshes of quadrilateral or brick finite element.

The block2D (page 194) command generates meshes of quadrilateral elements in two or three
dimensions. In three dimensions, a two-dimensional surface appropriate for shell analysis is
generated.

The block3D (page 196) command generates three-dimensional meshes of eight-node brick
solid element.

In This Chapter

block2D ComMMaANd......coouieeeieeee e 194
bloCk3D COoMMANd......covniieiieeeeee e 196

Chapter 12 block Command 194

block2D Command

The block2D command generates meshes of quadrilateral elements in two or three dimensions.
In three dimensions, a two-dimensional surface appropriate for shell analysis is generated.

block2d $nx $ny $el $nl element (element arguments) {
1 $x1 %yl <$z1>
2 $x2 $y2 <$z2>
3 $x3 $y3 <$z3>
4 $x4 $y4 <$z4>
<5> <$x5> <Py5> <$z5>
<6> <$x6> <Py6> <$z6>
<7> <$X7> <Py7> <$z7>
<8> <$x8> <Py8> <$z8>

<9> <$x9> <Py9> <$z9>

}

$nx $ny number of elements in the local x and y directions of the block,
respectively

$el $nl starting element and node number for generation, respectively

element string defining which quadrilateral element (page 155, page 156,
page 154, page 155) is being used

(element list of data parameters for element being used. This list may

arguments) include, but is not limited to, a $matTag number

{$x1, $x9} {$y1l, coordinates of the block elements in two dimensions
... $y9}

{$z1, $29} coordinate of the block elements in third dimension (optional,
default=0.0)

Only the first four nodes (1-4) are required. Nodes 5-9 are used to generate curved meshes. The
user may specify any combination of nodes 5-9, omitting some of them if desired.

Chapter 12 block Command

195

NOTE: this command only recognizes variable substitutions when the command

arguments are placed in quotes rather than braces

EXAMPLE:

block2d $nx $ny $el $nl element (element arguments) {
1 $x1 %yl <$z1>
2 $x2 $y2 <$z2>
3 $x3 $y3 <$z3>
4 $x4 $y4 <$z4>

<5>
<6>
<7>
<8>

<9>

<$x5> <Py5> <$z5>
<$x6> <$y6> <$z6>
<BX7> <Py 7> <$z27>
<$x8> <Py8> <$z8>
<$x9> <$y9> <$z9>

Figure 61: Node
Numbering for Nine-

Node block2D

A J 3
gl 9 6
1 5 9

Chapter 12 block Command 196

block3D Command

The block3D command generates three-dimensional meshes of eight-node brick solid element.

block3d $nx $ny $nz $el $nl element elementArgs {

=

$x1 $y1 $z1
2 $x2 $y2 $z2
$x3 $y3 $z3

A W

$x4 $y4 $z4

o1

$x5 $y5 $z5
6 $x6 Py6 $z6
7 X7 $y7 $z7
8 9$x8 $y8 $z8

<9> <$x9> <Py9> <$z9>

27> <$x27> <Py27> <$z27>

}
$nx $ny $nz number of elements in the local x,y and z-direction of the block
$el starting element number for generation
$nl starting node number for generation
element define which brick element (page 158, page 157) is being used
elementArgs list of data parameters for element being used. This list may

include, but is not limited to, a $matTag number

{$x1, $x27} {$yl, coordinates of the block elements in three dimensions.
o $y27} {$21, ...
$z27}

Chapter 12 block Command 197

NOTE: this command only recognizes variable substitutions when the command

arguments are placed in quotes rather than braces

Only the first eight nodes (1-8) are required. Nodes 9-27 are used to generate curved meshes.
The user may specify any combination of nodes 9-27, omitting some of them if desired.

198

CHAPTER 13

region Command

The region command is used to label a group of nodes and elements. This command is also
used to assign rayleigh damping parameters to the nodes and elements in this region.

region $regTag <-ele ($elel $ele2 ...)> <-eleRange $startEle $endEle> <-ele all>
<-node ($nodel $node2 ...)> <-nodeRange $startNode $endNode> <-
node all> <-rayleigh $alphaM $betaK $betaKinit $bhetakcomm>

The region is specified by either elements or nodes, not both. If elements are defined, the region
includes these elements and the all connected nodes. If nodes are specified, the region includes
these nodes and all elements whose external nodes are prescribed.

$regTag unique integer tag

$elel sele? ... tags of elements -- selected elements in domain (optional,
default: omitted)

$startEle $endEle tag for start and end elements -- range of selected elements in
domain (optional, default: all)

all all elements in domain (optional & default)

$alphaM $betakK Arguments to define Rayleigh damping matrix (optional, default:

$betaKinit zero)

$betakKcomm

OR:

$regTag unique integer tag

$nodel $node2 ... node tags -- select nodes in domain (optional,
default: all)

$startNode tag for start and end nodes -- range of nodes

$endNode in domain (optional, default: all)

all all nodes in domain (optional & default)

$alphaM $betakK Arguments to define Rayleigh damping matrix

$betaKinit (optional, default: zero)

$betakcomm

The damping matrix D is specified as a combination of stiffness and mass-proportional damping
matrices:

D = $alphaM * M + $betaK * Kcurrent +$betaKinit * Kinit + $hetakcomm * KlastCommit

Chapter 13 region Command

199

The mass and stiffness matrices are defined as:
M mass matrix used to calculate Rayleigh Damping

Kcurrent stiffness matrix at current state determination used to calculate
Rayleigh Damping

Kinit stiffness matrix at initial state determination used to calculate
Rayleigh Damping

KlastCommit stiffness matrix at last-committed state determination used to
calculate Rayleigh Damping

NOTE: a region is defined by either nodes or elements, not both.
EXAMPLE:
region 1 -ele 1 5 -eleRange 10 15

region 2 -node 2 4 6 -nodeRange 9 12

200

CHAPTER 14

Geometric Transformation
Command

The geometric-transformation command (geomTransf) is used to construct a coordinate-
transformation (CrdTransf) object, which transforms beam element stiffness and resisting force
from the basic system to the global-coordinate system. The command has at least one
argument, the transformation type. Each type is outlined below.

In This Chapter

Linear TransSformationooeuvveveee i eieeeeeeaeens 200
P-Delta Transformationcoeeeuvieeiieiiiiiieeiieeeneenas 206
Corotational Transformation.........c.cceevvevevivneeirereennn. 207

Linear Transformation

This command is used to construct a linear coordinate transformation (LinearCrdTransf) object,
which performs a linear geometric transformation of beam stiffness and resisting force from the
basic system to the global-coordinate system.

For a two-dimensional problem:

| geomTransf Linear $transfTag <-jntOffset $dXi $dYi $dXj $dYj>

For a three-dimensional problem:

geomTransf Linear $transfTag $vecxzX $vecxzY $vecxzZ <-jntOffset $dXi $dYi
$dZi $dXj $dYj $dZj>

$transfTag unique identifier for CrdTransf object

Chapter 14 Geometric Transformation Command 201

$vecxzX $vecxzY
$vecxzZ

$dXi $dYi $dZi

$dXj $dYj $dZj

X, Y, and Z components of vecxz, the vector used to define the
local x-z plane of the local-coordinate system. The local y-axis is
defined by taking the cross product of the x-axis and the vecxz
vector.

These components are specified in the global-coordinate
system X,Y,Z and define a vector that is in a plane parallel to
the x-z plane of the local-coordinate system.

These items need to be specified for the three-dimensional
problem.

joint offset values -- absolute offsets specified with respect to
the global coordinate system for element-end node i (the
number of arguments depends on the dimensions of the current
model) (optional)

joint offset values -- absolute offsets specified with respect to
the global coordinate system for element-end node j (the
number of arguments depends on the dimensions of the current
model) (optional)

The element coordinate system is specified as follows:

Chapter 14 Geometric Transformation Command 202

The x-axis is the axis connecting the two element nodes; the y- and z-axes are then defined
using a vector that lies on a plane parallel to the local x-z plane -- vecxz. The y-axis is defined by
taking the cross product of the x-axis and the vecxz vector. The section is attached to the
element such that the y-z coordinate system used to specify the section corresponds to the y-z
axes of the element.

[wecxzy | vecxzy| vecxzl)

X

Figure 62: Definition of
the Local Coordinate
System

Chapter 14 Geometric Transformation Command 203

Figure 63: Definition of
Rigid Joint Offset
(note: check sign of
dXi,etc components)

Chapter 14 Geometric Transformation Command 204

The following figures should aid in understanding the vector vecxz definition:

element cross-section:

i b

y

element 1 element 2

element orientation:

element 2

element 1

AN

Chapter 14 Geometric Transformation Command

205

element xz plane and vectors:

element 2
vector parallel —
to vecxz o
Y
IL"4
X Z local
xz plane vecxz for
|
= % ¥ element2
£ 3=
E 2= Y
&
7]
vectar parallel X
tovecxz
N x T

vecxz for element 1

linear transformation command:

element 1:

vecxz = z axis, coords: (00 1)
geomTransf Linear $transfTag 0 0 1

element 2:

vecxz =Yy axis, coords: (0 1 0)
geomTransf Linear $transfTag01 0

Chapter 14 Geometric Transformation Command 206

P-Delta Transformation

This command is used to construct the P-Delta Coordinate Transformation (PDeltaCrdTransf)
object, which performs a linear geometric transformation of beam stiffness and resisting force
from the basic system to the global coordinate system, considering second-order P-Delta
effects.

For a two-dimensional problem:

| geomTransf PDelta $transfTag <-jntOffset $dXi $dYi $dXj $dYj>

For a three-dimensional problem:

geomTransf PDelta $transfTag $vecxzX $vecxzY $vecxzZ <-jntOffset $dXi $dYi
$dZi $dXj $dYj $dZj>

The element coordinate system and joint offset values are specified as in the Linear
transformation (page 200).

$transfTag unique identifier for CrdTransf object

$vecxzX $vecxzY X, Y, and Z components of vecxz, the vector used to define the
$vecxzZ local x-z plane of the local-coordinate system. (These items
need to be specified for the three-dimensional problem.)

These components are specified in the global-coordinate
system X,Y,Z and define a vector that is in a plane parallel to
the x-z plane of the local-coordinate system.

These items need to be specified for the three-dimensional
problem.

$dXi $dYi $dZi joint offset values -- absolute offsets specified with respect to
the global coordinate system for element-end node i (the
number of arguments depends on the dimensions of the current
model (page 26)) (optional)

$dXj $dYj $dZj joint offset values -- absolute offsets specified with respect to
the global coordinate system for element-end node j (the
number of arguments depends on the dimensions of the current
model (page 26)) (optional)

Chapter 14 Geometric Transformation Command

207

Corotational Transformation

This command is used to construct the Corotational Coordinate Transformation
(CorotCrdTransf) object, which performs an exact geometric transformation of beam stiffness
and resisting force from the basic system to the global coordinate system.

For a two-dimensional problem:

| geomTransf Corotational $transfTag <-jntOffset $dXi $dVYi $dXj $dYj>

For a three-dimensional problem:

geomTransf Corotational $transfTag $vecxzX $vecxzY $vecxzZ <-jntOffset $dXi
$dYi $dzi $dXj $dYj $dzj>

NOTE: The Corotational transformation is only available with the Win32 version of OpenSees
(http://opensees.berkeley.edu/OpenSees/binaries.html).

The element coordinate system and joint offset values are specified as in the Linear
transformation (page 200).

$transfTag

$vecxzX $vecxzY
$vecxzZ

$dXi $dYi $dZi

$dXj $dYj $dZj

unique identifier for CrdTransf object

X, Y, and Z components of vecxz, the vector used to define the
local x-z plane of the local-coordinate system. (These items
need to be specified for the three-dimensional problem.)

These components are specified in the global-coordinate
system X,Y,Z and define a vector that is in a plane parallel to
the x-z plane of the local-coordinate system.

joint offset values -- absolute offsets specified with respect to
the global coordinate system for element-end node i (the
number of arguments depends on the dimensions of the current
model (page 26)) (optional)

joint offset values -- absolute offsets specified with respect to
the global coordinate system for element-end node j (the
number of arguments depends on the dimensions of the current
model (page 26)) (optional)

208

CHAPTER 15

Time Series

While there is no timeSeries command in the language, a number of commands take as the
argument a list of items which defines the TimeSeries object to be constructed as part of the
command, such as the LoadPattern (page 214) and groundMotion (page 218) objects.

Time series act differently depending on what type of object they are applied to:

LoadPattern (page 214) object:

Load factors are applied to the loads and constraints
groundMotion (page 218) object:

Load factors are applied at the DOF in a ground motion

The type of TimeSeries objects available are presented in this chapter.

NOTE: The TimeSeries objects are handled by the Tcl interpreter as lists. Therefore, they can
be defined a-priori within quotes "™ and given a variable name. EXAMPLE:

set Gaccel "Series -dt $dt -filePath $outFile -factor $GMfatt"; # time series information

pattern UniformExcitation 2 1 -accel $Gaccel; # create uniform excitation

In This Chapter

Constant TIME SEri€S......cuvviveiiiieieieeeee e 209
Linear TiMe SEIIESccouvniiiiiiieeeee e 209
Rectangular Time Series.........cccccccvvvvvviiiiiie, 210
SIiNE TIME SEIIES ..ccvuiiieieiee e 211

Path TIME SEIES...c.u e 212

Chapter 15 Time Series 209

Constant Time Series

This command creates a ConstantSeries TimeSeries (page 208) object and associates it to the
LoadPattern (page 214) object being constructed.

Constant <-factor $cFactor>

$cFactor load-factor coefficient. (optional. default = 1.0)

The load factor to be applied to the loads and constraints in the LoadPattern object is constant
and equal to $cFactor.

Figure 64: Constant
Time Series

factora

cFactor

tirme

Linear Time Series

This command creates a LinearSeries TimeSeries (page 208) object and associates it to the
LoadPattern (page 214) or groundMotion (page 218) object being constructed.

Linear <-factor $cFactor>

Chapter 15 Time Series 210

$cFactor load-factor coefficient. (optional. default = 1.0)

The load factor to be applied to the loads and constraints in the LoadPattern or groundMotion
object is equal to $cFactor* time

Figure 65: Linear Time
Series

factora

cFactor

tirme

Rectangular Time Series

This command creates a RectangularSeries TimeSeries (page 208) object and associates it to
the LoadPattern (page 214) object being constructed.

Rectangular $tStart $tFinish <-factor $cFactor>

$tStart start time when the load factor is applied
$tFinish end time when the load factor is applied

$cFactor load-factor coefficient. (optional. default = 1.0)

Chapter 15 Time Series 211

The load factor to be applied to the loads and constraints in the LoadPattern object is constant
and equal to $cFactor during the domain time from $tStart to $tFinish

Figure 66: Rectangular
Time Series

factor &

cF actar —

tSt:a it tF|n:|5h f,l',r.';*;-e

Sine Time Series

This command creates a TrigSeries TimeSeries (page 208) object and associates it to the
LoadPattern (page 214) object being constructed.

| Sine $tStart $tFinish $period <-shift $shift> <-factor $cFactor>

$tStart start time when the load factor is applied
$tFinish end time when the load factor is applied
$period characteristic period of sine wave

$shift phase shift (radians) (optional. default = 0.0)
$cFactor load-factor coefficient. (optional. default = 1.0)

The load factor applied to the loads and constraints in the LoadPattern object is equal to:

2.7 titne - t3tart)
+ 8
period

cFactor sin hift

Chapter 15 Time Series 212

Figure 67: Sine Time
Series

factora

period

{

tStart\/ \/ tFinish _ time

Path Time Series

This command associates a TimeSeries (page 208) object of the type PathSeries or
PathTimeSeries (if the increment is not constant) to a LoadPattern (page 214) object.

There are many ways to specify the load path.

