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Chapter I

Introduction

SAP2000, ETABS and SAFE are software packages from Computers and Struc-
tures, Inc. for structural analysis and design. Each package is a fully integrated sys-
tem for modeling, analyzing, designing, and optimizing structures of a particular

type:

* SAP2000 for general structures, including bridges, stadiums, towers, industrial
plants, offshore structures, piping systems, buildings, dams, soils, machine
parts and many others

» ETABS for building structures
» SAFE for floor slabs and base mats

At the heart of each of these software packages is a common analysis engine, re-
ferred to throughout this manual as SAP2000. This engine is the latest and most
powerful version of the well-known SAP series of structural analysis programs.
The purpose of this manual is to describe the features of the SAP2000 analysis en-
gine.

Throughout this manual the analysis engine will be referred to as SAP2000, al-
though it applies also to ETABS and SAFE. Not all features described will actually
be available in every level of each program.
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Analysis Features

The CSI analysis engine offers the following features:

Static and dynamic analysis

Linear and nonlinear analysis

Dynamic seismic analysis and static pushover analysis

Vehicle live-load analysis for bridges

Geometric nonlinearity, including P-delta and large-displacement effects
Staged (incremental) construction

Creep, shrinkage, and aging effects

Buckling analysis

Steady-state and power-spectral-density analysis

Frame and shell structural elements, including beam-column, truss, membrane,
and plate behavior

Two-dimensional plane and axisymmetric solid elements
Three-dimensional solid elements

Nonlinear link and support elements
Frequency-dependent link and support properties
Multiple coordinate systems

Many types of constraints

A wide variety of loading options

Alpha-numeric labels

Large capacity

Highly efficient and stable solution algorithms

These features, and many more, make CSI programs the state-of-the-art for struc-
tural analysis. Note that not all of these features may be available in every level of
SAP2000, ETABS and SAFE.

Structural Analysis and Design

The following general steps are required to analyze and design a structure using
SAP2000, ETABS and SAFE:

2 Analysis Features
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1. Create or modify a model that numerically defines the geometry, properties,
loading, and analysis parameters for the structure

2. Perform an analysis of the model
3. Review the results of the analysis
4. Check and optimize the design of the structure

This is usually an iterative process that may involve several cycles of the above se-
quence of steps. All of these steps can be performed seamlessly using the SAP2000,
ETABS, and SAFE graphical user interfaces.

About This Manual

This manual describes the theoretical concepts behind the modeling and analysis
features offered by the SAP2000 analysis engine that underlies the SAP2000,
ETABS and SAFE structural analysis and design software packages. The graphical
user interface and the design features are described in separate manuals for each
program.

It is imperative that you read this manual and understand the assumptions and pro-
cedures used by these software packages before attempting to use the analysis fea-
tures.

Throughout this manual the analysis engine may be referred to as SAP2000, al-
though it applies also to ETABS and SAFE. Not all features described will actually
be available in every level of each program.

Topics

Each Chapter of this manual is divided into topics and subtopics. All Chapters be-
gin with a list of topics covered. These are divided into two groups:

* Basic topics — recommended reading for all users

* Advanced topics — for users with specialized needs, and for all users as they

become more familiar with the program.

Following the list of topics is an Overview which provides a summary of the Chap-
ter. Reading the Overview for every Chapter will acquaint you with the full scope
of the program.

About This Manual 3
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Typographical Conventions

Throughout this manual the following typographic conventions are used.

Bold for Definitions

Bold roman type (e.g., example) is used whenever a new term or concept is de-
fined. For example:

The global coordinate system is a three-dimensional, right-handed, rectangu-
lar coordinate system.

This sentence begins the definition of the global coordinate system.

Bold for Variable Data

Bold roman type (e.g., example) is used to represent variable data items for which
you must specify values when defining a structural model and its analysis. For ex-
ample:

The Frame element coordinate angle, ang, is used to define element orienta-
tions that are different from the default orientation.

Thus you will need to supply a numeric value for the variable ang if it is different
from its default value of zero.

Italics for Mathematical Variables

Normal italic type (e.g., example) is used for scalar mathematical variables, and
bold italic type (e.g., example) is used for vectors and matrices. If a variable data
item is used in an equation, bold roman type is used as discussed above. For exam-
ple:

0<da<db<L
Here da and db are variables that you specify, and L is a length calculated by the

program.

Italics for Emphasis

Normal italic type (e.g., example) is used to emphasize an important point, or for
the title of a book, manual, or journal.

4 Typographical Conventions
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All Capitals for Literal Data

All capital type (e.g., EXAMPLE) is used to represent data that you type at the key-
board exactly as it is shown, except that you may actually type lower-case if you
prefer. For example:

DIAPHRAGM

indicates that you type “DIAPHRAGM” or “diaphragm” at the keyboard.

Capitalized Names

Capitalized names (e.g., Example) are used for certain parts of the model and its
analysis which have special meaning to SAP2000. Some examples:

Frame element
Diaphragm Constraint
Frame Section

Load Case

Common entities, such as “joint” or “element” are not capitalized.

Bibliographic References

References are indicated throughout this manual by giving the name of the
author(s) and the date of publication, using parentheses. For example:

See Wilson and Tetsuji (1983).
It has been demonstrated (Wilson, Yuan, and Dickens, 1982) that ...

All bibliographic references are listed in alphabetical order in Chapter “Refer-
ences” (page 407).

Bibliographic References 5
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Chapter Il

Objects and Elements

The physical structural members in a structural model are represented by objects.
Using the graphical user interface, you “draw” the geometry of an object, then “as-
sign” properties and loads to the object to completely define the model of the physi-
cal member. For analysis purposes, SAP2000 converts each object into one or more
elements.

Basic Topics for All Users
* Objects
* Objects and Elements

* Groups

Objects

The following object types are available, listed in order of geometrical dimension:

* Point objects, of two types:

— Joint objects: These are automatically created at the corners or ends of all
other types of objects below, and they can be explicitly added to represent
supports or to capture other localized behavior.

Objects 7
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— Grounded (one-joint) support objects: Used to model special support
behavior such as isolators, dampers, gaps, multi-linear springs, and more.

* Line objects, of two types

— Frame/cable objects: Used to model beams, columns, braces, trusses,
and/or cable members

— Connecting (two-joint) link objects: Used to model special member be-
havior such as isolators, dampers, gaps, multi-linear springs, and more.
Unlike frame/cable objects, connecting link objects can have zero length.

* Area objects: Shell elements (plate, membrane, and full-shell) used to model
walls, floors, and other thin-walled members; as well as two-dimensional sol-
ids (plane-stress, plane-strain, and axisymmetric solids).

* Solid objects: Used to model three-dimensional solids.
As a general rule, the geometry of the object should correspond to that of the physi-

cal member. This simplifies the visualization of the model and helps with the de-
sign process.

Objects and Elements

8

If you have experience using traditional finite element programs, including earlier
versions of SAP2000, ETABS or SAFE, you are probably used to meshing physi-
cal models into smaller finite elements for analysis purposes. Object-based model-
ing largely eliminates the need for doing this.

For users who are new to finite-element modeling, the object-based concept should
seem perfectly natural.

When you run an analysis, SAP2000 automatically converts your object-based
model into an element-based model that is used for analysis. This element-based
model is called the analysis model, and it consists of traditional finite elements and
joints (nodes). Results of the analysis are reported back on the object-based model.

You have control over how the meshing is performed, such as the degree of refine-
ment, and how to handle the connections between intersecting objects. You also
have the option to manually mesh the model, resulting in a one-to-one correspon-
dence between objects and elements.

In this manual, the term “element” will be used more often than “object”, since
what is described herein is the finite-element analysis portion of the program that
operates on the element-based analysis model. However, it should be clear that the

Objects and Elements
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properties described here for elements are actually assigned in the interface to the
objects, and the conversion to analysis elements is automatic.

Groups

A group is a named collection of objects that you define. For each group, you must
provide a unique name, then select the objects that are to be part of the group. You
can include objects of any type or types in a group. Each object may be part of one
of more groups. All objects are always part of the built-in group called “ALL”.

Groups are used for many purposes in the graphical user interface, including selec-
tion, design optimization, defining section cuts, controlling output, and more. In
this manual, we are primarily interested in the use of groups for defining staged
construction. See Topic “Staged Construction” (page 77) in Chapter “Nonlinear
Static Analysis” for more information.

Groups 9
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Coordinate Systems

Each structure may use many different coordinate systems to describe the location
of points and the directions of loads, displacement, internal forces, and stresses.
Understanding these different coordinate systems is crucial to being able to prop-
erly define the model and interpret the results.

Basic Topics for All Users
* Overview
* Global Coordinate System
» Upward and Horizontal Directions
* Defining Coordinate Systems

* Local Coordinate Systems

Advanced Topics
» Alternate Coordinate Systems

* Cylindrical and Spherical Coordinates
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Overview

Coordinate systems are used to locate different parts of the structural model and to
define the directions of loads, displacements, internal forces, and stresses.

All coordinate systems in the model are defined with respect to a single global coor-
dinate system. Each part of the model (joint, element, or constraint) has its own lo-
cal coordinate system. In addition, you may create alternate coordinate systems that
are used to define locations and directions.

All coordinate systems are three-dimensional, right-handed, rectangular (Carte-
sian) systems. Vector cross products are used to define the local and alternate coor-
dinate systems with respect to the global system.

SAP2000 always assumes that Z is the vertical axis, with +Z being upward. The up-
ward direction is used to help define local coordinate systems, although local coor-
dinate systems themselves do not have an upward direction.

The locations of points in a coordinate system may be specified using rectangular
or cylindrical coordinates. Likewise, directions in a coordinate system may be
specified using rectangular, cylindrical, or spherical coordinate directions at a
point.

Global Coordinate System

12

The global coordinate system is a three-dimensional, right-handed, rectangular
coordinate system. The three axes, denoted X, Y, and Z, are mutually perpendicular
and satisfy the right-hand rule.

Locations in the global coordinate system can be specified using the variables x, y,
and z. A vector in the global coordinate system can be specified by giving the loca-
tions of two points, a pair of angles, or by specifying a coordinate direction. Coor-
dinate directions are indicated using the values £X, £Y, and £Z. For example, +X
defines a vector parallel to and directed along the positive X axis. The sign is re-
quired.

All other coordinate systems in the model are ultimately defined with respect to the
global coordinate system, either directly or indirectly. Likewise, all joint coordi-
nates are ultimately converted to global X, Y, and Z coordinates, regardless of how
they were specified.

Overview
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Upward and Horizontal Directions

SAP2000 always assumes that Z is the vertical axis, with +Z being upward. Local
coordinate systems for joints, elements, and ground-acceleration loading are de-
fined with respect to this upward direction. Self-weight loading always acts down-
ward, in the —Z direction.

The X-Y plane is horizontal. The primary horizontal direction is +X. Angles in the
horizontal plane are measured from the positive half of the X axis, with positive an-
gles appearing counterclockwise when you are looking down at the X-Y plane.

If you prefer to work with a different upward direction, you can define an alternate
coordinate system for that purpose.

Defining Coordinate Systems

Each coordinate system to be defined must have an origin and a set of three,
mutually-perpendicular axes that satisfy the right-hand rule.

The origin is defined by simply specifying three coordinates in the global coordi-
nate system.

The axes are defined as vectors using the concepts of vector algebra. A fundamental
knowledge of the vector cross product operation is very helpful in clearly under-
standing how coordinate system axes are defined.

Vector Cross Product

A vector may be defined by two points. It has length, direction, and location in
space. For the purposes of defining coordinate axes, only the direction is important.
Hence any two vectors that are parallel and have the same sense (i.e., pointing the
same way) may be considered to be the same vector.

Any two vectors, V; and V), that are not parallel to each other define a plane that is
parallel to them both. The location of this plane is not important here, only its orien-
tation. The cross product of ¥, and ¥, defines a third vector, V,, that is perpendicular
to them both, and hence normal to the plane. The cross product is written as:

Vi=VixVj

Upward and Horizontal Directions 13
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The length of ¥, is not important here. The side of the V-V, plane to which V, points
is determined by the right-hand rule: The vector V, points toward you if the acute
angle (less than 180°) from ¥, to V, appears counterclockwise.

Thus the sign of the cross product depends upon the order of the operands:

Vix Vi=—=Vix V;

Defining the Three Axes Using Two Vectors

A right-handed coordinate system R-S-T can be represented by the three mutually-
perpendicular vectors V,, V,, and V, respectively, that satisfy the relationship:

Vi=Vex Vg
This coordinate system can be defined by specifying two non-parallel vectors:

* An axis reference vector, Vg, that is parallel to axis R

A plane reference vector, Vp, that is parallel to plane R-S, and points toward the
positive-S side of the R axis

The axes are then defined as:

Vr:Va
Vt:VrX Vp
Vs:VtX Vr

Note that V, can be any convenient vector parallel to the R-S plane; it does not have
to be parallel to the S axis. This is illustrated in Figure 1 (page 15).

Local Coordinate Systems

14

Each part (joint, element, or constraint) of the structural model has its own local co-
ordinate system used to define the properties, loads, and response for that part. The
axes of the local coordinate systems are denoted 1, 2, and 3. In general, the local co-
ordinate systems may vary from joint to joint, element to element, and constraint to
constraint.

There is no preferred upward direction for a local coordinate system. However, the
upward +Z direction is used to define the default joint and element local coordinate
systems with respect to the global or any alternate coordinate system.

Local Coordinate Systems
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V, is parallel to R axis
V,, is parallel to R-S plane

V,=V,
Ve=Vrx V,
Vs=Vix V,

Vi

Cube is shown for
visualization purposes

Figure 1
Determining an R-S-T Coordinate System from Reference Vectors Vq and Vp

The joint local 1-2-3 coordinate system is normally the same as the global X-Y-Z
coordinate system. However, you may define any arbitrary orientation for a joint
local coordinate system by specifying two reference vectors and/or three angles of
rotation.

For the Frame, Area (Shell, Plane, and Asolid), and Link/Support elements, one of
the element local axes is determined by the geometry of the individual element.
You may define the orientation of the remaining two axes by specifying a single
reference vector and/or a single angle of rotation. The exception to this is one-joint
or zero-length Link/Support elements, which require that you first specify the lo-
cal-1 (axial) axis.

The Solid element local 1-2-3 coordinate system is normally the same as the global
X-Y-Z coordinate system. However, you may define any arbitrary orientation for a
solid local coordinate system by specifying two reference vectors and/or three an-
gles of rotation.

The local coordinate system for a Body, Diaphragm, Plate, Beam, or Rod Con-
straint is normally determined automatically from the geometry or mass distribu-
tion of the constraint. Optionally, you may specify one local axis for any Dia-

Local Coordinate Systems 15
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phragm, Plate, Beam, or Rod Constraint (but not for the Body Constraint); the re-
maining two axes are determined automatically.

The local coordinate system for an Equal Constraint may be arbitrarily specified;
by default it is the global coordinate system. The Local Constraint does not have its
own local coordinate system.

For more information:

* See Topic “Local Coordinate System” (page 24) in Chapter “Joints and De-
grees of Freedom.”

* See Topic “Local Coordinate System” (page 82) in Chapter “The Frame Ele-
ment.”

* See Topic “Local Coordinate System” (page 132) in Chapter “The Shell Ele-
ment.”

* See Topic “Local Coordinate System” (page 151) in Chapter “The Plane Ele-
ment.”

* See Topic “Local Coordinate System” (page 161) in Chapter “The Asolid Ele-
ment.”

* See Topic “Local Coordinate System” (page 174) in Chapter “The Solid Ele-
ment.”

* See Topic “Local Coordinate System” (page 187) in Chapter “The Link/Sup-
port Element—Basic.”

* See Chapter “Constraints and Welds (page 47).”

Alternate Coordinate Systems

16

You may define alternate coordinate systems that can be used for locating the
joints; for defining local coordinate systems for joints, elements, and constraints;
and as a reference for defining other properties and loads. The axes of the alternate
coordinate systems are denoted X, Y, and Z.

The global coordinate system and all alternate systems are called fixed coordinate
systems, since they apply to the whole structural model, not just to individual parts
as do the local coordinate systems. Each fixed coordinate system may be used in
rectangular, cylindrical or spherical form.

Associated with each fixed coordinate system is a grid system used to locate objects
in the graphical user interface. Grids have no meaning in the analysis model.

Alternate Coordinate Systems
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Each alternate coordinate system is defined by specifying the location of the origin
and the orientation of the axes with respect to the global coordinate system. You
need:

» The global X, Y, and Z coordinates of the new origin

* The three angles (in degrees) used to rotate from the global coordinate system
to the new system

Cylindrical and Spherical Coordinates

The location of points in the global or an alternate coordinate system may be speci-
fied using polar coordinates instead of rectangular X-Y-Z coordinates. Polar coor-
dinates include cylindrical CR-CA-CZ coordinates and spherical SB-SA-SR coor-
dinates. See Figure 2 (page 19) for the definition of the polar coordinate systems.
Polar coordinate systems are always defined with respect to a rectangular X-Y-Z
system.

The coordinates CR, CZ, and SR are lineal and are specified in length units. The co-
ordinates CA, SB, and SA are angular and are specified in degrees.

Locations are specified in cylindrical coordinates using the variables cr, ca, and cz.
These are related to the rectangular coordinates as:

cr=\/x2 +y2

ca=tan" Yy

o

CZ=17

Locations are specified in spherical coordinates using the variables sb, sa, and sr.
These are related to the rectangular coordinates as:

1 \/Xz +y’

z

sb=tan"

-1
sa = tan

sr=q/x> +y’ +2°

M |

Cylindrical and Spherical Coordinates 17
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18

A vector in a fixed coordinate system can be specified by giving the locations of
two points or by specifying a coordinate direction at a single point P. Coordinate
directions are tangential to the coordinate curves at point P. A positive coordinate
direction indicates the direction of increasing coordinate value at that point.

Cylindrical coordinate directions are indicated using the values CR, +CA, and
+CZ. Spherical coordinate directions are indicated using the values £SB, +SA, and
+SR. The sign is required. See Figure 2 (page 19).

The cylindrical and spherical coordinate directions are not constant but vary with
angular position. The coordinate directions do not change with the lineal coordi-
nates. For example, +SR defines a vector directed from the origin to point P.

Note that the coordinates Z and CZ are identical, as are the corresponding coordi-
nate directions. Similarly, the coordinates CA and SA and their corresponding co-
ordinate directions are identical.

Cylindrical and Spherical Coordinates
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+CZ
Z,CZ A

+CA

+CR

Cylindrical

Coordinates cz

Cubes are shown for
visualization purposes

Spherical
Coordinates

Figure 2
Cylindrical and Spherical Coordinates and Coordinate Directions

Cylindrical and Spherical Coordinates
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Chapter IV

Joints and Degrees of Freedom

The joints play a fundamental role in the analysis of any structure. Joints are the
points of connection between the elements, and they are the primary locations in
the structure at which the displacements are known or are to be determined. The
displacement components (translations and rotations) at the joints are called the de-
grees of freedom.

This Chapter describes joint properties, degrees of freedom, loads, and output. Ad-
ditional information about joints and degrees of freedom is given in Chapter “Con-
straints and Welds” (page 47).

Basic Topics for All Users
* Overview
* Modeling Considerations
* Local Coordinate System
» Degrees of Freedom
* Restraints and Reactions
* Springs
* Masses

» Force Load

21
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Ground Displacement Load
Degree of Freedom Output
Assembled Joint Mass Output
Displacement Output

Force Output

Advanced Topics

Advanced Local Coordinate System
Generalized Displacements

Element Joint Force Output

Overview

22

Joints, also known as nodal points or nodes, are a fundamental part of every struc-
tural model. Joints perform a variety of functions:

All elements are connected to the structure (and hence to each other) at the
joints
The structure is supported at the joints using Restraints and/or Springs

Rigid-body behavior and symmetry conditions can be specified using Con-
straints that apply to the joints

Concentrated loads may be applied at the joints

Lumped (concentrated) masses and rotational inertia may be placed at the
joints

All loads and masses applied to the elements are actually transferred to the
joints

Joints are the primary locations in the structure at which the displacements are
known (the supports) or are to be determined

All of these functions are discussed in this Chapter except for the Constraints,
which are described in Chapter “Constraints and Welds” (page 47).

Joints in the analysis model correspond to point objects in the structural-object
model. Using the SAP2000, ETABS or SAFE graphical user interface, joints
(points) are automatically created at the ends of each Line object and at the corners
of each Area and Solid object. Joints may also be defined independently of any ob-
ject.

Overview
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Automatic meshing of objects will create additional joints corresponding to any el-
ements that are created.

Joints may themselves be considered as elements. Each joint may have its own lo-
cal coordinate system for defining the degrees of freedom, restraints, joint proper-
ties, and loads; and for interpreting joint output. In most cases, however, the global
X-Y-Z coordinate system is used as the local coordinate system for all joints in the
model. Joints act independently of each other unless connected by other elements.

There are six displacement degrees of freedom at every joint — three translations
and three rotations. These displacement components are aligned along the local co-
ordinate system of each joint.

Joints may be loaded directly by concentrated loads or indirectly by ground dis-
placements acting though Restraints or spring supports.

Displacements (translations and rotations) are produced at every joint. The external
and internal forces and moments acting on each joint are also produced.

For more information:

» See Chapter “Constraints and Welds” (page 47).

Modeling Considerations

The location of the joints and elements is critical in determining the accuracy of the
structural model. Some of the factors that you need to consider when defining the
elements, and hence the joints, for the structure are:

* The number of elements should be sufficient to describe the geometry of the
structure. For straight lines and edges, one element is adequate. For curves and
curved surfaces, one element should be used for every arc of 15° or less.

» Element boundaries, and hence joints, should be located at points, lines, and
surfaces of discontinuity:

— Structural boundaries, e.g., corners and edges

— Changes in material properties

— Changes in thickness and other geometric properties
— Support points (Restraints and Springs)

— Points of application of concentrated loads, except that Frame/Cable ele-
ments may have concentrated loads applied within their spans

Modeling Considerations 23
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* In regions having large stress gradients, i.e., where the stresses are changing
rapidly, an Area- or Solid-element mesh should be refined using small ele-
ments and closely-spaced joints. This may require changing the mesh after one
or more preliminary analyses.

* More that one element should be used to model the length of any span for
which dynamic behavior is important. This is required because the mass is al-
ways lumped at the joints, even if it is contributed by the elements.

Local Coordinate System

Each joint has its own joint local coordinate system used to define the degrees of
freedom, Restraints, properties, and loads at the joint; and for interpreting joint out-
put. The axes of the joint local coordinate system are denoted 1, 2, and 3. By default
these axes are identical to the global X, Y, and Z axes, respectively. Both systems
are right-handed coordinate systems.

The default local coordinate system is adequate for most situations. However, for
certain modeling purposes it may be useful to use different local coordinate sys-
tems at some or all of the joints. This is described in the next topic.

For more information:

* See Topic “Upward and Horizontal Directions” (page 13) in Chapter “Coordi-
nate Systems.”

* See Topic “Advanced Local Coordinate System” (page 24) in this Chapter.

Advanced Local Coordinate System

24

By default, the joint local 1-2-3 coordinate system is identical to the global X-Y-Z
coordinate system, as described in the previous topic. However, it may be neces-
sary to use different local coordinate systems at some or all joints in the following
cases:

» Skewed Restraints (supports) are present

* Constraints are used to impose rotational symmetry

» Constraints are used to impose symmetry about a plane that is not parallel to a
global coordinate plane

* The principal axes for the joint mass (translational or rotational) are not aligned
with the global axes

Local Coordinate System
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 Joint displacement and force output is desired in another coordinate system

Joint local coordinate systems need only be defined for the affected joints. The
global system is used for all joints for which no local coordinate system is explicitly
specified.

A variety of methods are available to define a joint local coordinate system. These
may be used separately or together. Local coordinate axes may be defined to be par-
allel to arbitrary coordinate directions in an arbitrary coordinate system or to vec-
tors between pairs of joints. In addition, the joint local coordinate system may be
specified by a set of three joint coordinate angles. These methods are described in
the subtopics that follow.

For more information:

* See Chapter “Coordinate Systems” (page 11).
» See Topic “Local Coordinate System” (page 24) in this Chapter.

Reference Vectors

To define a joint local coordinate system you must specify two reference vectors
that are parallel to one of the joint local coordinate planes. The axis reference vec-
tor, V,, must be parallel to one of the local axes (/ = 1, 2, or 3) in this plane and

have a positive projection upon that axis. The plane reference vector, V, must

have a positive projection upon the other local axis (j = 1, 2, or 3, but / #) in this
plane, but need not be parallel to that axis. Having a positive projection means that
the positive direction of the reference vector must make an angle of less than 90°
with the positive direction of the local axis.

Together, the two reference vectors define a local axis, /, and a local plane, i-j.
From this, the program can determine the third local axis, &, using vector algebra.

For example, you could choose the axis reference vector parallel to local axis 1 and
the plane reference vector parallel to the local 1-2 plane (/= 1, j =2). Alternatively,
you could choose the axis reference vector parallel to local axis 3 and the plane ref-
erence vector parallel to the local 3-2 plane (/ =3, j =2). You may choose the plane
that is most convenient to define using the parameter local, which may take on the
values 12, 13, 21, 23, 31, or 32. The two digits correspond to / and j, respectively.
The default is value is 31.

Advanced Local Coordinate System 25
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Defining the Axis Reference Vector

To define the axis reference vector for joint j, you must first specify or use the de-
fault values for:

* A coordinate direction axdir (the default is +7)

* A fixed coordinate system csys (the default is zero, indicating the global coor-
dinate system)

You may optionally specify:

* A pair of joints, axveca and axvecb (the default for each is zero, indicating
joint j itself). If both are zero, this option is not used.

For each joint, the axis reference vector is determined as follows:

1. A vector is found from joint axveca to joint axvecb. If this vector is of finite
length, it is used as the reference vector V,

2. Otherwise, the coordinate direction axdir is evaluated at joint j in fixed coordi-
nate system csys, and is used as the reference vector V,,

Defining the Plane Reference Vector

To define the plane reference vector for joint j, you must first specify or use the de-
fault values for:
* A primary coordinate direction pldirp (the default is +X)

* A secondary coordinate direction pldirs (the default is +Y). Directions pldirs
and pldirp should not be parallel to each other unless you are sure that they are
not parallel to local axis 1

* A fixed coordinate system csys (the default is zero, indicating the global coor-
dinate system). This will be the same coordinate system that was used to define
the axis reference vector, as described above

You may optionally specify:

* A pair of joints, plveca and plvecb (the default for each is zero, indicating joint
j itself). If both are zero, this option is not used.

For each joint, the plane reference vector is determined as follows:
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1. A vector is found from joint plveca to joint plvecb. If this vector is of finite
length and is not parallel to local axis /, it is used as the reference vector V,,

2. Otherwise, the primary coordinate direction pldirp is evaluated at joint j in
fixed coordinate system csys. If this direction is not parallel to local axis /, it is
used as the reference vector V,,

3. Otherwise, the secondary coordinate direction pldirs is evaluated at joint j in
fixed coordinate system esys. If this direction is not parallel to local axis /, it is
used as the reference vector V,,

4. Otherwise, the method fails and the analysis terminates. This will never happen
if pldirp is not parallel to pldirs

A vector is considered to be parallel to local axis / if the sine of the angle between
them is less than 10°.

Determining the Local Axes from the Reference Vectors

The program uses vector cross products to determine the local axes from the refer-
ence vectors. The three axes are represented by the three unit vectors V;, V, and
V3, respectively. The vectors satisty the cross-product relationship:

V] =V2 XV3

The local axis V; is given by the vector V, after it has been normalized to unit
length.

The remaining two axes, Vj and V_, are defined as follows:
» If]andj permute in a positive sense, i.e., local = 12, 23, or 31, then:
Vi, =V;xV, and
V; =V, xV;
» If]andj permute in a negative sense, i.e., local =21, 32, or 13, then:
Vi =V, xV; and
V, =V, xV,

An example showing the determination of the joint local coordinate system using
reference vectors is given in Figure 3 (page 28).
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V, is parallel to axveca-axvecb
Vp is parallel to plveca-plvech

V3 = Va
V2=V3xV, Allvectors normalized to unit length.
V1 = V2 X V3

V,

./;Ivecb

plveca

Plane 3-1
axveca

Global

axvech
X Y

Figure 3
Example of the Determination of the Joint Local Coordinate System
Using Reference Vectors for local=31

Joint Coordinate Angles

The joint local coordinate axes determined from the reference vectors may be fur-
ther modified by the use of three joint coordinate angles, denoted a, b, and ¢. In
the case where the default reference vectors are used, the joint coordinate angles de-
fine the orientation of the joint local coordinate system with respect to the global
axes.

The joint coordinate angles specify rotations of the local coordinate system about
its own current axes. The resulting orientation of the joint local coordinate system
is obtained according to the following procedure:

1. The local system is first rotated about its +3 axis by angle a
2. The local system is next rotated about its resulting +2 axis by angle b
3. The local system is lastly rotated about its resulting +1 axis by angle ¢

The order in which the rotations are performed is important. The use of coordinate
angles to orient the joint local coordinate system with respect to the global system is
shown in Figure 4 (page 30).
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Degrees of Freedom

The deflection of the structural model is governed by the displacements of the
joints. Every joint of the structural model may have up to six displacement compo-
nents:

* The joint may translate along its three local axes. These translations are de-
noted U1, U2, and U3.

» The joint may rotate about its three local axes. These rotations are denoted R1,
R2, and R3.

These six displacement components are known as the degrees of freedom of the
joint. In the usual case where the joint local coordinate system is parallel to the
global system, the degrees of freedom may also be identified as UX, UY, UZ, RX,
RY and RZ, according to which global axes are parallel to which local axes. The
joint local degrees of freedom are illustrated in Figure 5 (page 31).

In addition to the regular joints that you explicitly define as part of your structural
model, the program automatically creates master joints that govern the behavior of
any Constraints and Welds that you may have defined. Each master joint has the
same six degrees of freedom as do the regular joints. See Chapter “Constraints and
Welds” (page 47) for more information.

Each degree of freedom in the structural model must be one of the following types:

» Active — the displacement is computed during the analysis

» Restrained — the displacement is specified, and the corresponding reaction is
computed during the analysis

* Constrained — the displacement is determined from the displacements at other
degrees of freedom

* Null — the displacement does not affect the structure and is ignored by the
analysis

* Unavailable — the displacement has been explicitly excluded from the analy-
sis

These different types of degrees of freedom are described in the following subtop-
ics.
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Step 1: Rotation about
local 3 axis by angle a

Step 2: Rotation about new
local 2 axis by angle b

Step 3: Rotation about new
local 1 axis by angle ¢

Figure 4
Use of Joint Coordinate Angles to Orient the Joint Local Coordinate System
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u3

N

U1 u2

Figure 5
The Six Displacement Degrees of Freedom in the Joint Local Coordinate System

Available and Unavailable Degrees of Freedom

Y oumay explicitly specify the global degrees of freedom that are available to every
joint in the structural model. By default, all six degrees of freedom are available to
every joint. This default should generally be used for all three-dimensional struc-
tures.

For certain planar structures, however, you may wish to restrict the available de-
grees of freedom. For example, in the X-Y plane: a planar truss needs only UX and
UY; a planar frame needs only UX, UY, and RZ; and a planar grid or flat plate
needs only UZ, RX, and RY.

The degrees of freedom that are not specified as being available are called unavail-
able degrees of freedom. Any stiffness, loads, mass, Restraints, or Constraints that
are applied to the unavailable degrees of freedom are ignored by the analysis.

The available degrees of freedom are always referred to the global coordinate sys-
tem, and they are the same for every joint in the model. If any joint local coordinate
systems are used, they must not couple available degrees of freedom with the un-
available degrees of freedom at any joint. For example, if the available degrees of
freedom are UX, UY, and RZ, then all joint local coordinate systems must have one
local axis parallel to the global Z axis.
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Restrained Degrees of Freedom

If the displacement of a joint along any one of its available degrees of freedom is
known, such as at a support point, that degree of freedom is restrained. The known
value of the displacement may be zero or non-zero, and may be different in differ-
ent Load Cases. The force along the restrained degree of freedom that is required to
impose the specified restraint displacement is called the reaction, and is determined
by the analysis.

Unavailable degrees of freedom are essentially restrained. However, they are ex-
cluded from the analysis and no reactions are computed, even if they are non-zero.

See Topic “Restraints and Reactions” (page 34) in this Chapter for more informa-
tion.

Constrained Degrees of Freedom

Any joint that is part of a Constraint or Weld may have one or more of its available
degrees of freedom constrained. The program automatically creates a master joint
to govern the behavior of each Constraint, and a master joint to govern the behavior
of each set of joints that are connected together by a Weld. The displacement of a
constrained degree of freedom is then computed as a linear combination of the dis-
placements along the degrees of freedom at the corresponding master joint.

If a constrained degree of freedom is also restrained, the restraint will be applied to
the constraint as a whole.

See Chapter “Constraints and Welds” (page 47) for more information.

Active Degrees of Freedom

All available degrees of freedom that are neither constrained nor restrained must be
either active or null. The program will automatically determine the active degrees
of freedom as follows:

+ Ifany load or stiffness is applied along any translational degree of freedom at a
joint, then all available translational degrees of freedom at that joint are made
active unless they are constrained or restrained.

» If any load or stiffness is applied along any rotational degree of freedom at a
joint, then all available rotational degrees of freedom at that joint are made ac-
tive unless they are constrained or restrained.

Degrees of Freedom
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» All degrees of freedom at a master joint that govern constrained degrees of
freedom are made active.

A joint that is connected to any element or to a translational spring will have all of
its translational degrees of freedom activated. A joint that is connected to a Frame,
Shell, or Link/Support element, or to any rotational spring will have all of its rota-
tional degrees of freedom activated. An exception is a Frame/Cable element with
only truss-type stiffness, which will not activate rotational degrees of freedom.

Every active degree of freedom has an associated equation to be solved. If there are
N active degrees of freedom in the structure, there are N equations in the system,
and the structural stiffness matrix is said to be of order N. The amount of computa-
tional effort required to perform the analysis increases with V.

The load acting along each active degree of freedom is known (it may be zero). The
corresponding displacement will be determined by the analysis.

If there are active degrees of freedom in the system at which the stiffness is known
to be zero, such as the out-of-plane translation in a planar-frame, these must either
be restrained or made unavailable. Otherwise, the structure is unstable and the solu-
tion of the static equations will fail.

For more information:

* See Topic “Springs” (page 35) in this Chapter.

* See Topic “Degrees of Freedom” (page 82) in Chapter “The Frame Element.”

* See Topic “Degrees of Freedom” (page 131) in Chapter “The Shell Element.”

* See Topic “Degrees of Freedom” (page 151) in Chapter “The Plane Element.”
* See Topic “Degrees of Freedom” (page 161) in Chapter “The Asolid Element.”
* See Topic “Degrees of Freedom” (page 173) in Chapter “The Solid Element.”

* See Topic “Degrees of Freedom” (page 187) in Chapter “The Link/Support El-
ement—DBasic.”

Null Degrees of Freedom

The available degrees of freedom that are not restrained, constrained, or active, are
called the null degrees of freedom. Because they have no load or stiffness, their dis-
placements and reactions are zero, and they have no effect on the rest of the struc-
ture. The program automatically excludes them from the analysis.
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Joints that have no elements connected to them typically have all six degrees of
freedom null. Joints that have only solid-type elements (Plane, Asolid, and Solid)
connected to them typically have the three rotational degrees of freedom null.

Restraints and Reactions
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If the displacement of a joint along any of its available degrees of freedom has a
known value, either zero (e.g., at support points) or non-zero (e.g., due to support
settlement), a Restraint must be applied to that degree of freedom. The known
value of the displacement may differ from one Load Case to the next, but the degree
of freedom is restrained for all Load Cases. In other words, it is not possible to have
the displacement known in one Load Case and unknown (unrestrained) in another
Load Case.