For a load path where the values are specified at constant time intervals:

| Series -dt $dt -values {list_of_values} <-factor $cFactor>

where the values are specified in a list included in the command

| Series -dt $dt -filePath $fileName <-factor $cFactor>

where the values are taken from a file specified by $fileName

Chapter 15 Time Series 213

For a load path where the values are specified at non-constant time intervals:

| Series -time {list_of_times} -values {list_of values} <-factor $cFactor> |
where both time and values are specified in a list included in the command

| Series -fileTime $fileNamel -filePath $fileName?2 <-factor $cFactor> |

where both time and values are taken from a file specified by $fileNamel (for the time data)
and $fileName?2 (for the values data)

$cFactor load-factor coefficient. (optional. default = 1.0)

The load factor to be applied to the loads and constraints in the LoadPattern object is equal to
$cFactor*(user-defined series)

214

CHAPTER 16

pattern Command

The pattern command is used to construct a LoadPattern object, its associated with the
TimeSeries (page 208) object and the Load (page 215) and Constraint (page 232) objects for
the pattern.

In This Chapter

PlaiN PAernoeviiiiiiiiiiieeeee e 214
UniformExcitation Pattern.............cccccccvvvinnn. 216
MultipleSupport Pattern.........ccccevvceiie e, 217

plain Pattern

This command is used to construct an ordinary LoadPattern (page 214) object in the Domain
(page 23).

pattern Plain $patternTag (TimeSeriesType arguments) {
load (load-command arguments)
sp (sp-command arguments)

eleLoad (eleLoad-command arguments)

}

$patternTag unique pattern object tag

TimeSeriesType list which is parsed to construct the TimeSeries (page 208)

arguments object associated with the LoadPattern object.

load ... list of commands to construct nodal loads -- the NodalLoad
(page 215) object

sp ... list of commands to construct single-point constraints -- the
SP_Constraint (page 216) object

eleLoad ... list of commands to construct element loads -- the eleLoad

(page 216) object

Chapter 16 pattern Command 215

NOTE: The TimeSeries object is handled by the Tcl interpreter as a list and can be defined a-
priori and given a variable name.

EXAMPLE

pattern Plain 1 Linear { ; # define LoadPattern 1. impose load in a linear manner
load 3100 0. 0. 0. 0. 20.; # apply force and moment at node 3

}

load Command

This command is used to construct a NodalLoad object.

| load $nodeTag (ndf $LoadValues)

The nodal load is added to the LoadPattern being defined in the enclosing scope of the pattern
command.

$nodeTag node on which loads act
$LoadValues load values that are to be applied to the node.

Valid range is from 1 through ndf (page 26), the number of
nodal degrees-of-freedom.

EXAMPLE

load 3100 0. 0. 0. 0. 20.; # apply force Fx=100 and moment Mz=20 at node 3

Chapter 16 pattern Command 216

sp Command

This command is used to construct a single-point non-homogeneous constraint (SP_Constraint)
object.

| sp $nodeTag $DOFtag $DOFvalue

$nodeTag node on which the single-point constraint acts
$DOFtag degree-of-freedom at the node being constrained.

Valid range is from 1 through ndf (page 26), the number of
nodal degrees-of-freedom.

$DOFvalue reference value of the constraint to be applied to the DOF at the
node.

EXAMPLE

sp310.1; #impose displacement Dx=0.1 at node 3

eleLoad Command

i NEED information from Michael!!

UniformExcitation Pattern

This command is used to construct a UniformExcitation load pattern object.

pattern UniformExcitation $patternTag $dir -accel (TimeSeriesType arguments)
<-velO $ver0>

$patternTag unique pattern object tag

$dir direction of excitation (1, 2, or 3) used in formulating the
inertial loads for the transient analysis.

Chapter 16 pattern Command 217

TimeSeriesType TimeSeries (page 208) object associated with the

arguments acceleration record used in determining the inertial loads.

$velO initial velocity to be assigned to each node (optional, default:
Zero)

NOTE: The TimeSeries object is handled by the Tcl interpreter as a list and can be defined a-
priori and given a variable name.

EXAMPLE:
set Gaccel "Series -dt $dt -filePath $outFile -factor $GMfatt"; # time series information

pattern UniformExcitation 2 1 -accel $Gaccel; # create uniform excitation
with IDtag 2 in direction 1

MultipleSupport Pattern

This command is used to construct a MultipleSupportExcitation load pattern object.

pattern MultipleSupport $patternTag {
groundMotion (groundMotion-command arguments)

imposedMotion (imposedMotion-command arguments)

}
$patternTag unique pattern object tag
groundMotion ... list of commands to construct the GroundMotions (page 218)
object that is then added to the object to define the multiple-
support excitation that is being imposed on the model
imposedMotion ... list of commands to construct the ImposedSupportSP (page

219) constraint object that is then added to the object to define
the multiple-support excitation that is being imposed on the
model

Chapter 16 pattern Command 218

groundMotion Command

The groundMotion command is used to construct a GroundMotion object used by the
ImposedMotionSP (page 219) constraints in a MultipleSupportExcitation (page 217) object.

Plain GroundMotion

This command is used to construct a plain GroundMotion object. Each GroundMotion object is
associated with a number of TimeSeries (page 208) objects, which define the acceleration,
velocity and displacement records.

groundMotion $gMotionTag Plain <-accel (accelSeriesType accelArgs)> <-vel
(velSeriesType velArgs)> <-disp (dispSeriesType dispArgs)> <-int
(IntegratorType intArgs)>

$gMotionTag unique GroundMotion (page 218) object tag
<-accel (accelSeriesType accelArgs)>

TimeSeries (page 208) objects defining the acceleration record
(optional).

<-vel (velSeriesType velArgs)>
TimeSeries (page 208) objects defining the velocity record (optional)
<-disp (dispSeriesType dispArgs)>

TimeSeries (page 208) objects defining the displacement record
(optional)

<-int (IntegratorType intArgs)>
If only the acceleration record is specified, the user has the option of
specifying the TimeSeriesIntegrator (page 249) that is to be used to

integrate the acceleration record to determine the velocity and
displacement record (optional, default: Trapezoidal)

NOTE: The TimeSeries object is handled by the Tcl interpreter as a list and can be defined a-
priori and given a variable name.

NOTE: Any combination of the acceleration, velocity and displacement time-series can be
specified.

Chapter 16 pattern Command 219

Interpolated GroundMotion

This command is used to construct an InterpolatedGroundMotion object.

groundMotion $gMotionTag Interpolated $gmTagl $gmTag?2 ... -fact $factl
$fact2 ...

$gMotionTag unique GroundMotion (page 218) object tag

$gmTagl $gmTag2 ground motions which have already been added to the
MultipleSupportExcitation (page 217) object.

$factl $fact? ... factors that are used in the interpolation of the ground motions
to determine the ground motion for this
InterpolatedGroundMotion object.

ImposedMotion Command

This command is used to construct an ImposedMotionSP constraint which is used to enforce the
response of a dof at a node in the model. The response enforced at the node at any give time is
obtained from the GroundMotion (page 218) object associated with the constraint.

| imposedMotion $nodeTag $dirn $gMotionTag

$nodeTag node where response is enforced
$dirn dof of enforced response

Valid range is from 1 through ndf (page 26), the number of
nodal degrees-of-freedom.

$gMotionTag pre-defined GroundMotion (page 218) object tag

NOTE: The GroundMotion (page 218) object must be added to the MultipeSupportExcitation
(page 217) pattern before the ImposedMotionSP constraint.

Chapter 16 pattern Command 220

FMK: ADD TIME-SERIES INTEGRATORS

221

CHAPTER 17

Recorder Objects

The recorder commands are used to construct a Recorder object, which is used to monitor items
of interest to the analyst at each commit().

In This Chapter

NOJE RECOMENeevviiieiiiiiiiiiieieee e 221
EnvelopeNode ReCOrder.........ccccoeevviiiiviiniiieieeennins 222
Drift RECOIder.....covviiiiiiiiiieii e 223
Element Recordercccccciiiiii 224
EnvelopeElement Recordercccoooviiiiiieeeeininnns 226
Display Recorder..........cccccovviiiiiiiiiieee 227
Plot RECOIdercoooviiiiiiiiii 228
playback Command............cccccvvvvviviiiiiiiiiiiiiiiiiiin, 228

Node Recorder

The Node type records the displacement, velocity, acceleration and incremental displacement at
the nodes (translational & rotational)

recorder Node <-file $fileName> <-time> <-node ($nodel $node2 ...)> <-
nodeRange $startNode $endNode> <-region $RegionTag> <-node all>
-dof ($dofl $dof2 ...) $respType

$fileName file where results are stored. Each line of the
file contains the result for a committed state of
the domain (optional, default: screen output)

-time this argument will place the pseudo time of the
as the first entry in the line. (optional, default:
omitted)

$nodel $node2 ... tags nodes where response is being recorded
-- select nodes in domain (optional, default: all)

$startNode tag for start and end nodes where response is

$endNode being recorded -- range of nodes in domain

(optional, default: all)

Chapter 17 Recorder Objects 222

$RegionTag tag for previously-defined selection of nodes
defined using the Region command. (optional)

all where response is being recorded -- all nodes
in domain (optional & default)

$dofl $dof2 ... degrees of freedom of response being
recorded.

Valid range is from 1 through ndf (page 26) ,
the number of nodal degrees-of-freedom.

$respType defines response type to be recorded. The
following response types are available:
disp displacement
vel velocity
accel acceleration
incrDisp incremental displacement
eigen eigenvector

NOTE: $respType must be the last argument in this command.
Example:
recorder Node -file node.out —time —node 1 5 -nodeRange 10 25 -dof 2 disp

recorder Node -file node34.eig -time -node 3 4 -dof 1 2 3 "eigen 2"

EnvelopeNode Recorder

The Node type records the envelope of displacement, velocity, acceleration and incremental
displacement at the nodes (translational & rotational). The envelope consists of the following:
minimum, maximum and maximum absolute value of specified response type.

recorder EnvelopeNode <-file $fileName> <-time> <-node ($nodel $node2 ...)>
<-nodeRange $startNode $endNode> <-region $RegionTag> <-node
all> -dof ($dofl $dof2 ...) $respType

$fileName file where results are stored. Each line of the file contains the
result for a committed state of the domain (optional, default:
screen output)

-time this argument will place the pseudo time of the as the first entry
in the line. (optional, default: omitted)

Chapter 17 Recorder Objects 223

$nodel $node2 ... where response is being recorded -- select nodes (optional,
default: all)

$startNode tag for start and end where response is being recorded

$endNode (optional, default: all)

$RegionTag tag for previously-defined selection of nodes defined using the

Region command. (optional)

all where response is being recorded -- all nodes in domain
(optional & default)

$dofl $dof2 ... degrees of freedom of response being recorded.

Valid range is from 1 through ndf (page 26) , the number of
nodal degrees-of-freedom.

$respType defines response type to be recorded. The following response
types are available:
disp displacement
vel velocity
accel acceleration
incrDisp incremental displacement

NOTE: $respType must be the last argument in this command.
Example:

recorder EnvelopeNode -file EnvelopeNode.out —time —node 1 5 -nodeRange 10 25 -dof 2 disp

Drift Recorder

The Drift type records the displacement drift between two nodes. The drift is taken as the ratio
between the prescribed relative displacement and the specified distance between the nodes.

recorder Drift $fileName <-time> $nodel $node2 $dof $perpDirn

$fileName file where results are stored. Each line of the file contains the
result for a committed state of the domain

-time this argument will place the pseudo time of the as the first entry
in the line. (optional, default: omitted)

$nodel $node?2 the two for which drift is recorded

Chapter 17 Recorder Objects 224

$dof

$perpDirn

Example:

nodal degree of freedom to monitor for drift

Valid range is from 1 through , the number of nodal degrees-of-
freedom. ??? does rotation count???

perpendicular global direction from which length is determined

recorder Drift drift.out time 24 1 2

Element Recorder

The Element type records the response of a number of elements. The response recorded is
element-dependent and depends on the arguments which are passed to the setResponse()

element method.

recorder Element <-file $fileName> <-time> <-ele ($elel $ele2 ...)> <-eleRange
$startEle $endEle> <-region $regTag> <-ele all> ($argl $arg2 ...)

$fileName

-time

$elel Sele2 ...

$startEle $endEle

$regTag
all

$argl $arg2 ...

file where results are stored. Each line of the file contains the
result for a committed state of the domain (optional, default:
screen output)

this argument will place the pseudo time of the as the first entry
in the line. (optional, default: omitted)

tags of elements whose response is being recorded -- selected
elements in domain (optional, default: omitted)

tag for start and end elements whose response is being
recorded -- range of selected elements in domain (optional,
default: all)

previously-defined tag of region of elements whose response is
being recorded -- region of elements in domain (optional)

elements whose response is being recorded -- all elements in
domain (optional & default)

arguments which are passed to the setResponse() element
method

Chapter 17 Recorder Objects 225

The setResponse() element method is dependent on the element type, and is described with the
element Command (page 146).

» Beam-Column Elements (page 150, page 151, page 148, page 149) :

Common to all beam-column elements:

globalForce — element resisting force in global coordinates (does not include inertial forces)
example:

recorder Element -file elelglobal.out -time -ele 1 globalForce

localForce — element resisting force in local coordinates (does not include inertial forces)
example:

recorder Element -file elellocal.out -time -ele 1 localForce

» Sections: (page 129)

section $secNum — request response quantities from a specific section along the element
length,

$secNum refers to the integration point whose data is to be output
force — section forces
example: recorder Element -file elelseclForce.out —time -ele 1 section 1 force
deformation — section deformations
example: recorder Element -file elelseclForce.out —time -ele 1 section 1 deformation
stiffness — section stiffness
example: recorder Element -file elelseclForce.out —time -ele 1 section 1 stiffness
stressStrain — record stress-strain response.

example: recorder Element -file elelseclForce.out —time -ele 1 section 1 fiber $y $z
stressStrain

Sy local y coordinate of fiber to be monitored*
$z local z coordinate of fiber to be monitored*

*NOTE: The recorder object will search for the fiber closest to the location ($y,$z) on the section
and record its stress-strain response

Chapter 17 Recorder Objects 226

EnvelopeElement Recorder

The Element type records the response of a number of elements. The response recorded is
element-dependent and depends on the arguments which are passed to the setResponse()
element method. The envelope consists of the following: minimum, maximum and maximum
absolute value of specified response type.

recorder EnvelopeElement <-file $fileName> <-time> <-ele ($elel $ele2 ...)> <-
eleRange $startele $endele> <-ele all> <-region $regTag> ($argl $arg2

)

$fileName file where results are stored. Each line of the file contains the
result for a committed state of the domain (optional, default:
screen output)

-time this argument will place the pseudo time of the as the first entry
in the line. (optional, default: omitted)

$elelD1 $elelD2 ... tags of elements whose response is being recorded -- selected
elements in domain (page 23) (optional, default: omitted)

$startele $endele tag for start and end elements whose response is being
recorded -- selected elements in domain (page 23) (optional,
default: all)

all elements whose response is being recorded -- all elements in
domain (page 23) (optional & default)

$regTag tag of region of elements whose response is being recorded --
region of elements in domain (page 23) (optional)

$argl $arg? ... arguments which are passed to the setResponse() element

method

The setResponse() element method is dependent on the element type, and is described with the
element Command (page 146).

» Beam-Column Elements (page 150, page 151, page 148, page 149):

Common to all beam-column elements:

globalForce — element resisting force in global coordinates (does not include inertial forces)
example:

recorder EnvelopeElement -file elelglobal.out -time -ele 1 globalForce

localForce — element resisting force in local coordinates (does not include inertial forces)
example:

Chapter 17 Recorder Objects 227

recorder EnvelopeElement -file elellocal.out -time -ele 1 localForce

» Sections: (page 129)

section $secNum — request response quantities from a specific section along the element
length,

$secNum refers to the integration point whose data is to be output
force — section forces
example: recorder EnvelopeElement -file elelseclForce.out —time -ele 1 section 1 force
deformation — section deformations
example: recorder EnvelopeElement -file elelseclForce.out —time -ele 1 section 1 deformation
stiffness — section stiffness
example: recorder EnvelopeElement -file elelseclForce.out —time -ele 1 section 1 stiffness
stressStrain —record stress-strain response.

example: recorder EnvelopeElement -file elelseclForce.out —time -ele 1 section 1 fiber $y $z
stressStrain

Sy local y coordinate of fiber to be monitored*
$z local z coordinate of fiber to be monitored*

*NOTE: The recorder object will search for the fiber closest to the location ($y,$z) on the section
and record its stress-strain response

Display Recorder

This recorder opens a graphical window for displaying of graphical information.

recorder display $windowTitle $xLoc $yLoc $xPixels $yPixels <-file $fileName>

$windowTitle title of graphical window

$xLoc $yLoc horizontal and vertical location of graphical window (upper left-
most corner)

$xPixels $yPixels width and height of graphical window in pixels

$fileName in addition to the window display, information is sent to a file to
redisplay images at a later time. (optional)

Chapter 17 Recorder Objects 228

A TclFeViewer object is constructed. This constructor adds a number of additional commands to
OpenSees, similar to the construction of the BasicBuilder (page 26). These additional
commands are used to define the viewing system for the image that is place on the screen.
These commands are currently under review and will be presented in a future version of this
document.

Plot Recorder

This recorder type opens a graphical window for the plotting of the contents of the prescribed file

recorder plot $fileName $windowTitle $xLoc $yLoc $xPixels $yPixels -columns
$xCol0 $yCol0 <-columns $xColl $yColl><-columns $xCol2 $yCol2>

$fileName source file of plotted data
$windowTitle title of graphical window
$xLoc $yLoc horizontal and vertical location of graphical window in pixels

(upper left-most corner)
$xPixels $yPixels width and height of graphical window in pixels

$xCol0 $yCol0 Column number to be plotted in X-axis and Y-axis, respectively.
One set of columns must be defined.

$xColl $yColl Additional lines may be plotted on the same graph by repeating
the -columns command. These data come from the same
$xCol2 $yCol2 : :
source file. (optional)

playback Command

This command is used to invoke playback on all Recorder objects constructed with the recorder
command (page 221).

playback $commitTag

$commitTag integer used to invoke the record() method (??7??)

229

CHAPTER 18

Analysis Objects

The Analysis objects are responsible for performing the analysis. The analysis moves the model
along from state at time t to state at time t + dt. This may vary from a simple static (page 256)
linear analysis to a transient (page 257, page 258) non-linear analysis. In OpenSees each
Analysis object is composed of several component objects, which define the type of analysis
how the analysis is performed.

In general terms, the analysis objects are used to solve the following time-dependent
equilibrium-equation problem for a transient analysis:

F(U) +F(U, U) = P(t)

-- transient equilibrium

Where F, is the acceleration-dependent inertial force vector, F: is the velocity (damping) and
displacement-dependent (stiffness) resisting-force vector. P(t) is the external applied-force
vector. The acceleration, velocity and displacement vectors are all time-dependent.

The component classes consist of the following:
= ConstraintHandler (page 232) -- determines how the constraint equations are enforced in
the analysis -- how it handles the boundary conditions/imposed displacements

= DOF_Numberer (page 237) -- determines the mapping between equation numbers and
degrees-of-freedom

= AnalysisModel (page 256) -- defines what time of analysis is to be performed
= Integrator -- determines the predictive step for time t+dt

= SolutionAlgorithm (page 245) -- determines the sequence of steps taken to solve the non-
linear equation at the current time step

= SystemOfEqn/Solver -- within the solution algorithm, it specifies how to store and solve the
system of equations in the analysis

Chapter 18 Analysis Objects

230

Analysis

Salver

CHandler Mumberer Analysizhodel | | SalnAlgorithm Integrator SyatemOfEgn
L L
1= L= ek Equiali algo Staticlvkg @tor BanadGe keral
Py atty RCM Llkear LogaCo tral =
LagrEnge WikDegree VAEDIETEEE I o Rapison DkpConmal ProfeSAD
TrREeshm 3o b Mheeditiecth & Wk Arclength Sparse Ge v @l

Hewrtan Linese anch Mk BRI EpH am Ummack

B ke Sparse Symmetr;

BFGE Trawe kithteq =or

Eryouh ewrio Hewmark

HHT

Chapter 18 Analysis Objects 231

Figure 68: Analysis
Object

In This Chapter

constraints Commandoccvvvviiieieeiiiniiieeeeen 232
numberer Commandccccccvevvveiiiiiiiieieeeee e 237
system Commandccoooeveiiieii 239
test CoMMaANGoooviiiiiiiieee e 242
algorithm Command ... 245
integrator Command............cccceevvveeiiiiiiiiiieee e 249
analysis Command............oooviiiiini e 256
rayleigh command...............cccccvvvivviiiiiieee 259
€igen CommaNndccooooiiiieie 260
analyze Commandccoovvviiiiinii e e 261

dataBase CommandS.......ccoooevvveivieieiieiieeee e 262

232

CHAPTER 19

constraints Command

This command is used to construct the ConstraintHandler object. The ConstraintHandler object
determines how the constraint equations are enforced in the analysis. Constraint equations
enforce a specified value for a DOF, or a relationship between DOFs. The degrees of freedom
can be broken down into U, the retained DOF's, and U, the condensed DOF's:

£

Chapter 19 constraints Command 233

= The Plain Constraints (page 234) command is used to enforce homogeneous single-point
constraints, such as the case of homogeneous boundary conditions, where all boundary
conditions are fixity, using single-point constraints (page 30, http://www.). For this case:
U.=0.0

The other constraints commands are used for ALL other cases, such as the case of non-
homogeneous single-point constraints using the sp command (page 216), multi-point
constraints, imposed motions (page 219) and multi-support excitation (page 217). For such
cases, the relationship between DOF's can be written as:U.=Cr.Us. Where Cg. is a matrix of
constants.

The following constraints handlers are currently availble:

= Penalty Method (page 234) -- consists of adding large numbers to the stiffness matrix and
the restoring-force vectors to impose a prescribed zero or nonzero DOF. This method applies
very stiff elements (numerically) at the boundary conditions. These additional stiffnesses
affect the eigenvalues/eigenvectors in a transient analysis. This is the recommended method
for a static analysis.

= Lagrange Multipliers (page 235) -- apply the method of lagrange multipliers to the system
of equations, thus enlarging the size of the materices. Once Labrange Multipliers have been
applied, the resulting stiffness matrix is no longer positive definite. Therefore, this method
should be used only if there are condition-number problems with the penalty method.

= Transformation Method (page 236) -- transforms the stiffness matrix by condensing out the
constrained DOF's. This method reduces the size of the system for multi-point constraints.
This is the recommended method for a transient analysis. However, this method should not
be used when nodes are constrained in series. For example, U, is constrained to U,, which is
then constrained to U,.

Of the different methods, "the Lagrange multiplier method is more attractive than the
transformation method if there are few constraint equations that couple many DOF. However,
Lagrange multipliers are active at the structure level, but transformation equations can be
applied at either the structure level or element by element. The latter has the appeal of disposing
of constraints at an early stage, when the matrices are small and manageable”. (Cook)

"In comparison with Lagrange multipliers, penalty functions have the advantage of introducing
no new variables. However, the penalty matrix may significantly increase the bandwidth of the
structural equations, depending on how DOF are numbered and what DOF are coupled by the
constraint equations. Penalty functions have the disadvantage that penalty numbers must be
chosen in an allowable range: large enough to be effective but not so large as to provoke
numerical difficulties”. (Cook)

More information and examples on these methods are discussed in detail in the Cook book.

Chapter 19 constraints Command 234

In This Chapter

Plain ConstraintSooovvvviiiie i 234
Penalty Methodcoeiiiiiiic e, 234
Lagrange Multipliers.........ccccccv 235
Transformation Methodcovvviviiiiiiiiie 236

Plain Constraints

This command creates a PlainHandler which is only capable of enforcing homogeneous single-
point constraints. If other types of constraints exist in the domain, a different constraint handler
must be specified.

constraints Plain

Penalty Method

This command is used to construct a PenaltyConstraintHandler which will cause the constraints
to be enforced using a penalty method. The penalty method consists of adding large numbers to
the stiffness matrix and the restoring-force vectors to impose a prescribed zero or nonzero DOF.

constraints Penalty $alphaSP $alphaMP

$alphaSP factor used when adding the single-point constraint into the
system of equations

$alphaMP factor used when adding the multi-point constraint into the
system of equations

In this method the potential-energy equation which makes up the system of equations is
augmented by a penalty function {t}'[alpha]{t}/2

where [alpha] is a diagonal matrix of "penalty numbers”. The resulting system of equations is of
the form:

[K + C'alphaC]U = [R+CTalphaQ)]

Chapter 19 constraints Command 235

Where CTalphaC can be called the penalty matrix. C and Q are matrices containing constants, K
is the stiffness matrix, U represents the DOF and R the restoring forces. If alpha=0 the
constraints are ignored. As alpha grows, U changes in such a way that the constraint equations
are more nearly satisfied. In this case, however, the analysis becomes error prone, as the
system represents a stiff region supported by a flexible region.

NOTE: The Penalty Method affects the maximum eigenvalues of the system and may cause
problems in a Transient analysis.

The Penalty Method is discussed in detail in the Cook Book -- Concepts and Applications of
Finite Element Analysis.

"Guideline for choice of alpha: If computer words carry approximately p decimal digits,
experience has shown that alpha should not exceed 10", (Cook)

Lagrange Multipliers

This command is used to construct a LagrangeConstraintHandler which will cause the
constraints to be enforced using the method of Lagrange multipliers.

constraints Lagrange <$alphaSP> <$alphaMP>

$alphaSP factor used when adding the single-point constraint into the
system of equations (optional, default=1.0)

$alphaMP factor used when adding the multi-point constraint into the
system of equations (optional, default=1.0)

NOTE: Values for $alphaSP and $alphaMP other than 1.0 are permitted to offset numerical
roundoff problems.

NOTE: The system of equations is not positive definite due to the introduction of zeroes on the
diagonal by the constraint equations:

K C|uU| R

c 04 |Q

From Cook: "Lagrange's method of undetermined multipliers is used to find the maximum or
minimum of a function whose variables are not independent but have some prescribed relation.
In structural mechanics the function is the potential energy and the variables are the DOF".

Chapter 19 constraints Command 236

Transformation Method

This command is used to construct a TransofrmationConstraintHandler which will cause the
constraints to be enforced using the transformation method.

constraints Transformation

NOTE: With the current implementation, a retained node in an MP_Constraint cannot also be
specified as being a constrained node in another MP_Constraint.

The constraint equations takes the following form:

(TTKT)Ur=T'R

237

CHAPTER 20

numberer Command

This command is used to construct the DOF_Numberer object. The DOF_Numberer object
determines the mapping between equation numbers and degrees-of-freedom -- how degrees-of-
freedom are numbered.

= Plain (page 237) -- nodes are assigned degrees-of-freedom arbitrarily, based on the input
file. This method is recommended for small problems or when sparse solvers are used, as
they do their own internal DOF numbering.

= RCM (page 238) -- nodes are assigned degrees-of-freedom using the Reverse Cuthill-
McKee algorithm. This algorithm optimizes node numbering to reduce bandwidth using a
numbering graph. This method will output a warning when the structure is disconnected.

As certain system of equation and solver objects do their own mapping, i.e. SuperLU, UmfPack,
Kincho's, specifying a numberer other than plain may not be needed.

In This Chapter

Plain NUMDBEIEr ... 237
RCM NUMDBEIET ..ot 238

Plain Numberer

This command is used to construct a PlainNumberer object.

numberer Plain

The Plain numberer assigns degrees-of-freedom to the nodes based on how the nodes are
stored in the domain. Currently, the user has no control over how nodes are stored.

Chapter 20 numberer Command 238

RCM Numberer

This command is used to construct a RCMNumberer object.

numberer RCM

The RCM numberer uses the reverse Cuthill McKee (REF?) algorithm to number the degrees of
freedom.

239

CHAPTER 21

system Command

This command is used to construct the LinearSOE and LinearSolver objects to store and solve
the system of equations in the analysis.

=Profile Symmetric Positive Definite (SPD)
syatermn Profile ZF0D

£

=Banded Symmetric Positive D efinite
syatermn BandL PO

J

=mparse symmetric Fositive Definite

syaem SparsesFL

Banded Gener

ek

sysem BandGeneral

%

sSparse Symmetric system SparseGenea ral

sysem Uminack

Figure 69: system
command

In This Chapter

BandGeneral SOE........cooooviiiiiiiieiee e 240
BandSPD SOEccooiiiiee et 240
ProfileSPD SOE ..o 240
SparseGeneral SOE...........ccccuiviiieiiiiiiiiieee e 240
UMfPAcCk SOE ... 241

SPArseSPD SOE ... 241

Chapter 21 system Command 240

BandGeneral SOE

This command is used to construct an un-symmetric banded system of equations object which
will be factored and solved during the analysis using the Lapack band general solver.

| system BandGeneral

BandSPD SOE

This command is used to construct a symmetric positive definite banded system of equations
object which will be factored and solved during the analysis using the Lapack band spd solver.

| system BandSPD

ProfileSPD SOE

This command is used to construct symmetric positive definite profile system of equations object
which will be factored and solved during the analysis using a profile solver.

| system ProfileSPD

SparseGeneral SOE

This command is used to construct a general sparse system of equations object which will be
factored and solved during the analysis using the SuperLU solver.

system SparseGeneral <-piv>

perform partial-pivoting (optional, Default: no partial pivoting is

-piv
performed)

Chapter 21 system Command 241

UmfPack SOE

This command is used to construct a general sparse system of equations object which will be
factored and solved during the analysis using the UMFPACK solver. (REF?)

| system UmfPack

SparseSPD SOE

This command is used to construct a sparse symmetric positive definite system of equations
object which will be factored and solved during the analysis using a sparse solver developed at
Stanford University by Kincho Law. (REF?)

system SparseSPD

242

CHAPTER 22

test Command

This command is used to construct a ConvergenceTest object. Certain SolutionAlgorithm (page
245) objects require a ConvergenceTest object to determine if convergence has been achieved
at the end of an iteration step. The convergence test is applied to the following equation:

KA =R

The test perform the following checks:

= Norm Unbalance /RMR < tol
= Norm Displacement

Increment M =t
= Energy Increment Y2 (AUTR) = tol

In This Chapter

Norm Unbalance Testccuveevviiiiiiiiiiiiiiiieeeee s 242
Norm Displacement Increment T.........cccvvvvveeeeininnnns 243
Energy Increment TeSt.......coooveviiiiviiiii e 244

Norm Unbalance Test

This command is used to construct a CTestNormUnbalance object which tests positive force
convergence if the 2-norm of the b vector (the unbalance) in the LinearSOE (page 239) object is
less than the specified tolerance.

test NormUnbalance $tol $maxNumlter <$printFlag>

$tol convergence tolerance

$maxNumlter maximum number of iterations that will be performed before
"failure to converge" is returned

$printFlag flag used to print information on convergence (optional)

Chapter 22 test Command 243

no print output (default)
print information on each step
print information when convergence has been achieved

print norm, dU and dR vectors

g M~ N O

at convergence failure, carry on, print error message,
but do not stop analysis

The test performs the following check:

JRE"R < tol

Norm Displacement Increment T

This command is used to construct a CTestNormDisplncr object which tests positive force
convergence if the 2-norm of the x vector (the displacement increment) in the LinearSOE (page
239) object is less than the specified tolerance.

| test NormDisplncr $tol $maxNumlter <$printFlag>

$tol convergence tolerance

$maxNumlter maximum number of iterations that will be performed before
"failure to converge" is returned

$printFlag flag used to print information on convergence (optional)
0 no print output (default)
print information on each step
print information when convergence has been achieved

print norm, dU and dR vectors

g A~ N P

at convergence failure, carry on, print error message,
but do not stop analysis

The test performs the following check:

SHITAL < tol

Chapter 22 test Command 244

Energy Increment Test

This command is used to construct a CTestEnergyIncr object which tests positive force
convergence if one half of the inner-product of the x and b vectors (displacement increment and
unbalance) in the LinearSOE (page 239) object is less than the specified tolerance.

| test Energylncr $tol $maxNumlter <$printFlag>

$tol convergence tolerance

$maxNumlter maximum number of iterations that will be performed before
"failure to converge" is returned

$printFlag flag used to print information on convergence (optional)
0 no print output (default)
print information on each step
print information when convergence has been achieved

print norm, dU and dR vectors

g A~ N P

at convergence failure, carry on, print error message,
but do not stop analysis

The test performs the following check:
Ve (AUTR) = tol

245

CHAPTER 23

algorithm Command

This command is used to construct a SolutionAlgorithm object, which determines the sequence
of steps taken to solve the non-linear equation.