Restraints should also be applied to any available degrees of freedom in the system
at which the stiffness is known to be zero, such as the out-of-plane translation and
in-plane rotations of a planar-frame. Otherwise, the structure is unstable and the so-
lution of the static equations will complain.

Restraints are always applied to the joint local degrees of freedom U1, U2, U3, R1,
R2, and R3.

The force or moment along the degree of freedom that is required to enforce the re-
straint is called the reaction, and it is determined by the analysis. The reaction may
differ from one Analysis Case to the next. The reaction includes the forces (or mo-
ments) from all elements and springs connected to the restrained degree of free-
dom, as well as all loads applied to the degree of freedom.

A restrained degree of freedom may not be constrained. If a restraint is applied to an
unavailable degree of freedom, it is ignored and no reaction is computed.

Examples of Restraints are shown in Figure 6 (page 36).
For more information:

* See Topic “Degrees of Freedom™ (page 29) in this Chapter.
* See Topic “Restraint Displacement Load” (page 40) in this Chapter.
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Springs

Any of'the six degrees of freedom at any of the joints in the structure can have trans-
lational or rotational spring support conditions. These springs elastically connect
the joint to the ground. Spring supports along restrained degrees of freedom do not
contribute to the stiffness of the structure.

Springs may be specified that couple the degrees of freedom at a joint. The spring
forces that act on a joint are related to the displacements of that joint by a 6x6 sym-
metric matrix of spring stiffness coefficients. These forces tend to oppose the dis-
placements.

Spring stiffness coefficients may be specified in the global coordinate system, an
Alternate Coordinate System, or the joint local coordinate system.

In a joint local coordinate system, the spring forces and moments ', F,, F, M, M,
and M, at a joint are given by:

F, [ul wlu2 ulu3d wulrl ulr2 ulrd] |y (Eqn. 1)
F, u2  u2ud u2rl uw2r2 u2r3| u,
Fs | ud  u3rl u3r2 u3rd | |u;
M [ 1 rir2 rie3 || n
M, sym. r2 r2r3||n
M, | 3 |(n

where u,, u, u, r, r,and r, are the joint displacements and rotations, and the terms

ul, ulu2, u2, ... are the specified spring stiffness coefficients.

In any fixed coordinate system, the spring forces and moments F', F,, F, M,, M and
M_ at a joint are given by:

F, [ux uxuy wuxuz uxrx uxry uxrz|[u,
F, uy uyuz uyrx uyry uyrz|u,
F,o| uz uzZrx uzy uzz||u,
M, o rx IXry [Ixrz||r,
M, sym. ry ryrz||r,
M, rz r,

where u, u, u, r, r,and r_are the joint displacements and rotations, and the terms
ux, uxuy, uy, ... are the specified spring stiffness coefficients.
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For springs that do not couple the degrees of freedom in a particular coordinate sys-
tem, only the six diagonal terms need to be specified since the off-diagonal terms
are all zero. When coupling is present, all 21 coefficients in the upper triangle of the
matrix must be given; the other 15 terms are then known by symmetry.

If the springs at a joint are specified in more than one coordinate system, standard
coordinate transformation techniques are used to convert the 6x6 spring stiffness
matrices to the joint local coordinate system, and the resulting stiffness matrices are
then added together on a term-by-term basis. The final spring stiffness matrix at
each joint in the structure should have a determinant that is zero or positive. Other-
wise the springs may cause the structure to be unstable.

The displacement of the grounded end of the spring may be specified to be zero or
non-zero (e.g., due to support settlement). This spring displacement may vary
from one Load Case to the next.

For more information:

* See Topic “Degrees of Freedom” (page 29) in this Chapter.
* See Topic “Spring Displacement Load” (page 43) in this Chapter.

Masses

In a dynamic analysis, the mass of the structure is used to compute inertial forces.
Normally, the mass is obtained from the elements using the mass density of the ma-
terial and the volume of the element. This automatically produces lumped (uncou-
pled) masses at the joints. The element mass values are equal for each of the three
translational degrees of freedom. No mass moments of inertia are produced for the
rotational degrees of freedom. This approach is adequate for most analyses.

It is often necessary to place additional concentrated masses and/or mass moments
of inertia at the joints. These can be applied to any of the six degrees of freedom at
any of the joints in the structure.

For computational efficiency and solution accuracy, SAP2000 always uses lumped
masses. This means that there is no mass coupling between degrees of freedom at a
joint or between different joints. These uncoupled masses are always referred to the
local coordinate system of each joint. Mass values along restrained degrees of free-
dom are ignored.

Inertial forces acting on the joints are related to the accelerations at the joints by a
6x6 matrix of mass values. These forces tend to oppose the accelerations. In a joint
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local coordinate system, the inertia forces and moments F,, F,, ¥, M, M, and M, at
a joint are given by:

F, ul 0 0 0 0 07(i
F, w 0 0 0 0|,
Fy| w3 0 0 0|
M [ 1 0 0]
M, sym. r2 0||#
M, i 3] |73

where iiy, ii,, i3, I, I, and 7y are the translational and rotational accelerations at
the joint, and the terms ul, u2, u3, r1, r2, and r3 are the specified mass values.

Uncoupled joint masses may instead be specified in the global coordinate system,
in which case they are transformed to the joint local coordinate system. Coupling
terms will be generated during this transformation in the following situation:

* The joint local coordinate system directions are not parallel to global coordi-
nate directions, and

» The three translational masses or the three rotational mass moments of inertia
are not equal at a joint.

These coupling terms will be discarded by the program, resulting in some loss of
accuracy. For this reason, it is recommended that you choose joint local coordinate
systems that are aligned with the principal directions of translational or rotational
mass at a joint, and then specify mass values in these joint local coordinates.

Mass values must be given in consistent mass units (#/g) and mass moments of in-
ertia must be in WL"/g units. Here W is weight, L is length, and g is the acceleration
due to gravity. The net mass values at each joint in the structure should be zero or
positive.

See Figure 7 (page 39) for mass moment of inertia formulations for various planar
configurations.

For more information:

* See Topic “Degrees of Freedom” (page 29) in this Chapter.
» See Chapter “Static and Dynamic Analysis” (page 255).
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Shape in

Mass Moment of Inertia about vertical axis
(normal to paper) through center of mass

Formula

W

c.m. —

Rectangular diaphragm:
Uniformly distributed mass per unit area
Total mass of diaphragm = M (or w/g)

MMigm = %;dz)

Y

S

Triangular diaphragm:
Uniformly distributed mass per unit area
Total mass of diaphragm = M (or w/g)

Use general
diaphragm formula

‘

[
\

Circular diaphragm:
Uniformly distributed mass per unit area
Total mass of diaphragm = M (or w/g)

2
MMlcm = T

Y
c.m.
Y
c
X
Y

s

General diaphragm:
Uniformly distributed mass per unit area
Total mass of diaphragm = M (or w/g)
Area of diaphragm = A
Moment of inertia of area about X-X = Ix
Moment of inertia of area about Y-Y = Iy

MMigp, = 'V'('>/<:'Y)

.

.m
d
c.m.

plan
E
c
[
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et

Line mass:
Uniformly distributed mass per unit length
Total mass of line = M (or w/g)

2
MMigr, = “1"i

.,

c.m.

Axis transformation for a mass:
If mass is a point mass, MMIg =0

MMigm = MMIg + MD?

Figure 7

Formulae for Mass Moments of Inertia
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Force Load

The Force Load is used to apply concentrated forces and moments at the joints.
Values may be specified in a fixed coordinate system (global or alternate coordi-
nates) or the joint local coordinate system. All forces and moments at a joint are
transformed to the joint local coordinate system and added together. The specified
values are shown in Figure 8 (page 41).

Forces and moments applied along restrained degrees of freedom add to the corre-
sponding reaction, but do not otherwise affect the structure.

For more information:

* See Topic “Degrees of Freedom™ (page 29) in this Chapter.
» See Chapter “Load Cases” (page 241).

Ground Displacement Load

40

The Ground Displacement Load is used to apply specified displacements (transla-
tions and rotations) at the grounded end of joint restraints and spring supports. Dis-
placements may be specified in a fixed coordinate system (global or alternate coor-
dinates) or the joint local coordinate system. The specified values are shown in
Figure 8 (page 41). All displacements at a joint are transformed to the joint local co-
ordinate system and added together.

Restraints may be considered as rigid connections between the joint degrees of
freedom and the ground. Springs may be considered as flexible connections be-
tween the joint degrees of freedom and the ground.

It is very important to understand that ground displacement load applies to the
ground, and does not affect the structure unless the structure is supported by re-
straints or springs in the direction of loading!

Restraint Displacements

If a particular joint degree of freedom is restrained, the displacement of the joint is
equal to the ground displacement along that local degree of freedom. This applies
regardless of whether or not springs are present.

Components of ground displacement that are not along restrained degrees of free-
dom do not load the structure (except possibly through springs). An example of this
is illustrated in Figure 9 (page 42).

Force Load
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u3
Joint Local Coordinates

Global Coordinates

Figure 8
Specified Values for Force Load, Restraint Displacement Load,
and Spring Displacement Load

The ground displacement, and hence the joint displacement, may vary from one
Load Case to the next. If no ground displacement load is specified for a restrained
degree of freedom, the joint displacement is zero for that Load Case.

Spring Displacements

The ground displacements at a joint are multiplied by the spring stiffness coeffi-
cients to obtain effective forces and moments that are applied to the joint. Spring
displacements applied in a direction with no spring stiffness result in zero applied
load. The ground displacement, and hence the applied forces and moments, may
vary from one Load Case to the next.

In a joint local coordinate system, the applied forces and moments F,, F,, F, M, M,
and M, at a joint due to ground displacements are given by:

Ground Displacement Load 4
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The vertical ground settlement, UZ = -1.000,
is specified as the restraint displacement.

4
The actual restraint displacement that is
GLOBAL imposed on the structure is U3 = -0.866.
X 3 The unrestrained displacement, U1, will be

determined by the analysis.

U3 =-0.866
Uz =-1.000

Figure 9
Example of Restraint Displacement Not Aligned with Local Degrees of Freedom

F wl 0 0 0 0 07[u, (Eqn. 2)
Fy 2 0 0 0 0| uy
Fy | ud 0 0 0| ug
M [ it 0 0||r,
M, sym. r2 0|7y
M, i r3 || 7g3

where u gl> Ug> Ug3, Tl T2 and rg3 are the ground displacements and rotations,
and the terms ul, u2, u3, rl, r2, and r3 are the specified spring stiffness coeffi-
cients.

The net spring forces and moments acting on the joint are the sum of the forces and
moments given in Equations (1) and (2); note that these are of opposite sign. At a
restrained degree of freedom, the joint displacement is equal to the ground dis-
placement, and hence the net spring force is zero.

For more information:

* See Topic “Restraints and Reactions” (page 34) in this Chapter.
* See Topic “Springs” (page 35) in this Chapter.
* See Chapter “Load Cases” (page 241).
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Generalized Displacements

A generalized displacement is a named displacement measure that you define. It is
simply a linear combination of displacement degrees of freedom from one or more
joints.

For example, you could define a generalized displacement that is the difference of
the UX displacements at two joints on different stories of a building and name it
“DRIFTX”. You could define another generalized displacement that is the sum of
three rotations about the Z axis, each scaled by 1/3, and name it “AVGRZ.”

Generalized displacements are primarily used for output purposes, except that you
can also use a generalized displacement to monitor a nonlinear static analysis.

To define a generalized displacement, specify the following:

* A unique name

» The type of displacement measure

» A list of the joint degrees of freedom and their corresponding scale factors that
will be summed to created the generalized displacement

The type of displacement measure can be one of the following:

» Translational: The generalized displacement scales (with change of units) as
length. Coefficients of contributing joint translations are unitless. Coefficients
of contributing joint rotations scale as length.

» Rotational: The generalized displacement is unitless (radians). Coefficients of
joint translations scale as inverse length. Coefficients of joint rotations are
unitless.

Be sure to choose your scale factors for each contributing component to account for
the type of generalized displacement being defined.

Degree of Freedom Output

A table of the types of degrees of freedom present at every joint in the model is
printed in the analysis output (.OUT) file under the heading:

DISPLACEMENT DEGREES OF FREEDOM

The degrees of freedom are listed for all of the regular joints, as well as for the mas-
ter joints created automatically by the program. For Constraints, the master joints
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are identified by the labels of their corresponding Constraints. For Welds, the mas-
ter joint for each set of joints that are welded together is identified by the label of
one of the welded joints. Joints are printed in alpha-numeric order of the labels.

The type of each of the six degrees of freedom at a joint is identified by the follow-
ing symbols:

(A) Active degree of freedom

(=)  Restrained degree of freedom
(+)  Constrained degree of freedom
()

Null or unavailable degree of freedom

The degrees of freedom are always referred to the local axes of the joint. They are
identified in the output as U1, U2, U3, R1, R2, and R3 for all joints. However, if all
regular joints use the global coordinate system as the local system (the usual situa-
tion), then the degrees of freedom for the regular joints are identified as UX, UY,
UZ,RX, RY, and RZ.

The types of degrees of freedom are a property of the structure and are independent
of the Analysis Cases, except when staged construction is performed.

See Topic “Degrees of Freedom” (page 29) in this Chapter for more information.

Assembled Joint Mass OQutput

44

You can request assembled joint masses as part of the analysis results. The mass ata
given joint includes the mass assigned directly to that joint as well as a portion of
the mass from each element connected to that joint. Mass at restrained degrees of
freedom is set to zero. All mass assigned to the elements is apportioned to the con-
nected joints, so that this table represents the total unrestrained mass of the struc-
ture. The masses are always referred to the local axes of the joint.

For more information:

* See Topic “Masses” (page 37) in this Chapter.
» See Chapter “Analysis Cases” (page 255).

Assembled Joint Mass Output
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Displacement Output

You can request joint displacements as part of the analysis results on a case by case
basis. For dynamic analysis cases, you can also request velocities and accelera-
tions. The output is always referred to the local axes of the joint.

* See Topic “Degrees of Freedom” (page 29) in this Chapter.
* See Chapter “Analysis Cases” (page 255).

Force Output

Y ou can request joint support forces as part of the analysis results on a case by case
basis. Joint forces are distinguished as being restraint forces (reactions) or spring
forces. The forces at joints not restrained or sprung will be zero.

The forces and moments are always referred to the local axes of the joint. The val-
ues reported are always the forces and moments that act on the joints. Thus a posi-
tive value of joint force or moment tends to cause a positive value of joint transla-
tion or rotation along the corresponding degree of freedom.

For more information:

* See Topic “Degrees of Freedom” (page 29) in this Chapter.
» See Chapter “Analysis Cases” (page 255).

Element Joint Force Output

The element joint forces are concentrated forces and moments acting at the joints
of the element that represent the effect of the rest of the structure upon the element
and that cause the deformation of the element. The moments will always be zero for
the solid-type elements: Plane, Asolid, and Solid.

A positive value of force or moment tends to cause a positive value of translation or
rotation of the element along the corresponding joint degree of freedom.

Element joint forces must not be confused with internal forces and moments which,
like stresses, act within the volume of the element.

For a given element, the vector of element joint forces, f, is computed as:

f=Ku-r
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where K is the element stiffness matrix, u is the vector of element joint displace-
ments, and r is the vector of element applied loads as apportioned to the joints. The
element joint forces are always referred to the local axes of the individual joints.
They are identified in the output as F1, F2, F3, M1, M2, and M3.
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Chapter V

Constraints and Welds

Constraints are used to enforce certain types of rigid-body behavior, to connect to-
gether different parts of the model, and to impose certain types of symmetry condi-
tions. Welds are used to generate a set of constraints that connect together different
parts of the model.

Basic Topics for All Users

Overview

Body Constraint
Plane Definition
Diaphragm Constraint
Plate Constraint

Axis Definition

Rod Constraint

Beam Constraint
Equal Constraint
Welds
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Advanced Topics
* Local Constraint
« Automatic Master Joints

* Constraint Output

Overview

A constraint consists of a set of two or more constrained joints. The displacements
of each pair of joints in the constraint are related by constraint equations. The types
of behavior that can be enforced by constraints are:

* Rigid-body behavior, in which the constrained joints translate and rotate to-
gether as if connected by rigid links. The types of rigid behavior that can be
modeled are:

Rigid Body: fully rigid for all displacements

— Rigid Diaphragm: rigid for membrane behavior in a plane

Rigid Plate: rigid for plate bending in a plane

— Rigid Rod: rigid for extension along an axis

Rigid Beam: rigid for beam bending on an axis

* Equal-displacement behavior, in which the translations and rotations are equal
at the constrained joints

+ Symmetry and anti-symmetry conditions

The use of constraints reduces the number of equations in the system to be solved
and will usually result in increased computational efficiency.

Most constraint types must be defined with respect to some fixed coordinate sys-
tem. The coordinate system may be the global coordinate system or an alternate co-
ordinate system, or it may be automatically determined from the locations of the
constrained joints. The Local Constraint does not use a fixed coordinate system, but
references each joint using its own joint local coordinate system.

Welds are used to connect together different parts of the model that were defined
separately. Each Weld consists of a set of joints that may be joined. The program
searches for joints in each Weld that share the same location in space and constrains
them to act as a single joint.
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Body Constraint

A Body Constraint causes all of its constrained joints to move together as a
three-dimensional rigid body. By default, all degrees of freedom at each connected
joint participate. However, you can select a subset of the degrees of freedom to be
constrained.

This Constraint can be used to:

* Model rigid connections, such as where several beams and/or columns frame
together

» Connect together different parts of the structural model that were defined using
separate meshes

» Connect Frame elements that are acting as eccentric stiffeners to Shell elements

Welds can be used to automatically generate Body Constraints for the purpose of
connecting coincident joints.

See Topic “Welds” (page 62) in this Chapter for more information.

Joint Connectivity

Each Body Constraint connects a set of two or more joints together. The joints may
have any arbitrary location in space.

Local Coordinate System

Each Body Constraint has its own local coordinate system, the axes of which are
denoted 1, 2, and 3. These correspond to the X, Y, and Z axes of a fixed coordinate
system that you choose.