In This Chapter

Linear Algorithmccccccee 245
Newton AlQOrthm ... 245
Newton with Line Search Algorithm 246
Modified Newton Algorithmcccooeeiiiiiiiien, 247
Krylov-Newton Algorithmcccccvviiiiiiiiiieieeennns 247
BFGS Algorithm ... 247
Broyden Algorithm ..o, 248

Linear Algorithm

This command is used to construct a Linear algorithm object which takes one iteration to solve
the system of equations.

algorithm Linear

Newton Algorithm

This command is used to construct a NewtonRaphson algorithm object which uses the Newton-
Raphson method to advance to the next time step.

algorithm Newton

NOTE: The tangent is updated at each iteration.

Chapter 23 algorithm Command

246

Load, W

W, W displacement, w »

Newton with Line Search Algorithm

This command is used to construct a NewtonLineSearch algorithm object which uses the
Newton-Raphson method with line search to advance to the next time step.

algorithm NewtonLineSearch $ratio

$ratio limiting ratio between the residuals before and after the
incremental update (between 0.5 and 0.8)

If the ratio between the residuals before and after the
incremental update is greater than the specified limiting ratio the
line search algorithm developed by Crissfield (REF?) is
employed to try to improve the convergence.

Chapter 23 algorithm Command 247

Modified Newton Algorithm

This command is used to construct a ModifiedNewton algorithm object which uses the Modified
Newton-Raphson method to advance to the next time step. The difference between this method
and the Newton-Raphson method is that the tangent stiffness is not updated at each step, thus
avoiding expensive calculations needed in multi-DOF systems. However, more iterations may be
needed to reach a prescribed accuracy.

| algorithm ModifiedNewton

NOTE: The tangent at the first iteration of the current time step is used to iterate on the next time
step.

Krylov-Newton Algorithm

This command is used to construct a KrylovNewton algorithm object which uses a modified
Newton method with Krylov subspace acceleration to advance to the next time step.

algorithm KrylovNewton

The accelerator is described by Carlson and Miller in "Design and Application of a 1D GWMFE
Code" from SIAM Journal of Scientific Computing (http://epubs.siam.org/sam-
bin/dbg/toclist/SISC) (Vol. 19, No. 3, pp. 728-765, May 1998).

BFGS Algorithm

This command is used to construct a BFGS algorithm object for symmetric systems which
performs successive rank-two updates of the tangent at the first iteration of the current time step.

algorithm BFGS <$count>

$count number of iterations within a time step until a new tangent is
formed

Chapter 23 algorithm Command 248

Broyden Algorithm

This command is used to construct a Broyden algorithm object for general unsymmetric systems
which performs successive rank-one updates of the tangent at the first iteration of the current

time step.

algorithm Broyden <$count>

$count number of iterations within a time step until a new tangent is
formed

249

CHAPTER 24

Integrator Command

This command is used to construct the Integrator object. The Integrator object determines the
meaning of the terms in the system of equation object Ax=B.

The Integrator object is used for the following:

= determine the predictive step for time t+dt
= specify the tangent matrix and residual vector at any iteration
= determine the corrective step based on the displacement increment dU

The system of nonlinear equations is of the form:

Static analysis: R{ULD = 2P* - Fr(U)

Transient analysis:

R{U,U,0) = P(t) — F(U) - Fe(u,Uy

Chapter 24 integrator Command 250

The type of integrator used in the analysis is dependent on whether it is a static analysis (page
256) or transient analysis (page 257):

STATIC ANALYSIS*

= LoadControl (page ho= A gt dA
250)

= DisplacementControl LJj_ =1Jj _, + d]
(page 251)

= MinUnbalDispNorm iy (dU Tl j=0
(page 252)

= ArcLength (page 252) ol TdlJ + of di = ds?
TRANSIENT ANALYSIS

= Newmark (page 253)
= Hilbert-Hughes-Taylor Method (HHT (page 254))

*NOTE: static integrators should only be used with a Linear TimeSeries (page 209) object with a
factor of 1.0.

In This Chapter

Load CONtrol.........cueviiiiiiiiieiiiiic e 250
Displacement Control............cccevveeeeininiiiiiieeeee e 251
Minimum Unbalanced Displacement Norm............... 252
Arc-Length Controlccccceeevi i, 252
Newmark Methodcccceiiiiiiciiicec 253
Hilbert-Hughes-Taylor ..o 254

Load Control

This command is used to construct a Staticlntegrator object of type LoadControl

integrator LoadControl $dLambdal <$Jd $minLambda $maxLambda>

Chapter 24 integrator Command 251

$dLambdal first load increment (pseudo-time step) in the next invocation of
the analysis (page 256) command.

$Jd factor relating load increment at subsequent time steps.
(optional, default: 1.0)

$minLambda arguments used to bound the load increment (optional, default:

$maxLambda $dLambdal for both)

The load increment at iterations i, dLambday(i), is related to the load increment at (i-1),
dLambda(i-1), and the number of iterations at (i-1), J(i-1), by the following:

dLambda(i) = dLambda(i-1)*Jd/J(i-1)

Displacement Control

This command is used to construct a Staticintegrator object of the type DisplacementControl.

integrator DisplacementControl $nodeTag $dofTag $dU1 <$Jd $minDu
$maxDu>

$nodeTag node whose response controls the solution
$dofTag degree-of-freedom whose response controls the solution.

Valid range is from 1 through ndf (page 26), the number of
nodal degrees-of-freedom.

$duUl first displacement increment (pseudo-time step) in the next
invocation of the analysis command

$Jd factor relating displacement increment at subsequent time
steps. (optional, default: 1.0)

$minDu $maxDu arguments used to bound the displacement increment (optional,
default: $dU1 for both)

The displacement increment at iterations i, dU(i), is related to the displacement increment at (i-
1), dU(i-1), and the number of iterations at (i-1), J(i-1), by the following:

du(i) = dU(i-1)*3d/J(i-1)
Ui, =Uj 4+ dj

Chapter 24 integrator Command 252

Minimum Unbalanced Displacement Norm

This command is used to construct a Staticlntegrator object of type MinUnbalDispNorm.

integrator MinUnbalDispNorm $dlambdall <$Jd $minLambda $maxLambda>

$dLambdall first load increment (pseudo-time step) at the first iteration in the
next invocation of the analysis (page 256) command.

$Jd factor relating first load increment at subsequent time steps.
(optional, default: 1.0)

$minLambda arguments used to bound the load increment (optional, default:

$maxLambda $dLambdall for both)

The load increment at iterations i, dLambdal(i), is related to the load increment at (i-1),
dLambdal(i-1), and the number of iterations at (i-1), J(i-1), by the following:

dLambdal(i) = dLambdal(i-1)*Jd/J(i-1)

Arc-Length Control

This command is used to construct a Staticlntegrator object of type ArcLength. Arc-length
methods are used to enable the solution algorithm to pass limit points, such as maximum and
minimum loads, and snap-through and snap-back responses. At these limit points, the stability of
the numerical system is dependent on whether the analysis is performed under load or
displacement control. In structural analysis, these limit points are characteristic of cracking of
reinforced concrete and of buckling of shells.

| integrator ArcLength $arclength $alpha
(??7 is this the correct order, at the workshop Frank had it different)

$arclength arclength value
$alpha

SEE FMK

dU.TdU, + o2 dx, = dg?

Chapter 24 integrator Command 253

The equilibrium equation can be written in the from:
glp, =g () - heg p=0

the arc-length method aims to find the intersection of the above equation with s=constant, where
s is the arc-length, defined by:

S=J 1 ds

and

T 2 1 T
ds=Jdp dp+ Ay g p

the scaling parameter v is required because the load contribution depends on the adopted
scaling between the load and displacement terms.

for the arc-length methods, one should replace the differential form of the equation for ds with an
incremental form:

??7?
a= (L"l.p T-J’l'.p + Ak z,.!-'j- q EfT- q ef} _ Af'=0
a= {ﬂp T-ﬂ'.p + ok z,n!-'g- q Ef-T- q ef'} - Af'=0

where Al is the fixed 'radius of the desired intersection.

In the arc-length method the load parameter A becomes a variable, adding one to the n
displacement variables and equations.

Newmark Method

This command is used to construct a Transientintegrator object of type Newmark.

integrator Newmark $gamma $beta <$alphaM $betaK $betaKinit $hetaKkcomm>

$gamma Newmark parameter y

$beta Newmark parameter 3

$alphaM $betaK $betaKinit Arguments to define Rayleigh damping matrix
$betakcomm (optional, default: zero)

The damping matrix D is specified as a combination of stiffness and mass-proportional damping
matrices:

Chapter 24 integrator Command 254

D = $alphaM * M + $betaK * Kcurrent +$betaKinit * Kinit + $hetakcomm * KlastCommit

The mass and stiffness matrices are defined as:
M mass matrix used to calculate Rayleigh Damping

Kcurrent stiffness matrix at current state determination used to calculate
Rayleigh Damping

Kinit stiffness matrix at initial state determination used to calculate
Rayleigh Damping

KlastCommit stiffness matrix at last-committed state determination used to
calculate Rayleigh Damping

Hilbert-Hughes-Taylor

This command is used to construct a Transientintegrator object of type HHT or HHT1.

integrator HHT $gamma <$alphaM $betaK $betaKinit $hetakcomm>

$gamma Newmark parameter y
$alphaM $betaK $betaKinit Arguments to define Rayleigh damping matrix
$betakcomm (optional, default: zero)

The damping matrix D is specified as a combination of stiffness and mass-proportional damping
matrices:

D = $alphaM * M + $betaK * Kcurrent +$betaKinit * Kinit + $betakcomm * KlastCommit

The mass and stiffness matrices are defined as:

M mass matrix
Kcurrent stiffness matrix at current state determination
Kinit stiffness matrix at initial state determination

KlastCommit stiffness matrix at last-committed state determination

Chapter 24 integrator Command 255

256

CHAPTER 25

analysis Command

This command is used to construct the Analysis object (page 229), which defines what time of
analysis is to be performed. The following analysis types are available:

= Static Analysis (page 256) -- solves the KU=R problem, without the mass or damping
matrices.

= Transient Analysis (page 257) -- solves the time-dependent analysis. The time step in this
type of analysis is constant. The time step in the output is also constant.

= Variable Transient Analysis (page 258) -- performs the same analysis type as the Transient
Analysis object. The time step, however, is variable. This method is used when there are
convergence problems with the Transient Analysis object at a peak or when the time step is
too small. The time step in the output is also variable.

All currently-available analysis objects employ incremental solution strategies.

In This Chapter

StatiC ANAIYSIS......vveviiiiiiiiiiiiiiiriiii 256
Transient ANalySiS.......ccuvvvviiiiiiiiiieee e 257
VariableTransient Analysis..........ccccoeevieiii, 258

Static Analysis

This command is used to construct a StaticAnalysis object.

analysis Static

This analysis object is constructed with the component objects previously created by the analyst.
If none has been created, default objects are constructed and used:

Component Object Default object

Chapter 25 analysis Command

257

SolutionAlgorithm
(page 245),
Staticlntegrator (page
251, page 249, page
250, page 252)

NewtonRaphson (page 245) EquiSolnAlgo with a
CTestNormUnbalance (page 242) with a tolerance of 1e-6
and a maximum of 25 iterations

ConstraintHandler
(page 232)

PlainHandler (page 234) ConstraintHandler

DOF_Numberer (page
237)

RCM (page 238) DOF_Numberer

LinearSOE (page 239),
LinearSolver (page
239)

profiled symmetric positive definite (page 240) LinearSOE
and Linear Solver

Integrator

LoadControl Staticlntegrator (page 250) with a constant
load increment of 1.0

Transient Analysis

This command is used to construct a DirectintegrationAnalysis object.

analysis Transient

This analysis object is constructed with the component objects previously created by the analyst.
If none has been created, default objects are constructed and used:

Component Object Default object

SolutionAlgorithm
(page 245),
TransientIntegrator
(page 252, page 254,
page 249, page 253)

NewtonRaphson (page 245) EquiSolnAlgo with a
CTestNormUnbalance (page 242) with a tolerance of 1e-6
and a maximum of 25 iterations

ConstraintHandler
(page 232)

DOF_Numberer (page
237)

LinearSOE (page 239),
LinearSolver (page
239)

PlainHandler (page 234) ConstraintHandler

RCM (page 238) DOF_Numberer

profiled symmetric positive definite (page 240) LinearSOE
and Linear Solver

Chapter 25 analysis Command 258

Integrator Newmark Transientintegrator (page 253) with y=0.5 and
B=0.25

VariableTransient Analysis

This command is used to construct a VariableTimeStepDirectintegrationAnalysis object.

analysis VariableTransient

This analysis object is constructed with the component objects previously created by the analyst.
If none has been created, default objects are constructed and used:

Component Object Default object

SolutionAlgorithm NewtonRaphson (page 245) EquiSolnAlgo with a

(page 245), CTestNormUnbalance (page 242) with a tolerance of 1e-6
TransientIntegrator and a maximum of 25 iterations

(page 252, page 254,
page 249, page 253)

ConstraintHandler PlainHandler (page 234) ConstraintHandler

(page 232)

DOF_Numberer (page | RCM (page 238) DOF_Numberer

237)

LinearSOE (page 239), | profiled symmetric positive definite (page 240) LinearSOE
LinearSolver (page and Linear Solver

239)

Integrator Newmark Transientintegrator (page 253) with y=0.5 and

B=0.25

259

CHAPTER 26

rayleigh command

This command is used to assign damping to all previously-defined elements and nodes:

rayleigh $alphaM $betaK $betaKinit $hetakcomm

The damping matrix D is specified as a combination of stiffness and mass-proportional damping
matrices:

D = $alphaM * M + $betaK * Kcurrent +$betaKinit * Kinit + $bhetakcomm * KlastCommit

The mass and stiffness matrices are defined as:
M mass matrix used to calculate Rayleigh Damping

Kcurrent stiffness matrix at current state determination used to calculate
Rayleigh Damping

Kinit stiffness matrix at initial state determination used to calculate
Rayleigh Damping

KlastCommit stiffness matrix at last-committed state determination used to
calculate Rayleigh Damping

260

CHAPTER 27

eigen Command

This command is used to perform a generalized eigenvalue problem to determine a specified
number of eigenvalues and eigenvectors.

| eigen <$type> $numEigenvalues

$type eigen-value analysis type:
frequency solve: K- A M
generalized solve: K- A M (default)
standard solve: K- & |

$numEigenvalues number of first eigenvalues (1) to be determined

The eigenvectors are stored at the nodes and can be printed out using Node Recorder (page
221) or the Print command (page 264).

261

CHAPTER 28

analyze Command

This command is invoked on the Analysis object constructed with the analysis command (page
256).

| analyze $numincr <$dt> <$dtMin $dtMax $Jd>

$numincr number of load steps
$dt time-step increment.

Required if a transient analysis (page 257) or variable time step
transient analysis (page 258) was specified.

$dtMin $dtMax minimum and maximum time steps

Required if a variable time step transient analysis (page 258)
was specified.

$Jd number of iterations performed at each step

Required if a variable time step transient analysis (page 258)
was specified.

This command RETURNS:
0 successful

<0 unsuccessful

262

CHAPTER 29

dataBase Commands

This command is used to construct a FE_Datastore object.

Currently there is only one type of Datastore object available.

In This Chapter

FileDatastore Commandcoceevvveveiieeiiiinireenneenn, 262

FileDatastore Command

This command is used to construct the FE_Datastore object.

database $type $dbName
$type database type:
File outputs database into a file
MySQL creates a SQL database

BerkeleyDB creates a BerkeleyDB database
$dbName database name.

If the database type is File, the command will save the data into
a number of files, e.g. $dbName.id11 for all ID objects of size 11
that sendSelf() is invoked upon.

The invocation of this command will add the additional commands save and restore to the
OpenSees interpreter to allow users to save and restore model states.

Chapter 29 dataBase Commands 263

save Command

This command is used to save the state of the model in the database.

| save $commitTag

unique identifier that can be used to restore (page 263) the state
at a later time

$commitTag

restore Command

This command is used to restore the state of the model from the information stored in the
database.

restore $commitTag

unique identifier used to restore the state at the model when the

$commitTag
save (page 263) command was invoked

264

CHAPTER 30

Miscellaneous Commands

These are a few additional miscellaneous command used in OpenSees

In This Chapter

print Command.........cccoovieeiiieiiiii e 264
reset CoOmMMAND........coovviiiiiiiiiiiiiee e 265
WIpE COMMANcoooiiiiiiiiiiiie e 265
wipeAnalysis Command ..., 265
loadConst Command............cccccevviviiiiiiiiiiiiiiiieceeeee, 266
getTime ComMmMaNd.........coeeveiiiiiiiiiiieeeee e 266
nodeDisp Command............ccccevvviviiiiiiiiiiiieieeeeeeee 266
video Command ..o, 267

print Command

This command is used to print output.

To print all objects of the domain:

| print <$fileName>

To print node information:

| print <$fileName> -node <-flag $flag> <$nodel $node2 ...>

To print element information:

| print <$fileName> -ele <-flag $flag> <$elel $ele2 ...>

$fileName fileName for printed output (optional, Default: stderr -- screen
dump)
$flag integer flag to be sent to the print() method, depending on the

node and element type (optional)

Chapter 30 Miscellaneous Commands 265

$nodel $node2 ... node tag for selected-node output (optional)
Default: all

$elel sele2 ... element tag for selected-element output (optional)
Default: all

reset Command

This command is used to set the state of the domain to its original state.

reset

The command invokes revertToStart() on the Domain (page 23) object.

wipe Command

This command is used to destroy all constructed objects.

| wipe

This command is used to start over without having to exist and restart the interpreter (page 17).

wipeAnalysis Command

This command is used to destroy all objects constructed for the analysis.

| wipeAnalysis

This command is used to start a new type of analysis. This command does not destroy the
elements (page 146), nodes (page 28), materials (page 108, page 35), etc. It does destroy the
solution strategies: the algorithm (page 245), analysis (page 256), equation solver (page 239),
constraint handler (page 232), etc.

Chapter 30 Miscellaneous Commands 266

loadConst Command

This command is used to invoke setLoadConst() on all LoadPattern (page 214) objects which
have been created up to this point.

loadConst <-time $pseudoTime>

-time $pseudoTime set pseudo time in the domain to $pseudoTime (optional,
default: zero)

getTime Command

This command returns the time in the domain.

| getTime

nodeDisp Command

Returns the displacement or rotation at specified node.

nodeDisp $nodeTag $dof

$nodeTag node tag
$dof degree-of-freedom tag

Valid range is from 1 through ndf (page 26), the number of
nodal degrees-of-freedom. (??7?)

Chapter 30 Miscellaneous Commands 267

video Command

This command is used to construct a TclVideoPlayer object for displaying the images in a file
created by the recorder display (page 227) command.

video -file $fileName -window $windowName

$fileName fileName of images file created by the recorder display (page
227) command

$windowName name of window to be created

The images are displayed by invoking the play (page 267) command.

play Command

This command is used to play the TclVideoPlayer object created by the video (page 267)
command.

play

268

CHAPTER 31

How To....

In this chapter, some examples on how to generate input for OpenSees for specific tasks will be
presented.

In This Chapter

RUN OPENSEES... ittt 269
...Define Units & Constants.............ccceeeeeeeeee e, 272
...Generate Matlab Commandsccceeeeeee. 273
...Define Tcl Procedure..........cccooeeeiii 273
...Read External filescccc e 275
Building The Model...........cccccooiiii 276
Defining OULPULcooveiiiiii e 282
Gravity LOAASuuvvviiiiiiiiiiiiiiiiiiiiiiiinennnennninnnnn. 283
StatiCc ANAIYSISvviiiiiiieeii e 284
Dynamic ANalySiScoovvvviiiiiiiiiieeieeeeeeeeeeeeeeee 286
...Combine Input-File Components............................ 287
...Run Parameter Study.........cccccooviiiiiiiiiieiiniiiin, 288
...Run Moment-Curvature Analysis on Section 289

...Determine Natural Period & Frequency 291

Chapter 31 How To.... 269

Run OpenSees

There are three ways that OpenSees/Tcl commands can be executed:

> Interactive

Commands can be input directly at the propt, as shown in the figure (Win32 version):

Figure 70: Run
OpenSees --
Interactive

SWINNT S pstem32hemd. exe - OpenSees

C:=~>0penSees

OpenSees — Open System For Earthguake Engineering Simulation
Pacific Earthguake Enginesring Research Center — Uersion . .

(c>» Copyright 1992 The Regents of the University of California
All Rights Reserved

model basic —ndm 3 —ndf 6

mass 3 [expr 2808-2-386.41 B. B. B, B. 4.

mass 4 [expr Z2008-2-386.41 6. B. 8. @. @.
uniaxialMaterial ConcreteBl 1 -S006. -8.062 -4088. -0.81
uniaxialMaterial SteelBl 2 GBEBHA. 27048068. 8.1

>
>
>
2
>
5
2
>
>
2
7
5
2
ra

Chapter 31 How To.... 270

» Execute Input File at OpenSees prompt

This method is the most-commonly used one. An external file containing the input commands
can be generated a-priori (inputFile.tcl) and be executed at the OpenSees prompt by using the
source command. The generation of the input script files is presented in this chapter. The file
execution is shown in the figure (Win32 version):

Figure 71: Run
OpenSees -- Source
File

"E C:\openS5ees exe

OpenSees — Open System For Earthguake Engineering Simulation
Pacific Earthqguake Engineering Research Center — Uersion

{c> Copyright 199? The Reﬂents of the University of California
All Rights Reserved

Upeniees > source inputbile.tcl
Unf packGenLinS0E: :set8ize — n 4 nnz 16 1Ual 168

Unf packGenLinS0E: :set8ize — n 4 nnz 16 1Val 168
L]

OpenSees > _

> Batch Mode

The previously-created input file containing the Tcl script commands necessary to execute the
analsis can also be executed at the MS-DOS/Unix prompt, as shown in the figure (Win32

version):

Chapter 31 How To.... 271

Figure 72: Run
OpenSees -- Batch
Mode

VWINHTASwstem32hemd. exe

Microsof t(R> Windows MNTICTM>
(GC» Copyright 1985-1996 Microsoft Corp.

GC:~>0penSees dinputFile.tcl

OpenSeesz — Open System For Earthguake Engineering Simulation
Facific Earthguake Engineeringy Research Center — Uersion 1.1.3

(c?» Copyright 1999 The Regents of the University of California
All Rights Reserved
Umf packGenLinS0E: -set8ize — n 4 nnz 16 1Ual 168
Umf pockGenLinB0Ez tact8isrc — n 41 nn= 16 1Ual 168

[HER-

Chapter 31 How To.... 272

...Define Units & Constants

The OpenSees interpreter does not process units. Units, however, can be used when entering
values if these units are defined previously. The unit definition consists of two parts: the basic
units are defined first, all other units are subsequently defined. The basic units are assigned a
value of one and all OpenSees output is in these units. It is very important that all basic units are
independent of each other. The unit-definition file can contain both metric and Imperial units, as
can the basic units. Hence, the input files may contain mixed units.

Constants, such as © and g can also be defined apriori.

An example of unit and constant definition is given in the following:

> Procedure to define units and constants

----Units&Constants.tcl

setin1.; # define basic units

set sec 1.;

set kip 1.;

set ksi [expr $kip/pow ($in,2)]; # define dependent units

set psi [expr $ksi/1000.];

set ft [expr 12.*$in];

set Ib [expr $kip/1000];

set pcf [expr $Ib/pow($ft,3)];

set ksi [expr $kip/pow($in,2)];

set psi [expr $ksi/1000.];

set cm [expr $in/2.54]; # define metric units
set meter [expr 100.*$cm];

set MPa [expr 145*$psi];

set Pl [expr 2*asin(1.0)]; # define constants
set g [expr 32.2*$ft/pow($sec,2)];

setU 1.el0; # a really large number

setu [expr 1/$U]; # a really small number

Chapter How To.... 273

CHAPTER

...Generate Matlab Commands

Matlab is a common tool for post-processing. Matlab command files can be generated using the
Tcl scripting language. Using this technique ensures that the same analysis parameters are
used.

Here is an example.

» # script to generate .m file to be read by matlab

oo MatlabOutput.tcl

set Xframe 1; # this parameter would be passed in

set fDir "Data/";

file mkdir $fDir; # create directory

set outFilelD [open $fDir/DataFrame$Xframe.m w]; # Open output file for writing

puts $outFileID "Xframe($Xframe) = $Xframe;"; # frame ID

puts $outFileID "Hcol($Xframe) = $Hcol;"; # column diameter
puts $outFileID "Lcol($Xframe) = $Lcol;"; # column length
puts $outFileID "Lbeam($Xframe) = $Lbeam;"; # beam length

puts $outFileID "Hbeam($Xframe) = $Hbeam;"; # beam depth
puts $outFileID "Bbeam($Xframe) = $Bbeam;"; # beam width
puts $outFilelID "Weight($Xframe) = $Weight;" ; # superstructure weight

close $outFilelD

...Define Tcl Procedure

The procedure is a useful tool available from the Tcl language. A procedure is a generalized
funcion/subroutine using arguments. Whenever the Tcl procedure is invoked, the contents of
body will be executed by the Tcl interpreter.

An example of a Tcl procedure is found in RCcircSec.tcl. It defines a procedure which generates
a circular reinforced concrete section with one layer of steel evenly distributed around the
perimeter and a confined core:

----RCcircSec.tcl
by Michael H. Scott

Define a procedure which generates a circular reinforced concrete section

Chapter How To.... 274

with one layer of steel evenly distributed around the perimeter and a confined core.
Formal arguments
id - tag for the section that is generated by this procedure
ri - inner radius of the section
ro - overall (outer) radius of the section
cover - cover thickness
corelD - material tag for the core patch
coverlD - material tag for the cover patches
steellD - material tag for the reinforcing steel
numBars - number of reinforcing bars around the section perimeter
barArea - cross-sectional area of each reinforcing bar
nfCoreR - number of radial divisions in the core (number of "rings")
nfCoreT - number of theta divisions in the core (number of "wedges")
nfCoverR - number of radial divisions in the cover
nfCoverT - number of theta divisions in the cover
Notes
The center of the reinforcing bars are placed at the inner radius
The core concrete ends at the inner radius (same as reinforcing bars)

The reinforcing bars are all the same size

H OH OH OHF OH OH OF OH O OHF OH OH OHF OH O OH OH

The center of the section is at (0,0) in the local axis system
Zero degrees is along section y-axis

proc RCcircSection {id ri ro cover corelD coverlD steelID numBars barArea nfCoreR nfCoreT nfCoverR
nfCoverT} {

section fiberSec $id {
set rc [expr $ro-$cover]; # Core radius
patch circ $corelD $nfCoreT $nfCoreR 0 0 $ri $rc 0 360; # Core patch
patch circ $coverlD $nfCoverT $nfCoverR 0 0 $rc $ro 0 360; # Cover patch
if {SnumBars <=0} {
return
}
set theta [expr 360.0/$SnumBars]; # Angle between bars
layer circ $steellD $numBars $barArea 0 0 $rc $theta 360; # Reinforcing layer

}

This procedure is invoked by the following commands, assuming that all arguments have been
defined previously in the input generation:

source RCcircSection.tcl;

RCcircSection $IDcolFlex $riCol $roCol $cover $IDcore $IDcover $IDsteel SNbCol $AbCol $nfCoreR
$nfCoreT $nfCoverR $nfCoverT

Chapter How To.... 275

NOTE: the file containing the definition of the procedure (RCcircSec.tcl) needs to be sourced
before the procedure is invoked.

...Read External files

External files may either contain Tcl commands or data.

» Common input file

The external file may contain a series of commands that is common in most analyses. One set
of Tcl commands that can be stored in a external file are ones which define units.

An example of an external file that may want to be read within the input commands is the unit-
definition file presented earlier (units&constants.tcl (page 355)).

This file is invoked with the following command:

source units.tcl

» Repeated Calculations

An external file may contain a series of calculations that are repeated. An example of this is a
parameter study:

set Hcolumn 66;
source analysis.tcl
set Hcolumn 78;

source analysis.tcl

The analysis.tcl file contains the commands that set up and execute the entire analysis.
» External Data File

The following commands open a data file (flename=inFilename), read the file row by row and
assign the value of each row to the a single variable (Xvalues). If there are more than one value
in the row, $Xvalues is a list array, and the individual components may be extracted using the
lindex command. The user may change the commands to be exectued once the data-line has
been read to whatever is needed in the analysis.

----ReadData.tcl

if [catch {open $inFilename r} inFilelD] {; # Open the input file and check for error
puts stderr "Cannot open $inFilename for reading"; # output error statement
} else{
foreach line [split [read $inFilelD] \n] {; # Look at each line in the file
if {[llength $line] == 0} {; # Blank line --> do nothing
continue;

} else {

Chapter How To.... 276

set Xvalues $line; # execute operation on read data

}

close $inFilelD; ; # Close the input file

Building The Model

...Define Variables and Parameters

In the Tcl scripting language variables may be used to represent numbers. Once defined, these
variables can be use instead of numbers in Tcl and OpenSees commands. When they are being
recalled, the variables are precedented by the symbol $. If this symbol is not used, the variable
name is interpreted as a string command and an error may result.

A few examples are given:

» MATERIAL PARAMETERS:

---- MaterialParameters.tcl

set fc [expr -4.0*$ksi]; # nominal compressive strength of concrete
set Ec [expr 57*$ksi*sqrt(-$fc/$psi)l; # Concrete Elastic Modulus
set fc1C [expr 1.26394*$fc]; # CONFINED concrete (mander model), max stress

set eps1C [expr 2.*$fc1C/$Ec]; # strain at maximum stress
set fc2C $fc; # ultimate stress

set eps2C [expr 2.*$fc2C/$Ec]; # strain at ultimate stress

set fc1U $fc; # UNCONFINED concrete (parabolic model), max stress
set eps1U -0.003; # strain at maximum stress
set fc2U [expr 0.1*$fc]; # ultimate stress

set eps2U -0.006; # strain at ultimate stress
set Fy [expr 70.*$ksi]; # STEEL yield stress

set Es [expr 29000.*$ksi]; # elastic modulus of steel
set epsY [expr $Fy/$Es]; # steel yield strain

set Fyl [expr 95.*$ksi]; # steel stress post-yield
set epsY1 0.03; # steel strain post-yield

set Fu [expr 112.*$ksi]; # ultimate stress of steel
set epsU 0.08; # ultimate strain of steel

set Bs [expr ($Fu-$Fy)/($epsU-$epsY)/$Es]; # post-yield stiffness ratio of steel

Chapter How To.... 277

set pinchX 1.0; # pinching parameter for hysteretic model

set pinchY 1.0; # pinching parameter for hysteretic model

set damagel 0.0; # damage parameter for hysteretic model

set damage2 0.0; # damage parameter for hysteretic model

set betaMUsteel 0.0; # degraded unloading stiffness for hysteretic material based on MU”(-beta)
set betaMUjoint 0.0; # degraded unloading stiffness for hysteretic material based on MU”(-beta) --

timoshenko value of 0.5

set betaMUph

0.0; # degraded unloading stiffness for hysteretic material based on MU”(-beta) --

timoshenko value of 0.5

setG $U; # Torsional stiffness Modulus
set J 1; # Torsional stiffness of section, place here just to keep with G
set GJ [expr $G*$J]; # Torsional stiffness

» ELEMENT PARAMETERS:

#---—- ElementParameters.tcl

set Hcol
set Lcol
set Hbeam
set Lbeam
set GrhoCol
set Weight
set Bbeam
set Rcol
set Acol
set cover
set IgCol
set lyCol
set [zCol
set IzBeam
set lyBeam

set Abeam

[expr 5.%$ft]; # column diameter

[expr 36*$ft]; # column length

[expr 8.*$ft]; # beam depth

[expr 36.*$ft]; # beam length

0.0125; # column longitudinal-steel ratio

[expr 2000.*$kip]; # superstructure weight

$Hcol; # beam width

[expr $Hcol/2]; # COLUMN radius

[expr $PI*pow($Rcol,2)]; # column cross-sectional area

[expr $Hcol/15]; # column cover width

[expr $PI*pow($Rcol,4)/4]; # column gross moment of inertia, uncracked

$lgCol; # elastic-column properties

$lgCol; # elastic-column properties

[expr $Bbeam*pow ($Hbeam,3)/12]; # beam gross moment of inertia, about horizontal Z-axis
[expr $Hbeam*pow ($Bbeam,3)/12]; # beam gross moment of inertia, about the vertical Y-axis