Constraint Equations

The constraint equations relate the displacements at any two constrained joints
(subscripts / and j) in a Body Constraint. These equations are expressed in terms of
the translations (u,, u,, and u,), the rotations (r,, r,, and r;), and the coordinates (x,,
x,, and x,), all taken in the Constraint local coordinate system:

ulj = uli +r2i Ax3 —r3i Ax2

u2j = u2; + r3j Axy —r1; Ax3
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where Ax, = x,, —x

u3j = u3j + rii Ax2 — r2i Axy

ri=rij
r2i =12
r3i=r3j

» A, =x,—x,, and Ax,=x, —x,.

If you omit any particular degree of freedom, the corresponding constraint equation
is not enforced. If you omit a rotational degree of freedom, the corresponding terms
are removed from the equations for the translational degrees of freedom.

Plane Definition
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The constraint equations for each Diaphragm or Plate Constraint are written with
respect to a particular plane. The location of the plane is not important, only its ori-
entation.

By default, the plane is determined automatically by the program from the spatial
distribution of the constrained joints as follows:

The centroid of the constrained joints is determined

The second moments of the locations of all of the constrained joints about the
centroid are determined

The principal values and directions of these second moments are found

The direction of the smallest principal second moment is taken as the normal to
the constraint plane; if all constrained joints lie in a unique plane, this smallest
principal moment will be zero

If no unique direction can be found, a horizontal (X-Y) plane is assumed in co-
ordinate system csys; this situation can occur if the joints are coincident or col-
linear, or if the spatial distribution is more nearly three-dimensional than pla-
nar.

You may override automatic plane selection by specifying the following:

csys: A fixed coordinate system (the default is zero, indicating the global coor-
dinate system)

axis: The axis (X, Y, or Z) normal to the plane of the constraint, taken in coor-
dinate system csys.

Plane Definition
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This may be useful, for example, to specify a horizontal plane for a floor with a
small step in it.

Diaphragm Constraint

A Diaphragm Constraint causes all of its constrained joints to move together as a
planar diaphragm that is rigid against membrane deformation. Effectively, all con-
strained joints are connected to each other by links that are rigid in the plane, but do
not affect out-of-plane (plate) deformation.

This Constraint can be used to:

* Model concrete floors (or concrete-filled decks) in building structures, which
typically have very high in-plane stiffness

* Model diaphragms in bridge superstructures

The use of the Diaphragm Constraint for building structures eliminates the numeri-
cal-accuracy problems created when the large in-plane stiffness of a floor dia-
phragm is modeled with membrane elements. It is also very useful in the lateral
(horizontal) dynamic analysis of buildings, as it results in a significant reduction in
the size of the eigenvalue problem to be solved. See Figure 10 (page 52) for an illus-
tration of a floor diaphragm.

Joint Connectivity

Each Diaphragm Constraint connects a set of two or more joints together. The
joints may have any arbitrary location in space, but for best results all joints should
lie in the plane of the constraint. Otherwise, bending moments may be generated
that are restrained by the Constraint, which unrealistically stiffens the structure. If
this happens, the constraint forces reported in the analysis results may not be in
equilibrium.

Local Coordinate System

Each Diaphragm Constraint has its own local coordinate system, the axes of which
are denoted 1, 2, and 3. Local axis 3 is always normal to the plane of the constraint.
The program arbitrarily chooses the orientation of axes 1 and 2 in the plane. The
actual orientation of the planar axes is not important since only the normal direction
affects the constraint equations. For more information, see Topic “Plane Defini-
tion” (page 50) in this Chapter.
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Figure 10

Use of the Diaphragm Constraint to Model a Rigid Floor Slab

Constraint Equations

The constraint equations relate the displacements at any two constrained joints
(subscripts 7 and j) in a Diaphragm Constraint. These equations are expressed in
terms of in-plane translations (, and u,), the rotation (r,) about the normal, and the
in-plane coordinates (x, and x,), all taken in the Constraint local coordinate system:

ulj = u1i—r3i Ax2
u2j = u2;i + r3i Axy
r3i =13;
where Ax, = x, —x, and Ax,=x, —x

2i°
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Plate Constraint

A Plate Constraint causes all of'its constrained joints to move together as a flat plate
that is rigid against bending deformation. Effectively, all constrained joints are
connected to each other by links that are rigid for out-of-plane bending, but do not
affect in-plane (membrane) deformation.

This Constraint can be used to:

» Connect structural-type elements (Frame and Shell) to solid-type elements
(Plane and Solid); the rotation in the structural element can be converted to a
pair of equal and opposite translations in the solid element by the Constraint

* Enforce the assumption that “plane sections remain plane” in detailed models
of beam bending

Joint Connectivity

Each Plate Constraint connects a set of two or more joints together. The joints may
have any arbitrary location in space. Unlike the Diaphragm Constraint, equilibrium
is not affected by whether or not all joints lie in the plane of the Plate Constraint.

Local Coordinate System

Each Plate Constraint has its own local coordinate system, the axes of which are de-
noted 1, 2, and 3. Local axis 3 is always normal to the plane of the constraint. The
program arbitrarily chooses the orientation of axes 1 and 2 in the plane. The actual
orientation of the planar axes is not important since only the normal direction af-
fects the constraint equations.

For more information, see Topic “Plane Definition” (page 50) in this Chapter.

Constraint Equations

The constraint equations relate the displacements at any two constrained joints
(subscripts / and j) in a Plate Constraint. These equations are expressed in terms of
the out-of-plane translation (u,), the bending rotations (r, and r,), and the in-plane
coordinates (x, and x,), all taken in the Constraint local coordinate system:

u3j = u3j + rii Ax2 — r2i Axy

ri=rilj
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12i = 12j

where Ax, =x,—x,, and Ax,=x, —x,,
v z -/ 1

Axis Definition

The constraint equations for each Rod or Beam Constraint are written with respect
to a particular axis. The location of the axis is not important, only its orientation.

By default, the axis is determined automatically by the program from the spatial
distribution of the constrained joints as follows:
* The centroid of the constrained joints is determined

* The second moments of the locations of all of the constrained joints about the
centroid are determined

* The principal values and directions of these second moments are found

* The direction of the largest principal second moment is taken as the axis of the
constraint; if all constrained joints lie on a unique axis, the two smallest princi-
pal moments will be zero

* Ifnounique direction can be found, a vertical (Z) axis is assumed in coordinate
system csys; this situation can occur if the joints are coincident, or if the spatial
distribution is more nearly planar or three-dimensional than linear.

You may override automatic axis selection by specifying the following:

* csys: A fixed coordinate system (the default is zero, indicating the global coor-
dinate system)

+ axis: The axis (X, Y, or Z) of the constraint, taken in coordinate system csys.

This may be useful, for example, to specify a vertical axis for a column with a small
offset in it.

Rod Constraint

A Rod Constraint causes all of its constrained joints to move together as a straight
rod that is rigid against axial deformation. Effectively, all constrained joints main-
tain a fixed distance from each other in the direction parallel to the axis of the rod,
but translations normal to the axis and all rotations are unaffected.

This Constraint can be used to:
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Figure 11
Use of the Rod Constraint to Model Axially Rigid Beams

* Prevent axial deformation in Frame elements

* Model rigid truss-like links

An example of the use of the Rod Constraint is in the analysis of the two-dimen-
sional frame shown in Figure 11 (page 55). If the axial deformations in the beams
are negligible, a single Rod Constraint could be defined containing the five joints.
Instead of five equations, the program would use a single equation to define the
X-displacement of the whole floor. However, it should be noted that this will result
in the axial forces of the beams being output as zero, as the Constraint will cause the
ends of the beams to translate together in the X-direction. Interpretations of such re-
sults associated with the use of Constraints should be clearly understood.

Joint Connectivity

Each Rod Constraint connects a set of two or more joints together. The joints may
have any arbitrary location in space, but for best results all joints should lie on the
axis of the constraint. Otherwise, bending moments may be generated that are re-
strained by the Constraint, which unrealistically stiffens the structure. If this hap-
pens, the constraint forces reported in the analysis results may not be in equilib-
rium.
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Local Coordinate System

Each Rod Constraint has its own local coordinate system, the axes of which are de-
noted 1, 2, and 3. Local axis 1 is always the axis of the constraint. The program arbi-
trarily chooses the orientation of the transverse axes 2 and 3. The actual orientation
of the transverse axes is not important since only the axial direction affects the con-
straint equations.

For more information, see Topic “Axis Definition” (page 54) in this Chapter.

Constraint Equations

The constraint equations relate the displacements at any two constrained joints
(subscripts / and ) in a Rod Constraint. These equations are expressed only in terms
of the axial translation (u,):

ulj = uli

Beam Constraint
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A Beam Constraint causes all of its constrained joints to move together as a straight
beam that is rigid against bending deformation. Effectively, all constrained joints
are connected to each other by links that are rigid for off-axis bending, but do not
affect translation along or rotation about the axis.

This Constraint can be used to:

* Connect structural-type elements (Frame and Shell) to solid-type elements
(Plane and Solid); the rotation in the structural element can be converted to a
pair of equal and opposite translations in the solid element by the Constraint

* Prevent bending deformation in Frame elements

Joint Connectivity

Each Beam Constraint connects a set of two or more joints together. The joints may
have any arbitrary location in space, but for best results all joints should lie on the
axis of the constraint. Otherwise, torsional moments may be generated that are re-
strained by the Constraint, which unrealistically stiffens the structure. If this hap-
pens, the constraint forces reported in the analysis results may not be in equilib-
rium.

Beam Constraint
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Local Coordinate System

Each Beam Constraint has its own local coordinate system, the axes of which are
denoted 1, 2, and 3. Local axis 1 is always the axis of the constraint. The program
arbitrarily chooses the orientation of the transverse axes 2 and 3. The actual orienta-
tion of the transverse axes is not important since only the axial direction affects the
constraint equations.

For more information, see Topic “Axis Definition” (page 54) in this Chapter.

Constraint Equations

The constraint equations relate the displacements at any two constrained joints
(subscripts / and j) in a Beam Constraint. These equations are expressed in terms of
the transverse translations (#, and u,), the transverse rotations (», and r,), and the ax-
ial coordinate (x,), all taken in the Constraint local coordinate system:

u2j = u2i + r3j Axi
u3j = u3i — r2i Axy
r2i=1rj
r3i=r3j

where Ax, = x, — x,..

Equal Constraint

An Equal Constraint causes all of its constrained joints to move together with the
same displacements for each selected degree of freedom, taken in the constraint lo-
cal coordinate system. The other degrees of freedom are unaffected.

The Equal Constraint differs from the rigid-body types of Constraints in that there
is no coupling between the rotations and the translations.

This Constraint can be used to partially connect together different parts of the struc-
tural model, such as at expansion joints and hinges

For fully connecting meshes, it is better to use the Body Constraint when the con-
strained joints are not in exactly the same location.
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Joint Connectivity

Each Equal Constraint connects a set of two or more joints together. The joints may
have any arbitrary location in space, but for best results all joints should share the
same location in space if used for connecting meshes. Otherwise, moments may be
generated that are restrained by the Constraint, which unrealistically stiffens the
structure. If this happens, the constraint forces reported in the analysis results may
not be in equilibrium.

Local Coordinate System

Each Equal Constraint uses a fixed coordinate system, esys, that you specify. The
default for esys is zero, indicating the global coordinate system. The axes of the
fixed coordinate system are denoted X, Y, and Z.

Selected Degrees of Freedom

For each Equal Constraint you may specify a list, cdofs, of up to six degrees of free-
dom in coordinate system csys that are to be constrained. The degrees of freedom
are indicated as UX, UY, UZ, RX, RY, and RZ.

Constraint Equations

The constraint equations relate the displacements at any two constrained joints
(subscripts / and j) in an Equal Constraint. These equations are expressed in terms
of the translations (u,, u , and u.) and the rotations (., r,, and r,), all taken in fixed
coordinate system csys:

Uxj = Uxi
Uyj = Uyi
Uzj = Uzj
ryi=rij
r2i =ryj
r3i =r3j

If you omit any of the six degrees of freedom from the constraint definition, the cor-
responding constraint equation is not enforced.
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Local Constraint

A Local Constraint causes all of its constrained joints to move together with the
same displacements for each selected degree of freedom, taken in the separate joint
local coordinate systems. The other degrees of freedom are unaffected.

The Local Constraint differs from the rigid-body types of Constraints in that there
is no coupling between the rotations and the translations. The Local Constraint is
the same as the Equal Constraint if all constrained joints have the same local coor-
dinate system.

This Constraint can be used to:

* Model symmetry conditions with respect to a line or a point
* Model displacements constrained by mechanisms

The behavior of this Constraint is dependent upon the choice of the local coordinate
systems of the constrained joints.

Joint Connectivity

Each Local Constraint connects a set of two or more joints together. The joints may
have any arbitrary location in space. If the joints do not share the same location in
space, moments may be generated that are restrained by the Constraint. If this hap-
pens, the constraint forces reported in the analysis results may not be in equilib-
rium. These moments are necessary to enforce the desired symmetry of the dis-
placements when the applied loads are not symmetric, or may represent the con-
straining action of a mechanism.

For more information, see:

» Topic “Force Output” (page 45) in Chapter “Joints and Degrees of Freedom.”
» Topic “Global Force Balance Output” (page 45) in Chapter “Joints and De-

grees of Freedom.”

No Local Coordinate System

A Local Constraint does not have its own local coordinate system. The constraint
equations are written in terms of constrained joint local coordinate systems, which
may differ. The axes of these coordinate systems are denoted 1, 2, and 3.
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60

Selected Degrees of Freedom

For each Local Constraint you may specify a list, ldofs, of up to six degrees of free-
dom in the joint local coordinate systems that are to be constrained. The degrees of
freedom are indicated as U1, U2, U3, R1, R2, and R3.

Constraint Equations

The constraint equations relate the displacements at any two constrained joints
(subscripts / and j) in a Local Constraint. These equations are expressed in terms of
the translations (u,, u,, and «,) and the rotations (r,, r,, and r,), all taken in joint local
coordinate systems. The equations used depend upon the selected degrees of free-

dom and their signs. Some important cases are described next.

Axisymmetry

Axisymmetry is a type of symmetry about a line. It is best described in terms of a
cylindrical coordinate system having its Z axis on the line of symmetry. The struc-
ture, loading, and displacements are each said to be axisymmetric about a line if
they do not vary with angular position around the line, i.e., they are independent of
the angular coordinate CA.

To enforce axisymmetry using the Local Constraint:
* Model any cylindrical sector of the structure using any axisymmetric mesh of
joints and elements

» Assign each joint a local coordinate system such that local axes 1, 2, and 3 cor-
respond to the coordinate directions +CR, +CA, and +CZ, respectively

* For each axisymmetric set of joints (i.e., having the same coordinates CR and
CZ, but different CA), define a Local Constraint using all six degrees of free-
dom: Ul, U2, U3, R1, R2, and R3

+ Restrain joints that lie on the line of symmetry so that, at most, only axial trans-
lations (U3) and rotations (R3) are permitted

The corresponding constraint equations are:

utj = ulj
u2j = u2i
uzj = u3i
rli=rij

Local Constraint
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r2i = 1)
r3i =13

The numeric subscripts refer to the corresponding joint local coordinate systems.

Cyclic symmetry

Cyclic symmetry is another type of symmetry about a line. It is best described in
terms of a cylindrical coordinate system having its Z axis on the line of symmetry.
The structure, loading, and displacements are each said to be cyclically symmetric
about a line if they vary with angular position in a repeated (periodic) fashion.

To enforce cyclic symmetry using the Local Constraint:
* Model any number of adjacent, representative, cylindrical sectors of the struc-

ture; denote the size of a single sector by the angle 6

» Assign each joint a local coordinate system such that local axes 1, 2, and 3 cor-
respond to the coordinate directions +CR, +CA, and +CZ, respectively

» For each cyclically symmetric set of joints (i.e., having the same coordinates
CR and CZ, but with coordinate CA differing by multiples of 0), define a Local
Constraint using all six degrees of freedom: U1, U2, U3, R1, R2, and R3.

* Restrain joints that lie on the line of symmetry so that, at most, only axial trans-
lations (U3) and rotations (R3) are permitted

The corresponding constraint equations are:

ulj = uti
u2j = u2i
u3j = u3i
Fli=rlj
r2i = raj
r3i=13j

The numeric subscripts refer to the corresponding joint local coordinate systems.

For example, suppose a structure is composed of six identical 60° sectors, identi-
cally loaded. If two adjacent sectors were modeled, each Local Constraint would
apply to a set of two joints, except that three joints would be constrained on the
symmetry planes at 0°, 60°, and 120°.
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Welds
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If a single sector is modeled, only joints on the symmetry planes need to be con-
strained.

Symmetry About a Point

Symmetry about a point is best described in terms of a spherical coordinate system
having its Z axis on the line of symmetry. The structure, loading, and displacements
are each said to be symmetric about a point if they do not vary with angular position
about the point, i.e., they are independent of the angular coordinates SB and SA.
Radial translation is the only displacement component that is permissible.

To enforce symmetry about a point using the Local Constraint:
* Model any spherical sector of the structure using any symmetric mesh of joints
and elements

* Assign each joint a local coordinate system such that local axes 1, 2, and 3 cor-
respond to the coordinate directions +SB, +SA, and +SR, respectively

* For each symmetric set of joints (i.e., having the same coordinate SR, but dif-
ferent coordinates SB and SA), define a Local Constraint using only degree of
freedom U3

* For all joints, restrain the degrees of freedom U1, U2, R1, R2, and R3

* Fully restrain any joints that lie at the point of symmetry
The corresponding constraint equations are:
u3j = u3j
The numeric subscripts refer to the corresponding joint local coordinate systems.

It is also possible to define a case for symmetry about a point that is similar to cyclic
symmetry around a line, e.g., where each octant of the structure is identical.

A Weld can be used to connect together different parts of the structural model that
were defined using separate meshes. A Weld is not a single Constraint, but rather is
a set of joints from which the program will automatically generate multiple Body
Constraints to connect together coincident joints.