[expr $Hbeam*$Bbeam*10000]; # beam cross-sectional area, make it very very stiff

define COLUMN section parameters

set NbCol
set AsCol
set AbCol
set riCol
set roCol
set IDcore

set IDcover

20; # number of column longitudinal-reinforcement bars

[expr $GrhoCol*$Acol]; # total steel area in column section

[expr $AsCol/$NbCol]; # bar area of column longitudinal reinforcement
0.0; # inner radius of column section

$Rcol; # outer radius of column section

1; # ID tag for core concrete

2; # ID tag for cover concrete

Chapter How To.... 278

set IDsteel 3; # ID tag for steel

set nfCoreR 8; # number of radial fibers in core

set nfCoreT 16; # number of tangential fibers in core

set nfCoverR 2; # number of radial fibers in cover

set nfCoverT 16; # number of tangential fibers in cover

set IDcolFlex 2; # ID tag for column section in flexure, before aggragating torsion
set IDcolTors 10; # ID tag for column section in torsion

set IDcolSec 1; # ID tag for column section

set IDcolTrans 1; # ID tag for column transformation, defining element normal

set IDbeamTrans 2; # ID tag for beam transformation, defining element normal
setnp 5; # Number of integration points

» GRAVITY PARAMETERS:

--mm- GravityParameters.tcl

define GRAVITY paramters

set Pdl [expr $Weight/2]; # gravity axial load per column

set Wbeam [expr $Weight/$Lbeam]; # gravity dead load distributed along beam length
set Mdl [expr $Wbeam*pow ($Lbeam,2)/12]; # nodal moment due to distributed dI

set Mass [expr $Weight/$g]; # mass of superstructure

set Mnode [expr $Mass/2]; # nodal mass for each column joint

» ANALYSIS PARAMETERS:

- AnalysisParameters.tcl

set DxPush [expr 0.1*$in]; # Displacement increment for pushover analysis

set DmaxPush [expr 0.05*$Lcol]; # maximum displamcement for pushover analysis
set DtAnalysis [expr 0.005*$sec];# time-step Dt for lateral analysis

set DtGround [expr 0.02*$sec];# time-step Dt for input grond motion

set TmaxGround [expr 35 *$sec]; # maximum duration of ground-motion analysis

set gamma 0.5; # gamma value for newmark integration

set beta 0.25 # beta value for newmark integration

...Build Model and Define Nodes

This example shows how to set up the geometry of the structure shown in the Figure (page 279).

These commands are typically placed at the beginning of the input file, after the header remarks.

construct model builder using the model Command (page 26)
wipe; # clear data from past analysis

model basic -ndm 3 -ndf 6; # modelbuilder: basic (page 26), ndm= no. dimensions, ndf= no.

Chapter How To.... 279

Define nodes ------ frame is in X-Y plane (X-horizontal, Y-vertical) using the node Command (page 28)
node 1 O. 0. 0.; # base of left column

node 2 360. O. 0.;# base of right columnn

node 3 0. 120. 0.;# top of left column

node 4 360. 120. O, # top of right columnn

Define Boundary Conditions and nodal mass using the fix Command (page 30) ! 1: restrained, O: released
fix 1 111111,

fix 2 111111,

fix 3011110 -mass] [expr2000/2/386.4]0. 0. 0. 0. 0.

fix 4011110

define mass at node 4 using the mass Command (page 29):

mass 4 [expr 2000/2/32.2/12] 0. 0. 0. 0. 0.

NOTE: The second command assigning the mass of a specific node will override any previous
mass assignments to that node.

2000 kip

elastic heam
prismatic

inelastic pier
circular
circular

inelastic pier
100

...Build Model and Define Nodes using Variables

This example sets up the geometry of the cantilever column shown in the Figure (page 279) --
using variables.

R Build&Nodes.tcl

wipe; # clear data from past analysis

model basic -ndm 3 -ndf 6;

define units and constants

source units.tcl; # if contained in external file

Define nodes ------ frame is in X-Y plane (X-horizontal, Y-vertical) using the node Command (page 28)

node 1 O. 0. 0.; # base of left column

Chapter How To.... 280

node 2 $Lbeam O. 0.; # base of right columnn

node 3 O. $Lcol 0.; #top of left column

node 4 $Lbeam $Lcol 0.; # top of right columnn

Define Boundary conditions using the fix Command (page 30) ! 1: restrained, O: released
fix 1 111111, # fully-fixed support

fix 2111111,

fix 3011110 -mass$MassO. 0. 0. 0. 0,

fix 4 011110;

define the mass at node 4 using the mass Command (page 29):

mass 4 $Mass 0. 0. 0. 0. 0.;

NOTE: The second command assigning the mass of a specific node will override any previous
mass assignements to that node.

...Define Materials

The following is an example on how to define materials for reinforced-concrete structures. The
examples assume that the variables have been defined apriori. If these commands are placed
into an external file they can be used in a number of analyses without significant modifications
using the source command.

- MaterialsRC.tcl

set ConcreteMaterialType "inelastic"; # options: "elastic","inelastic"

set SteelMaterialType "hysteretic"; # options: "elastic","bilinear","hysteretic"
CONCRETE

if {$ConcreteMaterial Type =="elastic"} {
uniaxialMaterial Elastic $IDcore $Ec
uniaxialMaterial Elastic $IDcover $SEc
}
if {$ConcreteMaterialType == "inelastic"} {
uniaxialMaterial Concrete01 $IDcore $fc1C $eps1C $fc2C $eps2C; # Core concrete
uniaxialMaterial Concrete01 $IDcover $fc1U $eps1U $fc2U $eps2U; # Cover concrete
}
STEEL
if {$SteelMaterialType =="elastic"} {
uniaxialMaterial Elastic $IDsteel $Es
}
if {$SteelMaterialType == "bilinear"} {
uniaxialMaterial Steel01 $IDsteel $Fy $Es $Bs

}
if {$SteelMaterialType == "hysteretic"} {

Chapter How To.... 281

uniaxialMaterial Hysteretic $IDsteel $Fy $epsY $Fyl $epsY1 $Fu $epsU -$Fy -$epsY -$Fy1l -$epsY1l -
$Fu -$epsU $pinchX $pinchY $damagel $damage? $hetaMUsteel

}

...Define Elements

- ELEMENTS.tcl

COLUMNS

set ColumnType "inelastic"; # options: "rigid" "elastic" "inelastic"

set np 5; # number of integration points

source RCcircSection.tcl; # proc to define circular fiber section for flexural characteristics

RCcircSection $IDcolFlex $riCol $roCol $cover $IDcore $IDcover $IDsteel SNbCol $AbCol $nfCoreR
$nfCoreT $nfCoverR $nfCoverT

uniaxialMaterial Elastic $IDcolTors $GJ; # Define torsional stiffness
section Aggregator $IDcolSec $IDcolTors T -section $IDcolFlex; # attach torsion and flexure
geomTransf Linear $IDcolTrans 001; # Linear: no second-order effects
if {$ColumnType =="rigid"} {
set $lyCol [expr $lyCol*$lyCol];
set $IzCol [expr $IzCol*$IzCol];
element elasticBeamColumn 1 1 3 $Acol $Ec $G $J $lyCol $IzCol $IDcolTrans
element elasticBeamColumn 2 2 4 $Acol $Ec $G $J $lyCol $IzCol $IDcolTrans
}
if {$ColumnType == "elastic"} {
element elasticBeamColumn 1 1 3 $Acol $Ec $G $J $lyCol $IzCol $IDcolTrans
element elasticBeamColumn 2 2 4 $Acol $Ec $G $J $lyCol $I1zCol $IDcolTrans
}
if {$ColumnType == "inelastic"} {
element nonlinearBeamColumn 1 1 3 $np $IDcolSec $IDcolTrans
element nonlinearBeamColumn 2 2 4 $np $IDcolSec $IDcolTrans
}
BEAM
geomTransf Linear $IDbeamTrans 001; # define orientation of beam local axes

element elasticBeamColumn 3 34 $Abeam $Ec $G $J S$lyBeam $lzBeam $IDbeamTrans;

Chapter How To.... 282

Defining Output

...Define Analysis-Output Generation

Different output may be generated depending on whether the analysis is static or dynamic. Here
is an example:

- Output.tcl
set fDir "Data/";

file mkdir $fDir; # create directory
set ANALYSIS "Static"; # this variable would be passed in
set IDctrINode 3; # this variable would be passed in
if {SANALYSIS == "Static"} {
Record nodal displacements -NODAL DISPLACEMENTS
set fDstatFrame DStatFrame[expr $Xframe]
set iNode "$IDctrINode"”; # can add node numbers to this list
foreach xNode $iNode {
set fNode Node$xNode
set Filename $fDir$fDstatFrame$fNode
recorder Node $Filename.out disp -time -node $xNode -dof 1 6;
}; # end of xNode
Record element forces and deformations - COLUMNS
setiEL "1 2"
set fFstatFrame FStatFrame[expr $Xframe]
set fDstatFrame DStatFrame[expr $Xframe]
foreach xEL $IiEL {
set fEI El[expr $xEL]
set iSEC "1 3 5"
set Ffilename $fDir$fFstatFrame$fEl
recorder Element $xEL -time -file $Ffilename.out localForce
foreach xSEC $iSEC {
set fSec Sec[expr $XSEC]
set Dfilename $fDir$fDstatFrameSfEIfSec
recorder Element $xEL -file $Dfilename.out -time section $xSEC deformations
h # end of XxSEC
h # end of XEL

h # end of static analysis

Chapter

How To....

283

set ANALYSIS "Dynamic"; # this variable would be passed in
set GroundFile "ElCentro"; # this variable would be passed in
if {SANALYSIS =="Dynamic"}{
set fDDynaFrame DDynaFrame[expr $Xframe]
set fGroundFile $GroundFile
set Filename $fDir$fDDynaFrame$fGroundFile
Record nodal displacements
recorder Node $Filename.out disp -time -node $IDctrINode -dof 1

}; # end of dynamic analysis

...Define Data-Plot During Analysis

- RecorderPlot.tcl

set pfile "Data/node.out"”;
recorder Node $pfile disp -time -node $IDctrINode -dof 1
set title PushFrame$Xframe;

recorder plot $pfile $title 0 0 350 350 -columns 2 1

set pfile "Data/Elem1.out";
set title PushElem1,
recorder Element 1 -time -file $pfile globalForce

recorder plot $pfile $title 400 0 350 350 -columns 2 1

Gravity Loads

...Define Gravity Loads

- DefineGravity.tcl

set GravSteps 10

pattern Plain 1 Linear {
load 3 0.-$Pdl 0. 0. 0. -$Mdl; #Fx Fy Fz Mx My Mz
load 4 0.-$Pdl 0. 0. 0. +$Mmdl

}

system UmfPack; # solution procedure, how it solves system of equations

Chapter How To.... 284

constraints Plain; # how it handles boundary conditions, enforce constraints

test NormDisplincr 1.0e-5 10 0;

algorithm Newton;

numberer RCM; # renumber dof's to minimize band-width
integrator LoadControl [expr 1./$GravSteps] 1 [expr 1./$GravSteps] [expr 1./$GravSteps]
analysis Static

initialize; # this command will not be necessary in new versions of OpenSees

...Run Gravity Analysis

- RunGravity.tcl
analyze $GravSteps # run gravity analysis
loadConst -time 0.0; # keep gravity load and restart time -- lead to lateral-load analysis

Static Analysis

...Define Static Pushover Analysis

The following commands are executed once the gravity loads have been defined and applied

R DefinePushover.tcl

set analysis "STATIC"; # this variable would be passed in

the following settings do not need to be here if they have been defined in the gravity analysis
system UmfPack;

constraints Plain;

test NormDisplincr 1.0e-5 10 0;

algorithm Newton;

numberer RCM; analysis Static;

Hoommmmemeee
set PUSHOVER "DispControl”; # run displacement-controlled static pushover analysis
pattern Plain 2 Linear {
load $IDctrINode 100.00.00.00.00.00.0
}

if {fPUSHOVER == "LoadControl"} {
integrator LoadControl 0.24 0.12.0
set Nsteps 20

Chapter How To.... 285

} elseif {$PUSHOVER == "DispControl"} {
integrator DisplacementControl $IDctrINode 1 $DxPush 1 $DxPush $DxPush
set Nsteps [expr int($DmaxPush/$DxPush)]

} else {
puts stderr "Invalid PUSHOVER option*"

...Run Static Pushover Analysis

While running a static pushover analysis may take a single command, convergence may not
always be reached with a single analysis-parameter setting. A Tcl script which tries different
solutions can be incorporated to improve the chances of convergence.

» No convergence issues

The following command executes the static push-over analysis when convergence is not a
problem.

- S RunPushover.tcl

analyze $Nsteps

> Convergence attemps

The following Tcl script should be incorporated in the input file to run a number of attempts at
convergence:

R RunPushover2Converge.tcl

set ok [analyze $Nsteps]
if analysis fails, try the following, performance is slowed inside this loop
if {$ok =0} {

set ok O;

set maxU $DmaxPush

set controlDisp 0.0;

test NormDisplncr 1.0e-8 20 0

while {$controlDisp < $maxU && $ok == 0} {

set ok [analyze 1]

set controlDisp [nodeDisp $IDctrINode 1]

if {$ok != 0} {
puts "Trying Newton with Initial Tangent .."
test NormDisplincr 1.0e-8 1000 1

algorithm Newton -initial

Chapter How To....

286

set ok [analyze 1]

test NormDisplincr 1.0e-8 20 0
algorithm Newton
}
if {$ok !=0} {
puts "Trying Broyden .."
algorithm Broyden 8
set ok [analyze 1]
algorithm Newton
}
if {$ok =0} {
puts "Trying NewtonWithLineSearch .."
algorithm NewtonLineSearch .8
set ok [analyze 1]
algorithm Newton
}
h # end while loop
b # end original if $ok!=0 loop
if {$ok =0} {
puts "DispControl Analysis FAILED"
puts "Do you wish to continue y/n ?"; # include if want to pause at analysis failure
gets stdin ans; # not recommended in parameter study
if {$ans =="n"} done; # as it interrupts batch file
}else {
puts "DispControl Analysis SUCCESSFUL"
}

Dynamic Analysis

...Define Dynamic Ground-Motion Analysis

DefineDynamic.tcl

wipeAnalysis

system UmfPack

Chapter How To.... 287

constraints Plain

test NormDisplincr 1.0e-8 20 0;

algorithm Newton

numberer RCM

integrator Newmark $gamma $bheta $alphaM $betaK $hetaKcomm $hetaKinit;
analysis Transient

set Nsteps [expr int($TmaxGround/$DtAnalysis)];

read a PEER strong motion database file, extracts dt from the header and converts the file
to the format OpenSees expects for uniform ground motions

source ReadSMDFile.tcl;

set dir "GMfiles/"

set outFile dirGroundFile.g3; # set variable holding new filename

set inFile dirGroundFile.th

ReadSMDFile $inFile $outFile dt; # convert the ground-motion file

set GMfatt [expr $g*$GMfact]; # data in input file is factor of g

set Gaccel "Series -dt $dt -filePath $outFile -factor $GMfatt"; # time series information

pattern UniformExcitation 2 1 -accel $Gaccel; # create uniform excitation

...Run Dynamic Ground-Motion Analysis

- S RunDynamicGM.tcl

analyze $Nsteps $DtAnalysis;

...Combine Input-File Components

A series of Tcl-script input-file components have been presented in this section. These
components can be combined to perform a static lateral-load analysis of the portal frame under
consideration using the source command:

--—--FullStaticAnalysis.tcl
wipe

model basic -ndm 3 -ndf 6
source Units&Constants.tcl
source MaterialParameters.tcl

source ElementParameters.tcl

Chapter How To.... 288

source GravityParameters.tcl
source AnalysisParameters.tcl
source MatlabOutput.tcl
source BuildModel&Nodesw/Variables--portal.tcl
source materialsRC.tcl

source RCcircSec.tcl

source Elements.tcl

source Output.tcl

source DefineGravity.tcl
source runGravity.tcl

source DefinePushover.tcl

source RunPushover2Converge.tcl

This method of breaking the input file into components is convenient when the size of the
problem does not permit manageability of a single input file.