Joints are considered to be coincident if the distance between them is less than or
equal to a tolerance, tol, that you specify. Setting the tolerance to zero is permissi-
ble but is not recommended.

Welds
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Figure 12
Use of a Weld to Connect Separate Meshes at Coincident Joints

One or more Welds may be defined, each with its own tolerance. Only the joints
within each Weld will be checked for coincidence with each other. In the most
common case, a single Weld is defined that contains all joints in the model; all coin-
cident groups of joints will be welded. However, in situations where structural dis-
continuity is desired, it may be necessary to prevent the welding of some coincident
joints. This may be facilitated by the use of multiple Welds.

Figure 12 (page 63) shows a model developed as two separate meshes, A and B.
Joints 121 through 125 are associated with mesh A, and Joints 221 through 225 are
associated with mesh B. Joints 121 through 125 share the same location in space as
Joints 221 through 225, respectively. These are the interfacing joints between the
two meshes. To connect these two meshes, a single Weld can be defined containing
all joints, or just joints 121 through 125 and 221 through 225. The program would
generate five Body Constraints, each containing two joints, resulting in an inte-
grated model.

It is permissible to include the same joint in more than one Weld. This could result
in the joints in different Welds being constrained together if they are coincident
with the common joint. For example, suppose that Weld 1 contained joints 1,2, and
3, Weld 2 contained joints 3, 4, and 5. If joints 1, 3, and 5 were coincident, joints 1
and 3 would be constrained by Weld 1, and joints 3 and 5 would be constrained by
Weld 2. The program would create a single Body Constraint containing joints 1, 3,
and 5. One the other hand, if Weld 2 did not contain joint 3, the program would only
generate a Body Constraint containing joint 1 and 3 from Weld 1; joint 5 would not
be constrained.
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For more information, see Topic “Body Constraint” (page 49) in this Chapter.

Automatic Master Joints

64

The program automatically creates an internal master joint for each explicit Con-
straint, and a master joint for each internal Body Constraint that is generated by a
Weld. Each master joint governs the behavior of the corresponding constrained
joints. The displacement at a constrained degree of freedom is computed as a linear
combination of the displacements of the master joint.

See Topic “Degrees of Freedom” (page 29) in Chapter “Joints and Degrees of Free-
dom” for more information.

Stiffness, Mass, and Loads

Joint local coordinate systems, springs, masses, and loads may all be applied to
constrained joints. Elements may also be connected to constrained joints. The joint
and element stiffnesses, masses and loads from the constrained degrees of freedom
are be automatically transferred to the master joint in a consistent fashion.

The translational stiffness at the master joint is the sum of the translational
stiffnesses at the constrained joints. The same is true for translational masses and
loads.

The rotational stiffness at a master joint is the sum of the rotational stiffnesses at the
constrained degrees of freedom, plus the second moment of the translational
stiffnesses at the constrained joints for the Body, Diaphragm, Plate, and Beam Con-
straints. The same is true for rotational masses and loads, except that only the first
moment of the translational loads is used. The moments of the translational
stiffnesses, masses, and loads are taken about the center of mass of the constrained
joints. If the joints have no mass, the centroid is used.

Local Coordinate Systems

Each master joint has fwo local coordinate systems: one for the translational de-
grees of freedom, and one for the rotational degrees of freedom. The axes of each
local system are denoted 1, 2, and 3. For the Local Constraint, these axes corre-
spond to the local axes of the constrained joints. For other types of Constraints,
these axes are chosen to be the principal directions of the translational and rota-
tional masses of the master joint. Using the principal directions eliminates coupling
between the mass components in the master-joint local coordinate system.

Automatic Master Joints
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For a Diaphragm or Plate Constraint, the local 3 axes of the master joint are always
normal to the plane of the Constraint. For a Beam or Rod Constraint, the local 1
axes of the master joint are always parallel to the axis of the Constraint.

Constraint Output

For each Body, Diaphragm, Plate, Rod, and Beam Constraint having more than two
constrained joints, the following information about the Constraint and its master
joint is printed in the output file:

* The translational and rotational local coordinate systems for the master joint

* The total mass and mass moments of inertia for the Constraint that have been
applied to the master joint

* The center of mass for each of the three translational masses

The degrees of freedom are indicated as U1, U2, U3, R1, R2, and R3. These are re-
ferred to the two local coordinate systems of the master joint.
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Chapter VI

Material Properties

The Materials are used to define the mechanical, thermal, and density properties
used by the Frame, Shell, Plane, Asolid, and Solid elements.

Basic Topics for All Users
* Overview
* Local Coordinate System
» Stresses and Strains
* Isotropic Materials
* Mass Density
* Weight Density
* Design-Type Indicator

Advanced Topics
* Orthotropic Materials
* Anisotropic Materials
» Temperature-Dependent Materials

* Element Material Temperature
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* Material Damping
* Time-dependent Properties

» Stress-Strain Curves

Overview

The Material properties may be defined as isotropic, orthotropic or anisotropic.
How the properties are actually utilized depends on the element type. Each Material
that you define may be used by more than one element or element type. For each el-
ement type, the Materials are referenced indirectly through the Section properties
appropriate for that element type.

All elastic material properties may be temperature dependent. Properties are given
at a series of specified temperatures. Properties at other temperatures are obtained
by linear interpolation.

For a given execution of the program, the properties used by an element are as-
sumed to be constant regardless of any temperature changes experienced by the
structure. Each element may be assigned a material temperature that determines
the material properties used for the analysis.

Time-dependent properties include creep, shrinkage, and age-dependent elasticity.
These properties can be activated during a staged-construction analysis, and form
the basis for subsequent analyses.

Nonlinear stress-strain curves may be defined for the purpose of generating frame
hinge properties.

Local Coordinate System

68

Each Material has its own Material local coordinate system used to define the
elastic and thermal properties. This system is significant only for orthotropic and
anisotropic materials. Isotropic materials are independent of any particular coordi-
nate system.

The axes of the Material local coordinate system are denoted 1, 2, and 3. By default,
the Material coordinate system is aligned with the local coordinate system for each
element. However, you may specify a set of one or more material angles that rotate
the Material coordinate system with respect to the element system for those ele-
ments that permit orthotropic or anisotropic properties.

Overview
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Figure 13
Definition of Stress Components in the Material Local Coordinate System

For more information:

* See Topic “Material Angle” (page 139) in Chapter “The Shell Element.”
» See Topic “Material Angle” (page 153) in Chapter “The Plane Element.”
» See Topic “Material Angle” (page 163) in Chapter “The Asolid Element.”
* See Topic “Material Angles” (page 180) in Chapter “The Solid Element.”

Stresses and Strains

The elastic mechanical properties relate the behavior of the stresses and strains
within the Material. The stresses are defined as forces per unit area acting on an ele-
mental cube aligned with the material axes as shown in Figure 13 (page 69). The
stresses G 11, G5y, and c 33 are called the direct stresses and tend to cause length
change, whiles|,,6 3, and G »5 are called the shear stresses and tend to cause angle
change.

Not all stress components exist in every element type. For example, the stresses
Gy, 033, and 6 »3 are assumed to be zero in the Frame element, and stress 6 55 is
taken to be zero in the Shell element.
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The direct strains € ;, € 55, and € 33 measure the change in length along the Material
local 1, 2, and 3 axes, respectively, and are defined as:

e =—
dxl

where u,, u,, and u, are the displacements and x,, x,, and x, are the coordinates in the

P72

Material 1, 2, and 3 directions, respectively.

The engineering shear strains v, Y13, and y,3, measure the change in angle in the
Material local 1-2, 1-3, and 2-3 planes, respectively, and are defined as:

dul dl/lz
Y2 =——+—/—
dx, dx
du du
Y13 =—L+=—=3
dX3 dxl
du du
Y=t
dX3 dX2

Note that the engineering shear strains are equal to twice the tensorial shear strains
€12, €13, and € 53, respectively.

Strains can also be caused by a temperature change, AT, from a zero-stress refer-
ence temperature. No stresses are caused by a temperature change unless the in-
duced thermal strains are restrained.

See Cook, Malkus, and Plesha (1989), or any textbook on elementary mechanics.

Isotropic Materials

The behavior of an isotropic material is independent of the direction of loading or
the orientation of the material. In addition, shearing behavior is uncoupled from ex-
tensional behavior and is not affected by temperature change. Isotropic behavior is
usually assumed for steel and concrete, although this is not always the case.
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The isotropic mechanical and thermal properties relate strain to stress and tempera-
ture change as follows:

1 -ul2 -ul2 0 0 0 (Eqn. 1)
el el el
&1y L2y 5 0 [(oy) [al
el el ;
€ c a
22 11 0 0 0 22 )
€ c a
3 _ e . 3, AT
Y12 — 0 0 O12
gl2
Y13 1 G113
Y23 sym. el2 0 623
b
L gl2 |

where el is Young’s modulus of elasticity, ul2 is Poisson’s ratio, g12 is the shear
modulus, and al is the coefficient of thermal expansion. This relationship holds re-
gardless of the orientation of the Material local 1, 2, and 3 axes.

The shear modulus is not directly specified, but instead is defined in terms of
Young’s modulus and Poisson’s ratio as:

el

gl2=—— —
2(1+ul2)

Note that Young’s modulus must be positive, and Poisson’s ratio must satisfy the
condition:

-l<ul2< 1
2

Orthotropic Materials

The behavior of an orthotropic material can be different in each of the three local
coordinate directions. However, like an isotropic material, shearing behavior is un-
coupled from extensional behavior and is not affected by temperature change.

The orthotropic mechanical and thermal properties relate strain to stress and tem-
perature change as follows:

Orthotropic Materials 71



CSI Analysis Reference Manual
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(Eqn. 2)

where el, e2, and e3 are the moduli of elasticity; ul2, ul3, and u23 are the Pois-
son’s ratios; gl12, g13, and g23 are the shear moduli; and al, a2, and a3 are the coef-
ficients of thermal expansion.

Note that the elastic moduli and the shear moduli must be positive. The Poisson’s
ratios may take on any values provided that the upper-left 3x3 portion of the stress-
strain matrix is positive-definite (i.e., has a positive determinant.)

Anisotropic Materials

72

The behavior of an anisotropic material can be different in each of the three local
coordinate directions. In addition, shearing behavior can be fully coupled with ex-

tensional behavior and can be affected by temperature change.

The anisotropic mechanical and thermal properties relate strain to stress and tem-
perature change as follows:

Anisotropic Materials
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[1 -ul2 -ul3 -ul4 -ul5 -ul6] (Eqn. 3)
el €2 e3 gl2 gl3 @23
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23 - o13 23 23
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where el, €2, and €3 are the moduli of elasticity; ul2, ul3, and u23 are the standard
Poisson’s ratios; ul4, u24..., u56 are the shear and coupling Poisson’s ratios; g12,
g13, and g23 are the shear moduli; al, a2, and a3 are the coefficients of thermal ex-
pansion; and al2, al3, and a23 are the coefficients of thermal shear.

Note that the elastic moduli and the shear moduli must be positive. The Poisson’s
ratios must be chosen so that the 6x6 stress-strain matrix is positive definite. This
means that the determinant of the matrix must be positive.

These material properties can be evaluated directly from laboratory experiments.
Each column of the elasticity matrix represents the six measured strains due to the
application of the appropriate unit stress. The six thermal coefficients are the meas-
ured strains due to a unit temperature change.

Temperature-Dependent Properties

All of the mechanical and thermal properties given in Equations 1 to 3 may depend
upon temperature. These properties are given at a series of specified material tem-
peratures t. Properties at other temperatures are obtained by linear interpolation be-
tween the two nearest specified temperatures. Properties at temperatures outside
the specified range use the properties at the nearest specified temperature. See
Figure 14 (page 74) for examples.

If the Material properties are independent of temperature, you need only specify
them at a single, arbitrary temperature.
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Figure 14
Determination of Property Emarn at Temperature Tmart from Function E(T)

Element Material Temperature

You can assign each element an element material temperature. This is the tem-
perature at which temperature-dependent material properties are evaluated for the
element. The properties at this fixed temperature are used for all analyses regard-
less of any temperature changes experienced by the element during loading. Thus
the material properties are independent of the reference temperature and the load
temperatures.

The element material temperature may be uniform over an element or interpolated
from values given at the joints. In the latter case, a uniform material temperature is
used that is the average of the joint values. The default material temperature for any
element is zero.

The properties for a temperature-independent material are constant regardless of
the element material temperatures specified.

Mass Density

74

For each Material you may specify a mass density, m, that is used for calculating
the mass of the element. The total mass of the element is the product of the mass
density (mass per unit volume) and the volume of the element. This mass is appor-
tioned to each joint of the element. The same mass is applied along of the three

Element Material Temperature
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translational degrees of freedom. No rotational mass moments of inertia are com-
puted.

Consistent mass units must be used. Typically the mass density is the same as the
weight density divided by the acceleration due to gravity, but this is not required.

The mass density property is independent of temperature.
For more information:

* See Topic “Mass” (page 105) in Chapter “The Frame Element.”
* See Topic “Mass” (page 140) in Chapter “The Shell Element.”
* See Topic “Mass” (page 154) in Chapter “The Plane Element.”
* See Topic “Mass” (page 166) in Chapter “The Asolid Element.”
* See Topic “Mass” (page 181) in Chapter “The Solid Element.”

Weight Density

For each Material you may specify a weight density, w, that is used for calculating
the self-weight of the element. The total weight of the element is the product of the
weight density (weight per unit volume) and the volume of the element. This
weight is apportioned to each joint of the element. Self-weight is activated using
Self-weight Load and Gravity Load.

The weight density property is independent of temperature.
For more information:

» See Topic “Self-Weight Load” (page 245) in Chapter “Load Cases.”
* See Topic “Gravity Load” (page 246) in Chapter “Load Cases.”

Material Damping

You may specify material damping to be used in dynamic analyses. Different types
of damping are available for different types of analysis cases. Material damping is a
property of the material and affects all analysis cases of a given type in the same
way. You may specify additional damping in each analysis case.

Because damping has such a significant affect upon dynamic response, you should
use care in defining your damping parameters.
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Modal Damping

The material modal damping available in SAP2000 is stiffness weighted, and is
also known as composite modal damping. It is used for all response-spectrum and
modal time-history analyses. For each material you may specify a material modal
damping ratio, 7, where 0 < r < 1. The damping ratio, r;;, contributed to mode / by el-
ement j of this material is given by
T
r¢,; K j¢ i
e
K.

1

where ¢; is mode shape for mode /, K ; is the stiffness matrix for element j, and K ;
is the modal stiffness for mode / given by

T
K;= Zd)i K j¢i
J
summed over all elements, j, in the model.

Viscous Proportional Damping

Viscous proportional damping is used for direct-integration time-history analyses.
For each material, you may specify a mass coefficient, c,,, and a stiffness coeffi-
cient, cx. The damping matrix for element j of the material is computed as:

Hysteretic Proportional Damping

Hysteretic proportional damping is used for steady-state and power-spectral-den-
sity analyses. For each material, you may specify a mass coefficient, d;,, and a
stiffness coefficient, d ;,. The hysteretic damping matrix for element ;j of the mate-
rial is computed as:

Design-Type
You may specify a design-type for each Material that indicates how it is to be

treated for design by the SAP2000, ETABS, or SAFE graphical user interface. The
available design types are:

76 Design-Type



Chapter VI Material Properties

* Steel: Frame elements made of this material will be designed according to steel
design codes

» Concrete: Frame elements made of this material will be designed according to
concrete design codes

* Aluminum: Frame elements made of this material will be designed according
to aluminum design codes

* Cold-formed: Frame elements made of this material will be designed according
to cold-formed steel design codes

* None: Frame elements made of this material will not be designed

When you choose a design type, additional material properties may be specified
that are used only for design; they do not affect the analysis. Consult the on-line
help and design documentation for further information on these design properties

Time-dependent Properties

For any material having a design type of concrete or steel, you may specify time de-
pendent material properties that are used for creep, shrinkage, and aging effects
during a staged-construction analysis.

For more information, see Topic “Staged Construction” (page 337) in Chapter
“Nonlinear Static Analysis.”

Properties
For concrete-type materials, you may specify:

» Aging parameters that determine the change in modulus of elasticity with age

» Shrinkage parameters that determine the decrease in direct strains with time

* Creep parameters that determine the change in strain with time under the action
of stress

For steel-type materials, relaxation behavior may be specified that determines the
change in strain with time under the action of stress, similar to creep.

Currently these behaviors are specified using CEB-FIP parameters. See Comite
Euro-International Du Beton (1993).
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Time-Integration Control

For each material, you have the option to model the creep behavior by full integra-
tion or by using a Dirichlet series approximation.

With full integration, each increment of stress during the analysis becomes part of
the memory of the material. This leads to accurate results, but for long analyses
with many stress increments, this requires computer storage and execution time
that both increase as the square of the number of increments. For larger problems,
this can make solution impractical.

Using the Dirichlet series approximation (Ketchum, 1986), you can choose a fixed
number of series terms that are to be stored. Each term is modified by the stress in-
crements, but the number of terms does not change during the analysis. This means
the storage and execution time increase linearly with the number of stress incre-
ments. Each term in the Dirichlet series can be thought of as a spring and dashpot
system with a characteristic relaxation time. The program automatically chooses
these spring-dashpot systems based on the number of terms you request. You
should try different numbers of terms and check the analysis results to make sure
that your choice is adequate.

It is recommended that you work with a smaller problem that is representative of
your larger model, and compare various numbers of series terms with the full inte-
gration solution to determine the appropriate series approximation to use.

Stress-Strain Curves
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For each material you may specify one or more stress-strain curves that are used to
generate nonlinear hinge properties in frame elements. The different curves can be
used for different parts of a frame cross section. For example, in a concrete material
you might specify stress-strain curves for confined concrete, unconfined concrete,
longitudinal reinforcing steel, and hoop confinement reinforcing steel. For steel
and other metal materials, you would typically only specify one stress-strain curve.

Currently these curves are used to generate fiber hinges and in hinge models for
frame sections defined in Section Designer.

For more information:

» See Topic “Section Designer Sections” (page 105) in Chapter “The Frame Ele-
ment.”

* See Chapter “Frame Hinge Properties” (page 115).

Stress-Strain Curves
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The Frame/Cable Element

The Frame/Cable element is used to model beam-column and truss behavior in
planar and three-dimensional structures. The Frame/Cable element can also be
used to model cable behavior when nonlinear properties are added (e.g., tension
only, large deflections). Throughout this manual, this element will often be referred
to simply as the Frame element, although it can always be used for cable analysis.

Basic Topics for All Users
* Overview
+ Joint Connectivity
» Degrees of Freedom
* Local Coordinate System
* Section Properties
* Insertion Point
» End Offsets
* End Releases
* Mass
» Self-Weight Load

* Concentrated Span Load
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* Distributed Span Load

* Internal Force Output

Advanced Topics
* Advanced Local Coordinate System
* Property Modifiers
* Nonlinear Properties
* Gravity Load

* Temperature Load

Overview

The Frame element uses a general, three-dimensional, beam-column formulation
which includes the effects of biaxial bending, torsion, axial deformation, and biax-
ial shear deformations. See Bathe and Wilson (1976).

Structures that can be modeled with this element include:

* Three-dimensional frames
* Three-dimensional trusses
* Planar frames
* Planar grillages
* Planar trusses
* Cables
A Frame element is modeled as a straight line connecting two points. In the graphi-

cal user interface, you can divide curved objects into multiple straight objects, sub-
ject to your specification.

Each element has its own local coordinate system for defining section properties
and loads, and for interpreting output.

The element may be prismatic or non-prismatic. The non-prismatic formulation al-
lows the element length to be divided into any number of segments over which
properties may vary. The variation of the bending stiffness may be linear, para-
bolic, or cubic over each segment of length. The axial, shear, torsional, mass, and
weight properties all vary linearly over each segment.
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Insertion points and end offsets are available to account for the finite size of beam
and column intersections. The end offsets may be made partially or fully rigid to
model the stiffening effect that can occur when the ends of an element are embed-
ded in beam and column intersections. End releases are also available to model dif-
ferent fixity conditions at the ends of the element.

Each Frame element may be loaded by gravity (in any direction), multiple concen-
trated loads, multiple distributed loads, strain loads, and loads due to temperature
change.

Element internal forces are produced at the ends of each element and at a user-
specified number of equally-spaced output stations along the length of the element.

Cable behavior is modeled using the frame element and adding the appropriate fea-
tures. You can release the moments at the ends of the elements, although we recom-
mend that you retain small, realistic bending stiffness instead. You can also add
nonlinear behavior as needed, such as the no-compression property, tension stiffen-
ing (p-delta effects), and large deflections. These features require nonlinear analy-
sis.

Joint Connectivity

A Frame element is represented by a straight line connecting two joints, I and j, un-
less modified by joint offsets as described below. The two joints must not share the
same location in space. The two ends of the element are denoted end I and end J, re-
spectively.

By default, the neutral axis of the element runs along the line connecting the two
joints. However, you can change this using the insertion point, as described in
Topic “Insertion Point” (page 98).

Joint Offsets

Sometimes the axis of the element cannot be conveniently specified by joints that
connect to other elements in the structure. You have the option to specify joint off-
sets independently at each end of the element. These are given as the three distance
components (X, Y, and Z) parallel to the global axes, measured from the joint to the
end of the element (at the insertion point.)

The two locations given by the coordinates of joints I and j, plus the corresponding
joint offsets, define the axis of the element. These two locations must not be coinci-
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dent. It is generally recommended that the offsets be perpendicular to the axis of the
element, although this is not required.

Offsets along the axis of the element are usually specified using end offsets rather
than joint offsets. See topic “End Offsets” (page 99). End offsets are part of the
length of the element, have element properties and loads, and may or may not be
rigid. Joint offsets are external to the element, and do not have any mass or loads.
Internally the program creates a fully rigid constraint along the joints offsets.

Joint offsets are specified along with the cardinal point as part of the insertion point
assignment, even though they are independent features.

For more information:

* See Topic “Insertion Point” (page 98) in this Chapter.
* See Topic “End Offsets” (page 99) in this Chapter.

Degrees of Freedom

The Frame element activates all six degrees of freedom at both of its connected
joints. If you want to model truss or cable elements that do not transmit moments at
the ends, you may either:

* Set the geometric Section properties j, i33, and i22 all to zero (a is non-zero;
as2 and as3 are arbitrary), or

* Release both bending rotations, R2 and R3, at both ends and release the tor-
sional rotation, R1, at either end

For more information:

* See Topic “Degrees of Freedom” (page 29) in Chapter “Joints and Degrees of
Freedom.”

» See Topic “Section Properties” (page 88) in this Chapter.

* See Topic “End Offsets” (page 99) in this Chapter.

* See Topic “End Releases” (page 103) in this Chapter.

Local Coordinate System

Each Frame element has its own element local coordinate system used to define
section properties, loads and output. The axes of this local system are denoted 1, 2
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and 3. The first axis is directed along the length of the element; the remaining two
axes lie in the plane perpendicular to the element with an orientation that you spec-
ify.

It is important that you clearly understand the definition of the element local 1-2-3
coordinate system and its relationship to the global X-Y-Z coordinate system. Both

systems are right-handed coordinate systems. It is up to you to define local systems
which simplify data input and interpretation of results.

In most structures the definition of the element local coordinate system is ex-
tremely simple. The methods provided, however, provide sufficient power and
flexibility to describe the orientation of Frame elements in the most complicated
situations.

The simplest method, using the default orientation and the Frame element coor-
dinate angle, is described in this topic. Additional methods for defining the Frame
element local coordinate system are described in the next topic.

For more information:

* See Chapter “Coordinate Systems” (page 11) for a description of the concepts
and terminology used in this topic.

* See Topic “Advanced Local Coordinate System” (page 85) in this Chapter.

Longitudinal Axis |

Local axis 1 is always the longitudinal axis of the element, the positive direction be-
ing directed from end I to end J.

Specifically, end I is joint I plus its joint offsets (if any), and end J is joint j plus its
joint offsets (if any.) The axis is determined independently of the cardinal point; see
Topic “Insertion Point” (page 98.)

Default Orientation

The default orientation of the local 2 and 3 axes is determined by the relationship
between the local 1 axis and the global Z axis:

» The local 1-2 plane is taken to be vertical, i.e., parallel to the Z axis
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Local 1 Axis is Parallel to +Y Axis
Local 2 Axis is Rotated 90° from Z-1 Plane

N <] i/'s
ang=90°

Local 1 Axis is Parallel to +Z Axis

Local 2 Axis is Rotated 90° from X-1 Plane

ang=30°

Local 1 Axis is Not Parallel to X, Y, or Z Axes
Local 2 Axis is Rotated 30° from Z-1 Plane

Local 1 Axis is Parallel to —Z Axis
Local 2 Axis is Rotated 30° from X-1 Plane

Figure 15

The Frame Element Coordinate Angle with Respect to the Default Orientation

* Thelocal 2 axis is taken to have an upward (+Z) sense unless the element is ver-
tical, in which case the local 2 axis is taken to be horizontal along the global +X

direction

* The local 3 axis is horizontal, i.e., it lies in the X-Y plane

84 Local Coordinate System



Chapter VIl The Frame/Cable Element

An element is considered to be vertical if the sine of the angle between the local 1
axis and the Z axis is less than 10°.

The local 2 axis makes the same angle with the vertical axis as the local 1 axis
makes with the horizontal plane. This means that the local 2 axis points vertically
upward for horizontal elements.

Coordinate Angle

The Frame element coordinate angle, ang, is used to define element orientations
that are different from the default orientation. It is the angle through which the local
2 and 3 axes are rotated about the positive local 1 axis from the default orientation.
The rotation for a positive value of ang appears counterclockwise when the local
+1 axis is pointing toward you.

For vertical elements, ang is the angle between the local 2 axis and the horizontal
+X axis. Otherwise, ang is the angle between the local 2 axis and the vertical plane
containing the local 1 axis. See Figure 15 (page 84) for examples.

Advanced Local Coordinate System

By default, the element local coordinate system is defined using the element coor-
dinate angle measured with respect to the global +Z and +X directions, as described
in the previous topic. In certain modeling situations it may be useful to have more
control over the specification of the local coordinate system.

This topic describes how to define the orientation of the transverse local 2 and 3
axes with respect to an arbitrary reference vector when the element coordinate an-
gle, ang, is zero. If ang is different from zero, it is the angle through which the local
2 and 3 axes are rotated about the positive local 1 axis from the orientation deter-
mined by the reference vector. The local 1 axis is always directed from end I to end
J of the element.

For more information:

* See Chapter “Coordinate Systems” (page 11) for a description of the concepts
and terminology used in this topic.

» See Topic “Local Coordinate System” (page 82) in this Chapter.
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Reference Vector

To define the transverse local axes 2 and 3, you specify a reference vector that is
parallel to the desired 1-2 or 1-3 plane. The reference vector must have a positive
projection upon the corresponding transverse local axis (2 or 3, respectively). This
means that the positive direction of the reference vector must make an angle of less
than 90° with the positive direction of the desired transverse axis.

To define the reference vector, you must first specify or use the default values for:

* A primary coordinate direction pldirp (the default is +Z)

* A secondary coordinate direction pldirs (the default is +X). Directions pldirs
and pldirp should not be parallel to each other unless you are sure that they are
not parallel to local axis 1

* A fixed coordinate system csys (the default is zero, indicating the global coor-
dinate system)

* The local plane, local, to be determined by the reference vector (the default is
12, indicating plane 1-2)

You may optionally specify:

* A pair of joints, plveca and plvecb (the default for each is zero, indicating the
center of the element). If both are zero, this option is not used

For each element, the reference vector is determined as follows:

1. A vector is found from joint plveca to joint plvecb. If this vector is of finite
length and is not parallel to local axis 1, it is used as the reference vector V,,

2. Otherwise, the primary coordinate direction pldirp is evaluated at the center of
the element in fixed coordinate system csys. If this direction is not parallel to
local axis 1, it is used as the reference vector v,

3. Otherwise, the secondary coordinate direction pldirs is evaluated at the center
of the element in fixed coordinate system csys. If this direction is not parallel to
local axis 1, it is used as the reference vector v,

4. Otherwise, the method fails and the analysis terminates. This will never happen
if pldirp is not parallel to pldirs

A vector is considered to be parallel to local axis 1 if the sine of the angle between
them is less than 107,
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pldirp = +Y
pldirs = -X
local = 12

Local 1 Axis is Not Parallel to pldirp (+Y) Local 1 Axis is Parallel to pldirp (+Y)
Local 2 Axis is Rotated 90° from Y-1 Plane Local 2 Axis is Rotated 90° from X-1 Plane

Figure 16
The Frame Element Coordinate Angle with Respect to Coordinate Directions

The use of the Frame element coordinate angle in conjunction with coordinate di-
rections that define the reference vector is illustrated in Figure 16 (page 87). The
use of joints to define the reference vector is shown in Figure 17 (page 88).

Determining Transverse Axes 2 and 3

The program uses vector cross products to determine the transverse axes 2 and 3
once the reference vector has been specified. The three axes are represented by the
three unit vectors V|, V, and V3, respectively. The vectors satisfy the cross-product
relationship:

Vl = Vz X V3

The transverse axes 2 and 3 are defined as follows:

+ Ifthe reference vector is parallel to the 1-2 plane, then:
V3=V, xV, and
V, =V xV,

* If the reference vector is parallel to the 1-3 plane, then:
V,=V,xV, and
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The following two specifications are equivalent: Plane 1-2 Vp (a)
(a) local=12, plveca=0, plvecb=100 Axis 1
(b) local=13, plveca=101, plvecb=102

<V

Figure 17
Using Joints to Define the Frame Element Local Coordinate System

V3 :V1 XV2

In the common case where the reference vector is perpendicular to axis V, the
transverse axis in the selected plane will be equal to V.

Section Properties

A Frame Section is a set of material and geometric properties that describe the
cross-section of one or more Frame elements. Sections are defined independently
of the Frame elements, and are assigned to the elements.

Section properties are of two basic types:

* Prismatic — all properties are constant along the full element length

* Non-prismatic — the properties may vary along the element length

Non-prismatic Sections are defined by referring to two or more previously defined
prismatic Sections.
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All of the following subtopics, except the last, describe the definition of prismatic
Sections. The last subtopic, “Non-prismatic Sections”, describes how prismatic
Sections are used to define non-prismatic Sections.

Local Coordinate System

Section properties are defined with respect to the local coordinate system of a
Frame element as follows:

» The 1 direction is along the axis of the element. It is normal to the Section and
goes through the intersection of the two neutral axes of the Section.

* The 2 and 3 directions are parallel to the neutral axes of the Section. Usually the
2 direction is taken along the major dimension (depth) of the Section, and the 3
direction along its minor dimension (width), but this is not required.

See Topic “Local Coordinate System” (page 82) in this Chapter for more informa-
tion.

Material Properties

The material properties for the Section are specified by reference to a previously-
defined Material. Isotropic material properties are used, even if the Material se-
lected was defined as orthotropic or anisotropic. The material properties used by
the Section are:

» The modulus of elasticity, el, for axial stiffness and bending stiffness

» The shear modulus, g12, for torsional stiffness and transverse shear stiffness

» The coefficient of thermal expansion, al, for axial expansion and thermal
bending strain

» The mass density, m, for computing element mass

» The weight density, w, for computing Self-Weight and Gravity Loads

The material properties el, g12, and al are all obtained at the material temperature
of each individual Frame element, and hence may not be unique for a given Section.

See Chapter “Material Properties” (page 67) for more information.

Geometric Properties and Section Stiffnesses

Six basic geometric properties are used, together with the material properties, to
generate the stiffnesses of the Section. These are:
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» The cross-sectional area, a. The axial stiffness of the Section is givenby a -el;

* The moment of inertia, i33, about the 3 axis for bending in the 1-2 plane, and
the moment of inertia, i22, about the 2 axis for bending in the 1-3 plane. The
corresponding bending stiffnesses of the Section are given by i33-el and
i22 -el;

* The torsional constant, j. The torsional stiffness of the Section is given by
j-g12. Note that the torsional constant is not the same as the polar moment of
inertia, except for circular shapes. See Roark and Young (1975) or Cook and
Young (1985) for more information.

* The shear areas, as2 and as3, for transverse shear in the 1-2 and 1-3 planes, re-
spectively. The corresponding transverse shear stiffnesses of the Section are
given by as2-gl12 and as3 -g12. Formulae for calculating the shear areas of
typical sections are given in Figure 18 (page 91).

Setting a, j, 133, or i22 to zero causes the corresponding section stiffness to be zero.
For example, a truss member can be modeled by setting j = i33 =i22 =0, and a pla-
nar frame member in the 1-2 plane can be modeled by setting j = i22 = 0.

Setting as2 or as3 to zero causes the corresponding transverse shear deformation to
be zero. In effect, a zero shear area is interpreted as being infinite. The transverse
shear stiffness is ignored if the corresponding bending stiffness is zero.

Shape Type

For each Section, the six geometric properties (a, j, i33, i22, as2 and as3) may be
specified directly, computed from specified Section dimensions, or read from a
specified property database file. This is determined by the shape type, shape, speci-
fied by the user:

» If shape=GENERAL (general section), the six geometric properties must be
explicitly specified

» If shape=RECTANGLE, PIPE, BOX/TUBE, I/WIDE FLANGE, or one of
several others offered by the program, the six geometric properties are auto-
matically calculated from specified Section dimensions as described in “Auto-
matic Section Property Calculation” below, or obtained from a specified prop-
erty database file. See “Section Property Database Files” below.

+ If shape=SD SECTION (Section Designer Section), you can create our own
arbitrary Sections using the Section Designer utility within the program, and
the six geometric properties are automatically calculated. See “Section De-
signer Sections” below.
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* Ifshape=NONPRISMATIC, the Section is interpolated along the length of the
element from previously defined Sections as described in ‘“Nonprismatic
Section” below.

Automatic Section Property Calculation

The six geometric Section properties can be automatically calculated from speci-
fied dimensions for the simple shapes shown in Figure 19 (page 93), and for others
offered by the program. The required dimensions for each shape are shown in the
figure.

Note that the dimension t3 is the depth of the Section in the 2 direction and contrib-
utes primarily to i33.

Section Property Database Files

Geometric Section properties may be obtained from one or more Section property
database files. Several database files are currently supplied with SAP2000,
including:

* AA6061-T6.pro: American aluminum shapes

* AISC3.pro: American steel shapes

» BSShapes.pro: British steel shapes

* Chinese.pro: Chinese steel shapes

* CISC.pro: Canadian steel shapes

* EURO.pro: European steel shapes

* SECTIONSS.PRO: This is just a copy of AISC3.PRO.

Additional property database files may be created using the Excel macro
PROPER .xls, which is available upon request from Computers and Structures, Inc.
The geometric properties are stored in the length units specified when the database
file was created. These are automatically converted by SAP2000 to the units used
in the input data file.

Each shape type stored in a database file may be referenced by one or two different
labels. For example, the W36x300 shape type in file AISC3.PRO may be refer-
enced either by label “W36X300” or by label “W920X446”. Shape types stored in
CISC.PRO may only be referenced by a single label.

You may select one database file to be used when defining a given Frame Section.
The database file in use can be changed at any time when defining Sections. If no
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Automatic Section Property Calculation

database filename is specified, the default file SECTIONSS8.PRO is used. You may
copy any property database file to SECTIONSS.PRO.
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All Section property database files, including file SECTIONSS.PRO, must be lo-
cated either in the directory that contains the input data file, or in the directory that
contains the SAP2000 executable files. If a specified database file is present in both
directories, the program will use the file in the input-data-file directory.

Section-Designer Sections

Section Designer is a separate utility built into SAP2000 and ETABS that can be
used to create your own frame section properties. You can build sections of arbi-
trary geometry and combinations of materials. The basic analysis geometric prop-
erties (areas, moments of inertia, and torsional constant) are computed and used for
analysis. In addition, Section Designer can compute nonlinear frame hinge proper-
ties.

For more information, see the on-line help within Section Designer.