...Run Parameter Study

In a parameter study, the same analysis is performed on a number of models where only certain
properties are varied, such as column height. There are two common types of parameter studies
shown in this section: series and parallel parsing.

The following diagram illustrates the difference between series and parallel parsing for two
parameter lists [1 2 3] and [A B C]:

set 1 set? @ @ E

1 A
. g :
3 B parsing In series

parameters Mgl BB B—d

parsing in parallel

» Parsing in series
In this type of study, one parameter is held constant, while the others are parsed in sequence:

- ParameterStudySeries.tcl

source units.tcl

set iHcol "[expr 5.*$ft] [expr 6.5*$ft]"; # column diameter

Chapter How To.... 289

set iLcol "[expr 36*$ft] [expr 42*$ft]"; # column length
set Xframe O; # initialize Frame Counter, used in output
foreach Hcol $iHcol {
foreach Lcol $iLcol {
set Xframe [expr $Xframe+1];
set ANALYSIS "Static";
source Analysis.tcl*
}; # close iLcol loop

}; # close iHcol loop

*NOTE: The file Analysis.tcl contains all the model and analysis commands.

» Parsing in parallel

In this study, the ith elements of each parameter list are considered together, resulting in fewer
study models.

---m- ParameterStudyParallel.tcl

source units.tcl

set iHcol "[expr 5.*$ft] [expr 6.5*$ft]"; # column diameter
set iLcol "[expr 36*$ft] [expr 42*$ft]"; # column length
set Xframe O; # initialize Frame Counter, used in output

foreach Hcol $iHcol Lcol $iLcol{
set Xframe [expr $Xframe+1];
set ANALYSIS "Static";
source Analysis.tcl*

}; # close iHcol & iLcol loop

*NOTE: The file Analysis.tcl contains all the model and analysis commands.

...Run Moment-Curvature Analysis on
Section

A procedure for performing section analysis (only does moment-curvature, but can be easily
modified to do any mode of section reponse):

[MPhiProc.tcl

Chapter How To....

290

Sets up a recorder which writes moment-curvature results to file

make sure the node and element numbers are not used elsewhere in the model

this procedure is set up for a 3-D problem: 3 dimensions/node, 6 dof/node

Arguments

#
#
#
#

secTag -- tag identifying section to be analyzed
axialLoad -- axial load applied to section (negative is compression)
maxK -- maximum curvature reached during analysis

numincr -- number of increments used to reach maxK (default 100)

proc MomentCurvature {secTag axialLoad maxK {numincr 100} } {

node 1001 0.0 0.0 0.0; # Define two nodes at (0,0)

node 1002 0.0 0.0 0.0

fix 10011111 1 1, # Fix all degrees of freedom except axial and bending
fix 1002011110

element zeroLengthSection 2001 1001 1002 $secTag

recorder Node Mphi.out disp -time -node 1002 -dof 6;# output moment & curvature

integrator LoadControl 0 1 0 0; # Define analysis parameters

system SparseGeneral -piv; # Overkill, but may need the pivoting!
test NormUnbalance 1.0e-9 10

numberer Plain;

constraints Plain;

algorithm Newton;

analysis Static;

pattern Plain 3001 "Constant" {
load 1002 $axialLoad 0.0 0.0 0.0 0.0 0.0
}; # Define constant axial load

analyze 1; # Do one analysis for constant axial load

pattern Plain 3002 "Linear" {

load 1002 0.0 0.00.00.00.01.0
}; # Define reference moment
set dK [expr $maxK/$numincr]; # Compute curvature increment
Use displacement control at node 1002 for section analysis, dof 6
integrator DisplacementControl 1002 6 $dK 1 $dK $dK

analyze $numincr; # Do the section analysis

Chapter How To.... 291

When including this procedure, ensure that the node and element numbers used by it are not
used elsewhere in the OS model.

The above procedure may be incorporated into the static pushover analysis file:

----MomentCurvature.tcl

wipe

model basic -ndm 3 -ndf 6
source Units&Constants.tcl
source MaterialParameters.tcl
source ElementParameters.tcl
source GravityParameters.tcl
source materialsRC.tcl
source RCcircSec.tcl

RCcircSection $IDcolSec $riCol $roCol $cover $IDcore $IDcover $IDsteel $NbCol $AbCol $nfCoreR
$nfCoreT $nfCoverR $nfCoverT

source MPhiProc.tcl

set phiYest [expr $epsY/(0.7*$Hcol)]; # estimate yield curvature
set axialLoad -$Pdl; # define axial load -- +tension in Mom-curv analysis
set maxK [expr 20*$phiYest]; # maximum curvature reached during analysis

MomentCurvature $IDcolSec $axialLoad $maxK;

...Determine Natural Period & Frequency

The natural period and frequency of the structure can be determined at any point during the
analysis using the eigen (page 260) command. In turn, these quantities can be stored as
variables and used in defining analysis parameters, such as rayleigh-damping parameters:

o PeriodFreq&Damping.tcl
determine Natural Period, Frequency & damping parameters for SDOF
set $xDamp 0.02; # damping ratio (0.02-0.05-typical)

set lambda [eigen 1]

set omega [expr pow($lambda,0.5)]

set Tperiod [expr 2*$Pl/$omegal]; # period (sec.)

puts $Tperiod

set alphaM 0; # stiffness-prop. RAYLEIGH damping parameter; D = alphaM*M
set betaK 0; # stiffness proportional damping; +beatK*KCurrent

set betaKkcomm [expr 2*$xDamp/$omegal; # mass-prop. RAYLEIGH damping parameter;

Chapter How To.... 292

+betaKcomm*KlastCommitt

set betaKinit 0; # initial-stiffness proportional damping +beatKinit*Kini

293

CHAPTER 32

Getting Started with OpenSees

Under the NEESgrid support, a Getting Started with OpenSees
(http://peer.berkeley.edu/~silvia/OpenSees/gettingstarted/) document has been produced.

In This Chapter

INErOAUCTION. ... 294
Download OPENSEESc.evviieiiieeiiiiiiiiieieee e 295
RUN OPENSEES.....cciiiiiiic e 297
Problem Definitioncccccoi 301
Model BUIldercoovvvviiiiiiiiiee e 302
NOAES ..o 303
Elements ... 305
RECOIAEIS ... 306
Summary of Model-Building Input File 306
Loads and AnalysSiscccccevvviiiiiiie 309
Gravity LOAASuvvvviviiiiiiiiiiiiiiiiiiiinsnenneennnnnnnn. 311
Summary of Gravity Loads..........cccccevviiiiviiiiieeennnnns 314
Lateral Loads -- Static Pushover..................c...co.o.. 315
Lateral Loads -- Cyclic Lateral Load............c.c.vvunnn... 316

Lateral Loads -- Dynamic ground motion 317

Chapter 32 Getting Started with OpenSees 294

Introduction

Modern earthquake engineering utilizes modeling and simulation to understand the behavior and
performance of systems during earthquakes. With the support of the National Science
Foundation, the Pacific Earthquake Engineering Research Center (PEER) has developed the
Open System for Earthquake Engineering Simulation, OpenSees for short, as a software
platform for research and application of simulation for structural and geotechnical systems. The
OpenSees software framework uses object-oriented methodologies to maximize modularity and
extensibility for implementing models for behavior, solution methods, and data processing and
communication procedures. The framework is a set of inter-related classes, such as domains
(data structures), models, elements (which are hierarchical), solution algorithms, integrators,
equation solvers, and databases. The classes are as independent as possible, which allows
great flexibility in combining modules to solve simulation problems for buildings and bridges,
including soil and soil-structure-foundation interaction, and most recently including reliability
computational modules. The open source software is managed and made available to users
and developers through the OpenSees website at http://opensees.berkeley.edu
(http://opensees.berkeley.edu).

The software architecture and open-source approach for OpenSees provide many benefits to
users interested in advanced simulation of structural and geotechnical systems with realistic
models of nonlinear behavior. First, the modeling approach is very flexible in that allows
selection and various combinations of a number of different element formulations and material
formulations, along with different approximations of kinematics to account for large-
displacements and P-[0 effects. As an open-source project, developers and researchers are
using the extensible features of the software architecture to add additional capability. A second
advantage is that there is a wide range of solution procedures and algorithms that the user can
adapt to solve difficult nonlinear problems for static and dynamic loads. Another feature is that
OpenSees has a fully programmable scripting language for defining models, solution
procedures, and post-processing that can provide simple problem solving capability, as
illustrated in this manual, or very sophisticated modeling and parameters studies of large,
complex systems. Finally, OpenSees provides a flexible interface to computer resources,
storage and databases, and network communication to take advantage of high-end computing
systems. Structural and geotechnical models can be analyzed from desktop PC's to parallel
computers within OpenSees.

As an advanced platform for computational simulation, OpenSees provides an important
resource for the National Science Foundation-sponsored George E. Brown, Jr. Network for
Earthquake Engineering Simulation (NEES (http://www.nees.org)), and it has been adopted by
NEESgrid (http://www.neesgrid.org) System Integration project as the NEES simulation
component. The NEESgrid decision to utilize OpenSees and adapt it to interface with other
NEESgrid resources provides an important capability for NEES researchers and users. The
modular design of OpenSees means that it can be customized for the integrating physical and
computation simulation through data repositories, visualization, and hybrid control for advanced
experimental methods, all of which meet important NEES objectives.

Chapter 32 Getting Started with OpenSees 295

Open source software, such as OpenSees, requires community support and participation. The
objective of this “Getting Started” manual is to provide an introduction so that users of OpenSees
can obtain, install, and begin using the software to solve problems.

Download OpenSees

To download and install OpenSees the user is required to download both the OpenSees and
Tcl/Tk packages. The OpenSees and Tcl/Tk packages can both be downloaded from the
OpenSees binaries webpage http://opensees.berkeley.edu/binaries.html. This page can be
found using the quick links pull down menu from any of the OpenSees web pages. The binaries
download page will be similar to that shown below.

Tpen'sEy = hnesme wie = Mociis | s

e . Bk A _‘ﬁ T e e R Iﬁ ,;rir i uﬁl

Tk Fowaal Reuad

DM aine Wbechiabs @izl uua b, o noakeag

- i, - el
Open Syslem for Earthquake Enginesring Simulation |
@mm* i

Pagific Eanhquake Eninee ring Bescanch Caarer

« Main Paon DeenSces Excortable Distribution

v Aboul

v Projecty _Ir_:l}l.'IISI.‘L"\-.'.‘iI.‘LI.II.ii‘\'I.'S Tor Winckaws S8 0RTHD ap: weailahle Gar dow ko,
b cnrnend errien <l OlpenSens has e leskal aml i peoimilly dlahlbe. Heseser,

» UsnerPages

A R NN CHET Trebk s When mnring o new ookl rarthe risime Fer
s Prrait o A1 T SCI W W SITARER SO CUmMES Fra i PACCIRAE 1 VANCIE 1ESsEe

+ Esamules Lognds hesied By Oponiais. And plerie Spon any hags veu omd! Uha, of ootrss,
+ Erressndrs is [whiok neason wo meke Bese binarics available,

+ Message Boerd

ns 15as Tel (T ora f e -
 Bavaloagr D o= THpenSecs nses Tel TR 0 general popess seAping lanpaae than we hoce orended

wh camreaned s fer Cipentess. I0E neeesaany B desnliead o 1200 rarhe TelfTk

INKTErerer
* EAl The Lislskep is dorw nivad the fwo Gkee blew . The Ored Gle ozip Gk comlaining te
» Related Links CnprenSees savculable, Tle sooond Ok i 2 sell-ietalling eaecolsbk: Gr ToLTE

Far thar rer thase af penn wha have dewnlnades before YOI WIEE HAVETO
IS PATLE T2 TR LIHEARIES ARIEHBARRE BRI BS AGATM This s eeanse
waz e upgradied e TelTh Yerion E4 .1

[LA Wl s ek
Bechuss A0 fOpunSuel 50000 |WARE15

Adbar covnluacling G TolTE carvulabde you will mewd aoun e insidl the TLL's
anneuur cempuler. During this *U.]. it il B eekoaed woens koo install e fles.
Tumenny me deflr s Coael. Trls essemlil Thar yom charpe this re " COFTogram
Fllsil ol dnnng the comse oribe matallanen Hovom s onoermr messane mohe
arte, "0 anmod 11u:| AN yen havwe kipped this srep andd mse rensiall el i
Pz lial wow wetl zeobiably iew b uninedall e sersocn vou jus!metalkd Ll

Funally . bovale Ui epenuees . wne in g convenicnd diveckoy, [Lis abelsalle ke
ST DI s P 0000 shell and vom are weady moea!

B b A FE] ool e ol

Chapter 32 Getting Started with OpenSees 296

At this page the user is required to download two files OpenSees.X.X.X.exe and tcl/tk Y.Y.Y.
This can be done by selecting (clicking) on the links located in the box labeled DOWNLOAD
Windows Binaries.

The file downloaded by clicking on the OpenSees.X.X.X.exe link is a zip file, from which the
OpenSees.X.X.X.exe file can be extracted using your favorite extractor. The user can place this
executable anywhere they wish. It is recommended to place it in a directory near where all your
scripts will be stored.

The file downloaded by clicking the tcl/tk Y.Y.Y link is an installer for Tcl/Tk. By clicking on the
file the user is brought through a series of screens. The first screen shows the package
information for Y.Y.Y, the second screen has the license agreement, you must accept the
license to proceed with the installation. The third screen specifies the installation mode and
location. Here the user must change the default installation location from C:/Tcl to C:/Program
Files/Tcl (there is a space between Program and Files), as shown in the image below.

=10l x|

Fleaze speciy ingtallation directory and mode.

— Inztallation mode

£ Inztall for curent user only

% |pztall for all uzers [requires Administrative privileges]

— Reqgisty Settings

W Add ' tcl to pour executable path extensions [PATHEXT]

A ct’ ve Tcl il Agzociate ‘b extenzion to ActiveT ol

['tcl' iz automatically aszociated]

www.ActiveState.com C:/Program Flles/Tel E!

¢ Back | Mext » | Caticel |

Chapter 32 Getting Started with OpenSees 297

This is the only change the user must make. User now just keeps selecting Next until done.

Run OpenSees

There are three ways that OpenSees/Tcl commands can be executed:

» Interactive
Commands can be input directly at the propt, as shown in the figure (Win32 version):

AWINNTSystem32%cmd. exe - OpenSees

C:~>0penSees
OpenSees — Open System For Earthguake Engineering Simulation
Pacific Earthguake Engineesring Research Center — Uersion
{c) Copyright 199? The Regents of the University of California
All Rights Reserved

model basic —-ndm 3 —ndf 6
node 1 W. W. H.
node 2 368. @. BA.

mass 3 [expr Z600.-2-386.41 6. B. B. B. B.

» mass 4 [expr ZB08-2-386.41 6. B. B. 6. B.
uniaxialMaterial Concretedl 1 -506008. -B.082 -4PBR. -0.81
uniaxialMaterial Steell 2 6BEBHA. 2709800H. @.1

Chapter 32 Getting Started with OpenSees 298

Figure 73: Run
OpenSees --
Interactive

Chapter 32 Getting Started with OpenSees 299

» Execute Input File at OpenSees prompt

This method is the most-commonly used one. An external file containing the input commands
can be generated a-priori (inputFile.tcl) and be executed at the OpenSees prompt by using the
source command. The generation of the input script files is presented in this chapter. The file
execution is shown in the figure (Win32 version):

Figure 74: Run
OpenSees -- Source
File

"E C:\openS5ees exe

OpenSees — Open System For Earthguake Engineering Simulation
Pacific Earthqguake Engineering Research Center — Uersion

{c> Copyright 199? The Reﬂents of the University of California
All Rights Reserved

Upeniees > source inputbile.tcl
Unf packGenLinS0E: :set8ize — n 4 nnz 16 1Ual 168

Unf packGenLinS0E: :set8ize — n 4 nnz 16 1Val 168
L]

OpenSees > _

> Batch Mode

The previously-created input file containing the Tcl script commands necessary to execute the
analsis can also be executed at the MS-DOS/Unix prompt, as shown in the figure (Win32

version):

Chapter 32 Getting Started with OpenSees 300

Figure 75: Run
OpenSees -- Batch
Mode

VWINHTASwstem32hemd. exe

Microsof t(R> Windows MNTICTM>
(GC» Copyright 1985-1996 Microsoft Corp.