Additional Mass and Weight

You may specify mass and/or weight for a Section that acts in addition to the mass
and weight of the material. The additional mass and weight are specified per unit of
length using the parameters mpl and wpl, respectively. They could be used, for ex-
ample, to represent the effects of nonstructural material that is attached to a Frame
element.

The additional mass and weight act regardless of the cross-sectional area of the
Section. The default values for mpl and wpl are zero for all shape types.

Non-prismatic Sections

Non-prismatic Sections may be defined for which the properties vary along the ele-
ment length. You may specify that the element length be divided into any number
of segments; these do not need to be of equal length. Most common situations can
be modeled using from one to five segments.

The variation of the bending stiffnesses may be linear, parabolic, or cubic over each
segment of length. The axial, shear, torsional, mass, and weight properties all vary
linearly over each segment. Section properties may change discontinuously from
one segment to the next.

See Figure 20 (page 95) for examples of non-prismatic Sections.
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Segment Lengths

The length of a non-prismatic segment may be specified as either a variable length,
vl, or an absolute length, 1. The default is vl = 1.

When a non-prismatic Section is assigned to an element, the actual lengths of each
segment for that element are determined as follows:

* The clear length of the element, L, is first calculated as the total length minus
the end offsets:
L. =L—(ioff + joff )
See Topic “End Offsets” (page 99) in this Chapter for more information.

* Ifthe sum of the absolute lengths of the segments exceeds the clear length, they
are scaled down proportionately so that the sum equals the clear length. Other-
wise the absolute lengths are used as specified.

* The remaining length (the clear length minus the sum of the absolute lengths) is
divided among the segments having variable lengths in the same proportion as
the specified lengths. For example, for two segments with vi=1 and vl=2, one
third of the remaining length would go to the first segment, and two thirds to
the second segment.

Starting and Ending Sections
The properties for a segment are defined by specifying:

* The label, seci, of a previously defined prismatic Section that defines the prop-
erties at the start of the segment, i.e., at the end closest to joint L.

» The label, secj, of a previously defined prismatic Section that defines the prop-
erties at the end of the segment, i.e., at the end closest to joint j. The starting and
ending Sections may be the same if the properties are constant over the length
of the segment.

The Material would normally be the same for both the starting and ending Sections
and only the geometric properties would differ, but this is not required.

Variation of Properties

Non-prismatic Section properties are interpolated along the length of each segment
from the values at the two ends.

The variation of the bending stiffnesses, i33-el and i22-el, are defined by specify-
ing the parameters eivar33 and eivar22, respectively. Assign values of 1,2, or 3 to

Section Properties



Chapter VIl The Frame/Cable Element

these parameters to indicate variation along the length that is linear, parabolic, or
cubic, respectively.

Specifically, the eivar33-th root of the bending stiffness in the 1-2 plane:
eivar33 m

varies linearly along the length. This usually corresponds to a linear variation in
one of the Section dimensions. For example, referring to Figure 19 (page 93): a lin-
ear variation in t2 for the rectangular shape would require eivar33=1, a linear
variation in t3 for the rectangular shape would require eivar33=3, and a linear
variation in t3 for the I-shape would require eivar33=2.

The interpolation of the bending stiffness in the 1-2 plane, i22 - el, is defined in the
same manner by the parameter eivar22.

The remaining properties are assumed to vary linearly between the ends of each
segment:

 Stiffnesses: a-el, j-g12, as2-g12, and as3 -g12
* Mass: a-m + mpl
* Weight: a-w + wpl
If a shear area is zero at either end, it is taken to be zero along the full segment, thus

eliminating all shear deformation in the corresponding bending plane for that seg-
ment.

Effect upon End Offsets

Properties vary only along the clear length of the element. Section properties within
end offset ioff are constant using the starting Section of the first segment. Section
properties within end offset joff are constant using the ending Section of the last
segment.

See Topic “End Offsets” (page 99) in this Chapter for more information.

Property Modifiers

You may specify scale factors to modify the computed section properties. These
may be used, for example, to account for cracking of concrete or for other factors
not easily described in the geometry and material property values. Individual
modifiers are available for the following eight terms:

Property Modifiers 97



CSI Analysis Reference Manual

* The axial stiffness a -el

* The shear stiffnesses as2 -g12 and as3 -g12
* The torsional stiffness j-g12

» The bending stiffnesses i33 -el and i22 -el
* The section mass a-m + mpl

* The section weight a-w + wpl
You may specify multiplicative factors in two places:

* As part of the definition of the section property

* As an assignment to individual elements.

If modifiers are assigned to an element and also to the section property used by that
element, the both sets of factors multiply the section properties. Modifiers cannot
be assigned directly to a nonprismatic section property, but any modifiers applied
to the sections contributing to the nonprismatic section are used.

Insertion Point

98

By default the local 1 axis of the element runs along the neutral axis of the section,
i.e., at the centroid of the section. It is often convenient to specify another location
on the section, such as the top of a beam or an outside corner of a column. This loca-
tion is called the cardinal point of the section.

The available cardinal point choices are shown in Figure 21 (page 99). The default
location is point 10.

Joint offsets are specified along with the cardinal point as part of the insertion point
assignment, even though they are independent features. Joint offsets are used first
to calculate the element axis and therefore the local coordinate system, then the car-
dinal point is located in the resulting local 2-3 plane.

This feature is useful, as an example, for modeling beams and columns when the
beams do not frame into the center of the column. Figure 22 (page 100) shows an el-
evation and plan view of a common framing arrangement where the exterior beams
are offset from the column center lines to be flush with the exterior of the building.
Also shown in this figure are the cardinal points for each member and the joint off-
set dimensions.
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Frame Cardinal Points

End Offsets

Frame elements are modeled as line elements connected at points (joints). How-
ever, actual structural members have finite cross-sectional dimensions. When two
elements, such as a beam and column, are connected at a joint there is some overlap
of the cross sections. In many structures the dimensions of the members are large
and the length of the overlap can be a significant fraction of the total length of a
connecting element.

You may specify two end offsets for each element using parameters ioff and joff
corresponding to ends I and J, respectively. End offset ioff is the length of overlap
for a given element with other connecting elements at joint L. It is the distance from
the joint to the face of the connection for the given element. A similar definition ap-
plies to end offset joff at joint j. See Figure 23 (page 101).

End offsets are automatically calculated by the SAP2000 graphical interface for
each element based on the maximum Section dimensions of all other elements that
connect to that element at a common joint.
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Example Showing Joint Offsets and Cardinal Points

Clear Length

The clear length, denoted L_, is defined to be the length between the end offsets
(support faces) as:
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Figure 23
Frame Element End Offsets

L. =L—(ioff + joff )
where L is the total element length. See Figure 23 (page 101).

If end offsets are specified such that the clear length is less than 1% of the total ele-
ment length, the program will issue a warning and reduce the end offsets propor-
tionately so that the clear length is equal to 1% of the total length. Normally the end
offsets should be a much smaller proportion of the total length.

Rigid-end Factor

An analysis based upon the centerline-to-centerline (joint-to-joint) geometry of
Frame elements may overestimate deflections in some structures. This is due to the
stiffening effect caused by overlapping cross sections at a connection. It is more
likely to be significant in concrete than in steel structures.

You may specify a rigid-end factor for each element using parameter rigid, which
gives the fraction of each end offset that is assumed to be rigid for bending and
shear deformation. The length rigid-ioff, starting from joint I, is assumed to be
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rigid. Similarly, the length rigid-joff is rigid at joint j. The flexible length L , of the

element is given by:
Ly =L —rigid (ioff + joff )

The rigid-zone offsets never affect axial and torsional deformation. The full ele-
ment length is assumed to be flexible for these deformations.

The default value for rigid is zero. The maximum value of unity would indicate that
the end offsets are fully rigid. You must use engineering judgment to select the ap-
propriate value for this parameter. It will depend upon the geometry of the connec-
tion, and may be different for the different elements that frame into the connection.
Typically the value for rigid would not exceed about 0.5.

Effect upon Non-prismatic Elements

At each end of a non-prismatic element, the Section properties are assumed to be
constant within the length of the end offset. Section properties vary only along the
clear length of the element between support faces. This is not affected by the value
of the rigid-end factor, rigid.

See Subtopic “Non-prismatic Sections” (page 94) in this Chapter for more informa-
tion.

Effect upon Internal Force Output

All internal forces and moments are output at the faces of the supports and at other
equally-spaced points within the clear length of the element. No output is produced
within the end offset, which includes the joint. This is not affected by the value of
the rigid-end factor, rigid.

See Topic “Internal Force Output” (page 112) in this Chapter for more information.

Effect upon End Releases

End releases are always assumed to be at the support faces, i.e., at the ends of the
clear length of the element. If a moment or shear release is specified in either bend-
ing plane at either end of the element, the end offset is assumed to be rigid for bend-
ing and shear in that plane at that end (i.e., it acts as if rigid = 1). This does not af-
fect the values of the rigid-end factor at the other end or in the other bending plane.

See Topic “End Releases” (page 103) in this Chapter for more information.
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End Releases

Normally, the three translational and three rotational degrees of freedom at each
end of the Frame element are continuous with those of the joint, and hence with
those of all other elements connected to that joint. However, it is possible to release
(disconnect) one or more of the element degrees of freedom from the joint when it
is known that the corresponding element force or moment is zero. The releases are
always specified in the element local coordinate system, and do not affect any other
element connected to the joint.

In the example shown in Figure 24 (page 103), the diagonal element has a moment
connection at End I and a pin connection at End J. The other two elements connect-
ing to the joint at End J are continuous. Therefore, in order to model the pin condi-
tion the rotation R3 at End J of the diagonal element should be released. This as-
sures that the moment is zero at the pin in the diagonal element.
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Unstable End Releases

Any combination of end releases may be specified for a Frame element provided
that the element remains stable; this assures that all load applied to the element is
transferred to the rest of the structure. The following sets of releases are unstable,
either alone or in combination, and are not permitted.

* Releasing U1 at both ends;

* Releasing U2 at both ends;

* Releasing U3 at both ends;

* Releasing R1 at both ends;

* Releasing R2 at both ends and U3 at either end;

* Releasing R3 at both ends and U2 at either end.

Effect of End Offsets

End releases are always applied at the support faces, i.e., at the ends of the element
clear length. The presence of a moment or shear release will cause the end offset to
be rigid in the corresponding bending plane at the corresponding end of the ele-
ment.

See Topic “End Offsets” (page 99) in this Chapter for more information.

Nonlinear Properties

Two types of nonlinear properties are available for the Frame/Cable element: ten-
sion/compression limits and plastic hinges.

When nonlinear properties are present in the element, they only affect nonlinear
analyses. Linear analyses starting from zero conditions (the unstressed state) be-
have as if the nonlinear properties were not present. Linear analyses using the stiff-
ness from the end of a previous nonlinear analysis use the stiffness of the nonlinear
property as it existed at the end of the nonlinear case.

Tension/Compression Limits

You may specify a maximum tension and/or a maximum compression that a
frame/cable element may take. In the most common case, you can define a no-com-
pression cable or brace by specifying the compression limit to be zero.
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If you specify a tension limit, it must be zero or a positive value. If you specify a
compression limit, it must be zero or a negative value. If you specify a tension and
compression limit of zero, the element will carry no axial force.

The tension/compression limit behavior is elastic. Any axial extension beyond the
tension limit and axial shortening beyond the compression limit will occur with
zero axial stiffness. These deformations are recovered elastically at zero stiffness.

Bending, shear, and torsional behavior are not affected by the axial nonlinearity.

Plastic Hinge

Mass

You may insert plastic hinges at any number of locations along the clear length of
the element. Detailed description of the behavior and use of plastic hinges is pre-
sented in Chapter “Frame Hinge Properties” (page 115).

In a dynamic analysis, the mass of the structure is used to compute inertial forces.
The mass contributed by the Frame element is lumped at the joints I and j. No iner-
tial effects are considered within the element itself.

The total mass of the element is equal to the integral along the length of the mass
density, m, multiplied by the cross-sectional area, a, plus the additional mass per
unit length, mpl.

For non-prismatic elements, the mass varies linearly over each non-prismatic seg-
ment of the element, and is constant within the end offsets.

The total mass is apportioned to the two joints in the same way a similarly-
distributed transverse load would cause reactions at the ends of a simply-supported
beam. The effects of end releases are ignored when apportioning mass. The total
mass is applied to each of the three translational degrees of freedom: UX, UY, and
UZ. No mass moments of inertia are computed for the rotational degrees of free-
dom.

For more information:

* See Topic “Mass Density” (page 74) in Chapter “Material Properties.”

» See Topic “Section Properties” (page 88) in this Chapter for the definition of a
and mpl.

* See Subtopic “Non-prismatic Sections” (page 94) in this Chapter.
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* See Topic “End Offsets” (page 99) in this Chapter.
* See Chapter “Static and Dynamic Analysis” (page 255).

Self-Weight Load

Self-Weight Load activates the self-weight of all elements in the model. For a
Frame element, the self-weight is a force that is distributed along the length of the
element. The magnitude of the self-weight is equal to the weight density, w, multi-
plied by the cross-sectional area, a, plus the additional weight per unit length, wpl.

For non-prismatic elements, the self-weight varies linearly over each non-prismatic
segment of the element, and is constant within the end offsets.

Self-Weight Load always acts downward, in the global —Z direction. You may
scale the self-weight by a single scale factor that applies equally to all elements in
the structure.

For more information:
* See Topic “Weight Density” (page 75) in Chapter “Material Properties” for the

definition of w.

* See Topic “Section Properties” (page 88) in this Chapter for the definition of a
and wpl..

* See Subtopic “Non-prismatic Sections” (page 94) in this Chapter.
* See Topic “End Offsets” (page 99) in this Chapter.
* See Topic “Self-Weight Load” (page 245) in Chapter “Load Cases.”

Gravity Load

106

Gravity Load can be applied to each Frame element to activate the self-weight of
the element. Using Gravity Load, the self-weight can be scaled and applied in any
direction. Different scale factors and directions can be applied to each element.

If all elements are to be loaded equally and in the downward direction, it is more
convenient to use Self-Weight Load.

For more information:

* See Topic “Self-Weight Load” (page 106) in this Chapter for the definition of
self-weight for the Frame element.

Self-Weight Load
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* See Topic “Gravity Load” (page 246) in Chapter “Load Cases.”

Concentrated Span Load

The Concentrated Span Load is used to apply concentrated forces and moments at
arbitrary locations on Frame elements. The direction of loading may be specified in
a fixed coordinate system (global or alternate coordinates) or in the element local
coordinate system.

The location of the load may be specified in one of the following ways:

* Specifying a relative distance, rd, measured from joint I. This must satisfy
0<rd <1 The relative distance is the fraction of element length;

* Specifying an absolute distance, d, measured from joint I. This must satisfy
0 <d < L, where L is the element length.

Any number of concentrated loads may be applied to each element. Loads given in
fixed coordinates are transformed to the element local coordinate system. See
Figure 25 (page 108). Multiple loads that are applied at the same location are added
together.

See Chapter “Load Cases” (page 241) for more information.

Distributed Span Load

The Distributed Span Load is used to apply distributed forces and moments on
Frame elements. The load intensity may be uniform or trapezoidal. The direction of
loading may be specified in a fixed coordinate system (global or alternate coordi-
nates) or in the element local coordinate system.

See Chapter “Load Cases” (page 241) for more information.

Loaded Length

Loads may apply to full or partial element lengths. Multiple loads may be applied to
a single element. The loaded lengths may overlap, in which case the applied loads
are additive.

A loaded length may be specified in one of the following ways:
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Examples of the Definition of Concentrated Span Loads

* Specifying two relative distances, rda and rdb, measured from joint I. They
must satisfy 0 < rda< rdb <1. The relative distance is the fraction of element
length;

* Specifying two absolute distances, da and db, measured from joint I. They
must satisfy 0 < da< db < L, where L is the element length;

* Specifying no distances, which indicates the full length of the element.

Load Intensity

The load intensity is a force or moment per unit of length. Except for the case of
projected loads described below, the intensity is measured per unit of element
length.

For each force or moment component to be applied, a single load value may be
given if the load is uniformly distributed. Two load values are needed if the load in-
tensity varies linearly over its range of application (a trapezoidal load).
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See Figure 26 (page 110) and Figure 27 (page 111).

Projected Loads

A distributed snow or wind load produces a load intensity (force per unit of element
length) that is proportional to the sine of the angle between the element and the di-
rection of loading. This is equivalent to using a fixed load intensity that is measured
per unit of projected element length. The fixed intensity would be based upon the
depth of snow or the wind speed; the projected element length is measured in a
plane perpendicular to the direction of loading.

Distributed Span Loads may be specified as acting upon the projected length. The
program handles this by reducing the load intensity according to the angle, 6, be-
tween the element local 1 axis and the direction of loading. Projected force loads
are scaled by sin6, and projected moment loads are scaled by cos6. The reduced
load intensities are then applied per unit of element length.

The scaling of the moment loads is based upon the assumption that the moment is
caused by a force acting upon the projected element length. The resulting moment
is always perpendicular to the force, thus accounting for the use of the cosine in-
stead of the sine of the angle. The specified intensity of the moment should be com-
puted as the product of the force intensity and the perpendicular distance from the
element to the force. The appropriate sign of the moment must be given.

Temperature Load

The Temperature Load creates thermal strain in the Frame element. This strain is
given by the product of the Material coefficient of thermal expansion and the tem-
perature change of the element. The temperature change is measured from the ele-
ment Reference Temperature to the element Load Temperature.

Three independent Load Temperature fields may be specified:
» Temperature, t, which is constant over the cross section and produces axial
strains

» Temperature gradient, t2, which is linear in the local 2 direction and produces
bending strains in the 1-2 plane

* Temperature gradient, t3, which is linear in the local 3 direction and produces
bending strains in the 1-3 plane
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Local 2 Force

z

Local 2 Moment

Global
All loads applied from rda=0.25 to rdb=0.75

Figure 26
Examples of the Definition of Distributed Span Loads
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Figure 27

Examples of Distributed Span Loads
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Temperature gradients are specified as the change in temperature per unit length.
The temperature gradients are positive if the temperature increases (linearly) in the
positive direction of the element local axis. The gradient temperatures are zero at
the neutral axes, hence no axial strain is induced.