GC:~>0penSees dinputFile.tcl

OpenSeesz — Open System For Earthguake Engineering Simulation
Facific Earthguake Engineeringy Research Center — Uersion 1.1.3

(c?» Copyright 1999 The Regents of the University of California
All Rights Reserved
Umf packGenLinS0E: -set8ize — n 4 nnz 16 1Ual 168
Umf pockGenLinB0Ez tact8isrc — n 41 nn= 16 1Ual 168

[HER-

Chapter 32 Getting Started with OpenSees 301

Problem Definition

A portal frame will be used to demonstrate the OpenSees commands. A structural model will be
defined first. Subsequently, a number of static and dynamic analyses will be defined and
implemented.

The structural model consists of the planar portal frame shown in the figure below:

Figure 76: Getting
Started -- Problem
Definition, Geometry

YYYVYYY 't_ #B# v 1000kin GEOMETRY
L B W -5

1} 1]
} EL |
T ¢

L. 1L

42 section A-A section B-B

Ly
|—l':l=-

The columns and beam will be modeled as elastic elements. At a more advanced level, these
elements can be replaced by more refined element models.

In the analysis phase, the frame will be subjected to three different load cases:
1 DISPLACEMENT-CONTROLLED LATERAL PUSHOVER,;

2 DISPLACEMENT-CONTROLLED REVERSED CYCLIC LATERAL LOADING,;
3 DYNAMIC GROUND-MOTION-INPUT TRANSIENT ANALYSIS.

Chapter 32 Getting Started with OpenSees

302

In all cases, however, the frame will be subjected to constant static gravity loads:

gravity load

latefal |2 4

By

LOAD CASE 1:

DISPLACEME NT-CONTROLLED LATERAL PUSHOVER

A lateral LOAD ofincreasing magnitude i imposed at nodes 3 and
4 until a desired maximum lateral digplacement iz reached at node
3. Thiz iz a =static analysis.

LOAD CASE Z:

DISPLACEME NT-CONTROLLED REVER SED CYCLIC LATERAL
LOADING

A lateral LOAD iz applied at nodes 3 and 4 =uch that a predefined
dizplacement history iz achieved at node 3. Thiz iz a static
analy=i=. The dizplacement higtory is shown in the figure:

T 1.0

| _1 .uH

IDEl:I’étep

displacemant

gravity load
TITITIEIL
bhdhadsdd

pd o]

ground acoeleration

LOAD CASE 3

DYNAMIC GROUND-MOTIONANPUT TRANSIENT AMNALYSIS

A uniform acceleration history iz imposed at all nodes constrained

in the horzontal x-direction (nodes 1& 2). The accelemtion history
iz predefined. Thiz iz a tansient [dynamic) anahsis. A schematic of
the acceleration history iz shown in the figure:

accaelaration

Model Builder

Defining the model builder expands the Tcl command library to include OpenSees-specific

commands, such as node and element definition, etc. Currently, there is only one model builder
available, basic model builder (page 26), this is the model builder that includes all the commands

presented in this library.

The model builder also defines the number of dimensions (ndm) and degrees of freedom per

node (ndf):

| model BasicBuilder -ndm $ndm <-ndf $ndf>

For a 2-D problem, you really only need three degrees of freedom at each node, the two

translations in the plane and the rotation about the plane's normal:

| model basic -ndm 2 -ndf 3

Chapter 32 Getting Started with OpenSees 303

Nodes
At this point the user needs to decide which units will be used. In this demonstration, inches and
kips will be used for length and force. Seconds will be used for time.

The assignment of node and element numbers is defined in the figure below:

Figure 77: Getting
Started -- Nodes &
Elements

NODES & ELEMENTS

alem ant 3
nade 3

alom ot 1

3
o
(=%
£
£

b

In a 2D problem only the x and y coordinates need to be defined, using the node (page 28)
command:

| node $nodeTag (ndm $coords) <-mass (ndf $MassValues)> |

nodel 0 O
node 2 504 0
node3 0 432
node 4 504 432

Chapter 32 Getting Started with OpenSees 304

The boundary conditions are defined using the fix (page 30) command:

| fix $nodeTag (ndf $ConstrValues)

with three degrees of freedom per node are constrained:

fix11 1 1
fix21 1 1
fix30 0 O
fixd0 0 O

where a fixed constraint is defined with a 1, a free constraint is defined with a O.

Nodal masses are typically defined at the same time as the nodal coordinates. The nodal mass
is used to calculate the eigenvalues and to perform the dynamic analysis. Only the nodal mass
in the horizontal direction will be defined in this demonstration. Nodal masses can either be
defined within the node (page 28) command, or the can be "appended" using the mass (page
29) command:

| mass $nodeTag (ndf $MassValues)

mass 3 5.180. 0.
mass 4 5.180. 0.

The mass value was calculated by dividing the nodal weight (1/2 of the total super-structure
weight) by the gravitational constant g (32 ft/sec):

4000-kip
2

- ft 12-inch
- [P P =
sec 1-ft

mass=

Chapter 32 Getting Started with OpenSees 305

Elements

The elastic columns and beams are defined using the elastic beam column element (page 148).
The characteristics of a 2-D elastic element depend on the material modulus and the section
area and moment of inertia. Because the elements in this frame represent reinforced-concrete
elements, the value of 4227 ksi for the elastic modulus of concrete will be used.

The following values represent the area and moment of inertia of the columns and beams:

COLUMNS BEAM

Area (5-12)-(5-12) = 3600 (5-12)-(8-12) = 3760

12 L (5-12)-(5-12)° = 1080000 L s 12vr8.129 = 4423680
F"&-' L)-(312 = o F J-LLp-(B-1L) = Fhed

The transformation command defines how the element coordinates correlate to the global model
coordinates. In a 2D problem, element orientation does not need to be considered, and can be
the same for all elements. The linear transformation (page 200) will be used in this
demonstration:

| geomTransf Linear $transfTag <-jntOffset $dXi $dYi $dXj $dYj> |

| geomTransf Linear 1 |

The following commands define the two columns (element 1 and 2) and the beam (element 3):

| element elasticBeamColumn $eleTag $iNode $jNode $A $E $Iz $transfTag |

element elasticBeamColumn 1 1 3 3600 4227 1080000 1
element elasticBeamColumn 2 2 4 3600 4227 1080000 1
element elasticBeamColumn 3 3 4 5760 4227 4423680 1

Chapter 32 Getting Started with OpenSees 306

Recorders

The recorder command is used to define the analysis output.

The node recorder will be used to output the horizontal and vertical displacements at node 3 into
a file named Node3.out:

recorder Node <-file $fileName> <-time> <-node ($nodel $node2 ...)> <-
nodeRange $startNode $endNode> <-region $RegionTag> <-node all>
-dof ($dofl $dof2 ...) $respType

recorder Node -file Node3.out -time -node 3 -dof 1 2 disp

The element recorder will be used to output the element forces. Element forces for element 1 will
be output into file Elementl.out:

recorder Element <-file $fileName> <-time> <-ele ($elel $ele2 ...)> <-eleRange
$startEle $endEle> <-region $regTag> <-ele all> ($argl $arg?2 ...)

recorder Element -file Elementl.out -time -ele 1 force

Summary of Model-Building Input File

The following is a compilation of all the commands necessary to build the model:

model basic -ndm 2 -ndf 3
nodal coordinates:
node 100

node 2 504 0

node 3 0 432

node 4 504 432

bondary conditions:
fix1111

fix2111

fix3000

fix4000

nodal masses:
mass 35.18 0. 0.
mass 4 5.18 0. 0.

transformation:

Chapter 32 Getting Started with OpenSees 307

geomTransf Linear 1

connectivity:

element elasticBeamColumn 1 1 3 3600 4227 1080000 1
element elasticBeamColumn 2 2 4 3600 4227 1080000 1
element elasticBeamColumn 3 3 4 5760 4227 4423680 1
recorders

recorder Node -file Node3.out -time -node 3 -dof 1 2 disp
recorder Element -file Elementl.out -time -ele 1 force

The above commands can be input line by line at the OpenSees command prompt:

CJUﬁemUMhﬁmaUumnﬂmﬁﬁﬂﬁuﬂﬁtﬂi“ﬁﬂhﬂiﬂﬁﬁﬁ

Pacific Earthguake Engineering Re*earch Center —— Uerzion 1 L]

Cc?) Copyright 1999 The Regents of the University of California
All Rights Reserved

model basic -ndm 2 —-ndf 3
node 1 B @

node 2 564 @

node 3 @ 432

node 4 584 432

Fix

fix

fix

fix

fix

mazs 3 5.18 A @

mass 4 5.18 B @
geomIlransf Linear 1
element elasticBeamColumn 1 1 3 3688 ﬂ 18808688 1

OpenSees
OpenSees
OpenSees
OpenSees
OpenSees
OpcnSecceso
OpenSees
OpenSees
OpenSees
OpenSees
OpenSees
OpenSees
OpenSees
OpenSees
OpenSees
OpenSees

element elasticBeamColumn 2 2 4 J6HA 18808688 1
element elasticBeamColumn 3 3 4 5768 4423688 1
pattern Flain 1 Linear {

—2888 —-168@%74

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
¥
a

Chapter 32 Getting Started with OpenSees 308

Otherwise, they can be saved into an input file called example.tcl. This file can then be sourced
in from the OpenSees command line:

ig) x|
- - Fl—
model basic -ndm 2 -ndf 3 C:\Jsers \AdsivialAAprojects \OpenSees\05Workshops 200405 WorkshopSept Presentations MyPresentati
nodal coordinates: Opensees —— Open System For Earthquake Enginee
node 100 Pacific Earthquake Engineering Research Center
node 2 504 0 (c) Copyright 1999 The Regents of the Unive|
node 3 0 432 All Rights Reserved
node 4 504 432
bondary conditions: OpenSees > source example.tcl
fix 1111 OpenSees >
fix2111
fix3000
fixa000

nodal masses:
mass 35.180. 0.
mass 4 5.180. 0.
transformation:
geomTransf Linear 1
connectivity:
element elasticBeamColumn 1 1 3 3600 4227 1080000 1
element elasticBeamColumn 2 2 4 3600 4227 1080000 1
element elasticBeamColumn 3 3 4 5760 4227 4423680 1
Define gravity load pattern:
pattern Plain 1 Linear {

load 3 0.0 -2000 -168074

load 4 0.0 -2000 168074

}

recorders

Chapter 32 Getting Started with OpenSees 309

Loads and Analysis

In OpenSees applying loads is a three-step process:
1. You must first define the loads in a load pattern
2. You must then define the analysis and its features

3. The loads are then applied when you execute the analysis

1. Load definition

Loads are defined using the pattern command. Three types of patterns are currently available:

a. plain Pattern -- this pattern is used to define the following:

i. nodal loads, such as gravity loads and lateral loads (or load-controlled nodal
displacements)

ii. single-point constraints, such as displacement control at a node (typically used
for a constant displacement at a node)

iii. element loads, such as distributed gravity loads along the element (this is a
new option, which still needs documentation).

b. UniformExcitation Pattern -- this type of pattern imposes a user-defined acceleration
record to all fixed nodes, in a specified direction.

c. MultipleSupport Pattern -- this type of pattern imposes a user-defined displacement
record at specified nodes, in a specified direction, or a ground-motion record.

Chapter 32 Getting Started with OpenSees 310

2. Analysis definition and features

The analysis-definition part of OpenSees allows the user to define the different linear and
nonlinear analysis tools available. For each analysis, the following items need to be defined,
preferably in this order:

constraints The constraints command is used to construct the ConstraintHandler
object. Constraints enforce a relationship between degrees-of-
freedom. The ConstraintHandler object determines how the
constraint equations are enforced in the analysis.

numberer The numberer command is used to construct the DOF_Numberer
object. The DOF_Numberer object determines the mapping between
equation numbers and degrees-of-freedom -- how degrees-of-
freedom are numbered.

system The system command is used to construct the LinearSOE and
LinearSolver objects to store and solve the system of equations in the
analysis.

test The test command is used to construct a ConvergenceTest object.

Certain SolutionAlgorithm objects require a ConvergenceTest object
to determine if convergence has been achieved at the end of an
iteration step.

algorithm The algorithm command is used to construct a SolutionAlgorithm
object, which determines the sequence of steps taken to solve the
non-linear equation.

integrator The integrator (page 249) command is used to construct the

Integrator object. The Integrator object determines the meaning of the
terms in the system of equation object. The Integrator object is used
for the following:

= determine the predictive step for time t+dt

= specify the tangent matrix and residual vector at any iteration

= determine the corrective step based on the displacement
increment dU

Chapter 32 Getting Started with OpenSees 311

an alysis The analysis (page 256) command is used to construct the Analysis

object. This analysis object is constructed with the component objects
previously created by the analyst. All currently-available analysis
objects employ incremental solution strategies. There are three types
of analysis currently available:

Static Analysis (page 256)
Transient Analysis (page 257)

VariableTransient Analysis (page 258)

3. Analysis execution

The analysis is executed using the analyze (page 261) command. This command moves the
analysis forward by the specified number of steps.

Gravity Loads

Gravity loads are independent of the type of lateral loading and here they are considered part of
the structural model.

NODAL FORCES & MOMENTS
Because the beam is an elastic element, the vertical load distributed along the horizontal

member can be represented by nodal forces and moments. The nodal forces are distributed
equally to the two end nodes. The nodal bending moments are equal and opposite:

The nodal force is equal to one half of the superstructure weight:

4000-kip

Force= =2000-kip

the distributed load is calculated by dividing the total load by the beam length:

4000-kip =794. kip
i|1|::h) " inch

DistributedLoad =
(42-1t)- (12-T

Chapter 32 Getting Started with OpenSees 312

The bending moment is then calculated from the distributed load:

DistributedLoad- BeamLength® (54 'klph)'(ﬂ'ﬂ' 12'%)
= ISTripute 0312 eamLeng - nc > =1EBUT4HIPIH

Maoment

LOAD PATTERN DEFINITION

Like all loads in OpenSees, gravity loads require two steps. The first step defines the load into a
load pattern (page 214), the second applies the load pattern and the associated gravity load.
The plain pattern (page 214) command with a linear time series (page 209) is used in the load
definition:

pattern Plain $patternTag (TimeSeriesType arguments) {

load $nodeTag (ndf $LoadValues)

pattern Plain 1 Linear {
load 3 0.0 -2000 -168074
load 4 0.0 -2000 168074

}

CREATE ANALYSIS

The constraints (page 232) command is used to construct the ConstraintHandler object.
Constraints enforce a relationship between degrees-of-freedom. The ConstraintHandler object
determines how the constraint equations are enforced in the analysis.

| constraints Transformation

The numberer (page 237) command is used to construct the DOF_Numberer object. The
DOF_Numberer object determines the mapping between equation numbers and degrees-of-
freedom -- how degrees-of-freedom are numbered. With the RCM numberer nodes are assigned
degrees-of-freedom using the Reverse Cuthill-McKee algorithm

| numberer RCM

Chapter 32 Getting Started with OpenSees 313

The system (page 239) command is used to construct the LinearSOE and LinearSolver objects
to store and solve the system of equations in the analysis. The BandGeneral command is used
to construct an un-symmetric banded system of equations object which will be factored and
solved during the analysis using the Lapack band general solver

system BandGeneral

The test (page 242) command is used to construct a ConvergenceTest object. Certain
SolutionAlgorithm objects require a ConvergenceTest object to determine if convergence has
been achieved at the end of an iteration step. The convergence test is applied to the following
equation:

KA =R
The NormDisplncr test performs the following check:

Norm Displacement Increment SOTAT < tol

| test NormDisplIncr $tol $maxNumlter <$printFlag>

test NormDisplncr 1.0e-6 6

The algorithm (page 245) command is used to construct a SolutionAlgorithm object, which
determines the sequence of steps taken to solve the non-linear equation.

algorithm Newton

The integrator (page 249) command is used to construct the Integrator object. The