Each of the three Load Temperature fields may be constant along the element
length or interpolated from values given at the joints.

The Reference Temperature gradients are always taken to be zero, hence the tem-
perature changes that produce the bending strain are equal to the Load Temperature
gradients.

See Chapter “Load Cases” (page 241) for more information.

Internal Force Output
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The Frame element internal forces are the forces and moments that result from in-
tegrating the stresses over an element cross section. These internal forces are:

e P, the axial force

* V2, the shear force in the 1-2 plane

* V3, the shear force in the 1-3 plane

* T, the axial torque

* M2, the bending moment in the 1-3 plane (about the 2 axis)

* M3, the bending moment in the 1-2 plane (about the 3 axis)

These internal forces and moments are present at every cross section along the
length of the element, and may be requested as part of the analysis results.

The sign convention is illustrated in Figure 28 (page 113). Positive internal forces
and axial torque acting on a positive 1 face are oriented in the positive direction of
the element local coordinate axes. Positive internal forces and axial torque acting
on a negative face are oriented in the negative direction of the element local coordi-
nate axes. A positive 1 face is one whose outward normal (pointing away from ele-
ment) is in the positive local 1 direction.

Positive bending moments cause compression at the positive 2 and 3 faces and ten-
sion at the negative 2 and 3 faces. The positive 2 and 3 faces are those faces in the
positive local 2 and 3 directions, respectively, from the neutral axis.

Internal Force Output
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Axis 2

Positive Axial Force and Torque

Axis 3

Compression Face

Positive Moment and Shear Axis 1
in the 1-2 Plane /

M3
V2 \ Tension Face
Positive Moment and Shear Axis 2
in the 1-3 Plane XS # M2 Axis 1
Tension Face r\ /
. V3

V3
Compression Face

Axis 3

Figure 28
Frame Element Internal Forces and Moments

Internal Force Output
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Effect of End Offsets

When end offsets are present, internal forces and moments are output at the faces of
the supports and at points within the clear length of the element. No output is pro-
duced within the length of the end offset, which includes the joint. Output will only
be produced at joints I or j when the corresponding end offset is zero.

See Topic “End Offsets” (page 99) in this Chapter for more information.
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Frame Hinge Properties

You may insert plastic hinges at any number of locations along the clear length of
any Frame element or Cable or Tendon object. Each hinge represents concentrated
post-yield behavior in one or more degrees of freedom. Hinges only affect the be-
havior of the structure in nonlinear static and nonlinear direct-integration time-his-
tory analyses.

Advanced Topics

Overview

Hinge Properties

Default, User-Defined, and Generated Properties
Default Hinge Properties

Analysis Results

Overview

Yielding and post-yielding behavior can be modeled using discrete user-defined
hinges. Currently hinges can only be introduced into frame elements; they can be
assigned to a frame element at any location along that element. Uncoupled moment,
torsion, axial force and shear hinges are available. There is also a coupled
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P-M2-M3 hinge which yields based on the interaction of axial force and bending
moments at the hinge location. More than one type of hinge can exist at the same lo-
cation, for example, you might assign both a M3 (moment) and a V2 (shear) hinge
to the same end of a frame element. Default hinge properties are provided based on
FEMA-356 (FEMA, 2000) criteria.

Hinges only affect the behavior of the structure in nonlinear static and nonlinear di-
rect-integration time-history analyses.

Everything in this Chapter applies to Cable and Tendon objects as well as to Frame
elements, although usually only the use of axial hinges makes sense for these
objects.

Hinge Properties

16

A hinge property is a named set of rigid-plastic properties that can be assigned to
one or more Frame elements. You may define as many hinge properties as you
need.

For each force degree of freedom (axial and shears), you may specify the plastic
force-displacement behavior. For each moment degree of freedom (bending and
torsion) you may specify the plastic moment-rotation behavior. Each hinge prop-
erty may have plastic properties specified for any number of the six degrees of free-
dom. The axial force and the two bending moments may be coupled through an in-
teraction surface. Degrees of freedom that are not specified remain elastic.

Hinge Length

Each plastic hinge is modeled as a discrete point hinge. All plastic deformation,
whether it be displacement or rotation, occurs within the point hinge. This means
you must assume a length for the hinge over which the plastic strain or plastic cur-
vature is integrated.

There is no easy way to choose this length, although guidelines are given in
FEMA-356. Typically it is a fraction of the element length, and is often on the order
of the depth of the section, particularly for moment-rotation hinges.

You can approximate plasticity that is distributed over the length of the element by
inserting many hinges. For example, you could insert ten hinges at relative loca-
tions within the element 0f 0.05, 0.15, 0.25, ..., 0.95, each with deformation proper-
ties based on an assumed hinge length of one-tenth the element length. Of course,

Hinge Properties
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10 LS CP

Force
-
=

Displacement

Figure 29
The A-B-C-D-E curve for Force vs. Displacement
The same type of curve is used for Moment vs. Rotation

adding more hinges will add more computational cost, although it may not be too
significant if they don’t actually yield.

Plastic Deformation Curve

For each degree of freedom, you define a force-displacement (moment-rotation)
curve that gives the yield value and the plastic deformation following yield. This is
done in terms of a curve with values at five points, A-B-C-D-E, as shown in Figure
29 (page 117). You may specify a symmetric curve, or one that differs in the posi-
tive and negative direction.

The shape of this curve as shown is intended for pushover analysis. You can use
any shape you want. The following points should be noted:
» Point A is always the origin.

* Point B represents yielding. No deformation occurs in the hinge up to point B,
regardless of the deformation value specified for point B. The displacement
(rotation) at point B will be subtracted from the deformations at points C, D,
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and E. Only the plastic deformation beyond point B will be exhibited by the
hinge.

* Point C represents the ultimate capacity for pushover analysis. However, you
may specify a positive slope from C to D for other purposes.

* Point D represents a residual strength for pushover analysis. However, you
may specify a positive slope from C to D or D to E for other purposes.

* Point E represent total failure. Beyond point E the hinge will drop load down to
point F (not shown) directly below point E on the horizontal axis. If you do not
want your hinge to fail this way, be sure to specify a large value for the defor-
mation at point E.

You may specify additional deformation measures at points IO (immediate occu-
pancy), LS (life safety), and CP (collapse prevention). These are informational
measures that are reported in the analysis results and used for performance-based
design. They do not have any effect on the behavior of the structure.

Prior to reaching point B, all deformation is linear and occurs in the Frame element
itself, not the hinge. Plastic deformation beyond point B occurs in the hinge in addi-
tion to any elastic deformation that may occur in the element.

When the hinge unloads elastically, it does so without any plastic deformation, i.e.,
parallel to slope A-B.

Scaling the Curve

When defining the hinge force-deformation (or moment-rotation) curve, you may
enter the force and deformation values directly, or you may enter normalized values
and specify the scale factors that you used to normalized the curve.

In the most common case, the curve would be normalized by the yield force (mo-
ment) and yield displacement (rotation), so that the normalized values entered for
point B would be (1,1). However, you can use any scale factors you want. They do
not have to be yield values.

Remember that any deformation given from A to B is not used. This means that the
scale factor on deformation is actually used to scale the plastic deformation from B
to C, Cto D, and D to E. However, it may still be convenient to use the yield defor-
mation for scaling.

When default hinge properties are used, the program automatically uses the yield
values for scaling. These values are calculated from the Frame section properties.
See the next topic for more discussion of default hinge properties.

Hinge Properties
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Coupled P-M2-M3 Hinge

Normally the hinge properties for each of the six degrees of freedom are uncoupled
from each other. However, you have the option to specify coupled axial-force/bi-
axial-moment behavior. This is called the P-M2-M3 or PMM hinge. See also the
Fiber P-M2-M3 hinge below.

Tension is Always Positive!

It is important to note that SAP2000 uses the sign convention where tension is al-
ways positive and compression is always negative, regardless of the material being
used. This means that for some materials (e.g., concrete) the interaction surface
may appear to be upside down.

Interaction (Yield) Surface

For the PMM hinge, you specify an interaction (yield) surface in three-dimensional
P-M2-M3 space that represents where yielding first occurs for different combina-
tions of axial force P, minor moment M2, and major moment M3.

The surface is specified as a set of P-M2-M3 curves, where P is the axial force (ten-
sion is positive), and M2 and M3 are the moments. For a given curve, these mo-
ments may have a fixed ratio, but this is not necessary. The following rules apply:

* All curves must have the same number of points.

» For each curve, the points are ordered from most negative (compressive) value
of P to the most positive (tensile).

» The three values P, M2 and M3 for the first point of all curves must be identical,
and the same is true for the last point of all curves

* When the M2-M3 plane is viewed from above (looking toward compression),
the curves should be defined in a counter-clockwise direction

* The surface must be convex. This means that the plane tangent to the surface at
any point must be wholly outside the surface. If you define a surface that is not
convex, the program will automatically increase the radius of any points which
are “pushed in” so that their tangent planes are outside the surface. A warning
will be issued during analysis that this has been done.

You can explicitly define the interaction surface, or let the program calculate it us-
ing one of the following formulas:

» Steel, AISC-LRFD Equations H1-1a and H1-1b with phi =1
» Steel, FEMA-356 Equation 5-4

Hinge Properties n9
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* Concrete, ACI 318-02 with phi =1

You may look at the hinge properties for the generated hinge to see the specific sur-
face that was calculated by the program.

Moment-Rotation Curves

For PMM hinges you specify one or more moment/plastic-rotation curves corre-
sponding to different values of P and moment angle 8. The moment angle is mea-

sured in the M2-M3 plane, where 0° is the positive M2 axis, and 90° is the positive
M3 axis.

You may specify one or more axial loads P and one or more moment angles 6. For
each pair (P,0), the moment-rotation curve should represent the results of the fol-
lowing experiment:

» Apply the fixed axial load P.

* Increase the moments M2 and M3 in a fixed ratio (sin 0, cos 0) corresponding
to the moment angle 6.

* Measure the plastic rotations Rp2 and Rp3 that occur after yield.

* Calculate the resultant moment M = M2*sin 6 + M3*cos 0, and the projected
plastic rotation Rp = Rp2*sin 6 + Rp3*cos 0 at each measurement increment

* Plot M vs. Rp, and supply this data to SAP2000

Note that the measured direction of plastic strain may not be the same as the direc-
tion of moment, but the projected value is taken along the direction of the moment.
In addition, there may be measured axial plastic strain that is not part of the projec-
tion. However, during analysis the program will recalculate the total plastic strain
based on the direction of the normal to the interaction (yield) surface.

During analysis, once the hinge yields for the first time, i.e., once the values of P,
M2 and M3 first reach the interaction surface, a net moment-rotation curve is inter-
polated to the yield point from the given curves. This curve is used for the rest of the
analysis for that hinge.

If the values of P, M2, and M3 change from the values used to interpolate the curve,
the curve is adjusted to provide an energy equivalent moment-rotation curve. This
means that the area under the moment-rotation curve is held fixed, so that if the re-
sultant moment is smaller, the ductility is larger. This is consistent with the under-
lying stress strain curves of axial “fibers” in the cross section.

Hinge Properties
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As plastic deformation occurs, the yield surface changes size according to the shape
of the M-Rp curve, depending upon the amount of plastic work that is done. You
have the option to specify whether the surface should change in size equally in the
P, M2, and M3 directions, or only in the M2 and M3 directions. In the latter case,
axial deformation behaves as if it is perfectly plastic with no hardening or collapse.
Axial collapse may be more realistic in some hinges, but it is computationally diffi-
cult and may require nonlinear direct-integration time-history analysis if the struc-
ture is not stable enough the redistribute any dropped gravity load.

Fiber P-M2-M3 Hinge

The Fiber P-M2-M3 (Fiber PMM) hinge models the axial behavior of a number of
representative axial “fibers” distributed across the cross section of the frame ele-
ment. Each fiber has a location, a tributary area, and a stress-strain curve. The axial
stresses are integrated over the section to compute the values of P, M2 and M3.
Likewise, the axial deformation U1 and the rotations R2 and R3 are used to com-
pute the axial strains in each fiber.

You can define you own fiber hinge, explicitly specifying the location, area, mate-
rial and its stress-strain curve for each fiber, or you can let the program automati-
cally create fiber hinges for circular, rectangular, and Section-Designer frame sec-
tions.

The Fiber PMM hinge is more “natural” than the Coupled PMM hinge described
above, since it automatically accounts for interaction, changing moment-rotation
curve, and plastic axial strain. However, it is also more computationally intensive,
requiring more computer storage and execution time. You may have to experiment
with the number of fibers needed to get an optimum balance between accuracy and
computational efficiency.

For more information:

* See Topic “Stress-Strain Curves” (page 78) in Chapter “Material Properties.”

* See Topic “Section-Designer Sections” (page 94) Chapter “The Frame/Cable
Element.”

Default, User-Defined, and Generated Properties

There are three types of hinge properties in SAP2000:

 Default hinge properties
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» User-defined hinge properties

* Generated hinge properties

Only default hinge properties and user-defined hinge properties can be assigned to
frame elements. When these hinge properties (default and user-defined) are as-
signed to a frame element, the program automatically creates a new generated
hinge property for each and every hinge.

The built-in default hinge properties for steel members are generally based on Ta-
bles 5.4 and 5.8 in FEMA-356. The built-in default hinge properties for concrete
members are generally based on Tables 9.6, 9.7 and 9.12 in FEMA-356. You
should review any generated properties for their applicability to your specific pro-
ject.

Default hinge properties cannot be modified. They also can not be viewed because
the default properties are section dependent. The default properties can not be fully
defined by the program until the section that they apply to is identified. Thus, to see
the effect of the default properties, the default property should be assigned to a
frame element, and then the resulting generated hinge property should be viewed.

User-defined hinge properties can either be based on default properties or they can
be fully user-defined. When user-defined properties are based on default proper-
ties, the hinge properties can not be viewed because, again, the default properties
are section dependent. When user-defined properties are not based on a default
properties, then the properties can be viewed and modified.

The generated hinge properties are used in the analysis. They can be viewed, but
they can not be modified. Generated hinge properties have an automatic naming
convention of LabelH#, where Label is the frame element label, H stands for hinge,
and # represents the hinge number. The program starts with hinge number 1 and in-
crements the hinge number by one for each consecutive hinge applied to the frame
element. For example if a frame element label is F23, the generated hinge property
name for the second hinge applied to the frame element is F23H2.

The main reason for the differentiation between defined properties (in this context,
defined means both default and user-defined) and generated properties is that typi-
cally the hinge properties are section dependent. Thus it is necessary to define a dif-
ferent set of hinge properties for each different frame section type in the model.
This could potentially mean that you would need to define a very large number of
hinge properties. To simplify this process, the concept of default properties is used
in SAP2000. When default properties are used, the program combines its built-in
default criteria with the defined section properties for each element to generate the
final hinge properties. The net effect of this is that you do significantly less work
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defining the hinge properties because you don’t have to define each and every
hinge.

Default Hinge Properties

A hinge property may use all default properties, or it may be partially defined by
you and use only some default properties.

Default hinge properties are based upon a simplified set of assumptions that may
not be appropriate for all structures. You may want to use default properties as a
starting point, and explicitly override properties as needed during the development
of your model.

Default properties require that the program have detailed knowledge of the Frame
Section property used by the element that contains the hinge. This means:
* The material must have a design type of concrete or steel
» For concrete Sections:
— The shape must be rectangular or circular

— The reinforcing steel must be explicitly defined, or else have already been
designed by the program before nonlinear analysis is performed

* For steel Sections, the shape must be well defined:
— General and Nonprismatic Sections cannot be used

— Auto-select Sections can only be used if they have already been designed
so that a specific section has been chosen before nonlinear analysis is
performed

For situations where design is required, you can still define and assign hinges to
Frame elements, but you should not run any nonlinear analyses until after the de-
sign has been run.

Default properties are available for hinges in the following degrees of freedom:

» Axial (P)

* Major shear (V2)

* Major moment (M3)

* Coupled P-M2-M3 (PMM)

The details of the assumed default properties are described below.
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Default Concrete Hinge Properties

The following properties are assumed for default concrete hinges.

Axial Hinge

P =4,
P, =0854,f!

The slope between points B and C is taken as 10 % total strain hardening for
steel

Hinge length assumption for A |, is based on the full length

Tensile points B, C, D and E based on FEMA-356 Table 5-7, Braces in Tension
Compressive point B’ = P,

Compressive point E’ is taken as 9A |,

Moment and Coupled Hinge

The Slope between points B and C is taken as 10 % total strain hardening for
steel

0 y =(), since it is not needed

Points C, D and E are based on FEMA-356, Table 6-7. The four conforming
transverse reinforcing rows are averaged

My is based on the reinforcement provided, if any; otherwise it is based on the
minimum allowable reinforcement

The PMM curve is the same as the uniaxial M3 curve, except that it will always
be symmetrical about the origin

The PMM interaction surface is calculated using ACI 318-02 with phi=1

Shear Hinge

The curve is symmetrical about the origin

The slope between points B and C is taken as 10 % total strain hardening for
steel

Vy,=24\f¢ + [ ,And
Points C, D and E are based on FEMA-356 Table 6-18, Item iii, by averaging

the two rows labeled “Conventional longitudinal reinforcement” and “Con-
forming transverse reinforcement”
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Default Steel Hinge Properties

The following properties are assumed for default steel hinges.

Axial Hinge
» Slope between points B and C is taken as 3 % strain hardening
* Hinge length assumption for A , is the length of the member
* Initial compression slope is taken to be same as the initial tension slope
* Tensile points C, D and E based on FEMA-356 Table 5-7, Braces in Tension

» Compressive points C’, D’ and E’ based on FEMA-356 Table 5-7, Braces in
Compression, Item C

Moment and Coupled Hinge
* Slope between points B and C is taken as 3 % strain hardening
* 0, is based on FEMA-356, equation 5-1 and 5-2

* Points C, D and E based on FEMA-356 Table 5-6, for 2l;< >2
4 F

yc

* The PMM curve is the same as the uniaxial M3 curve, except that it will always
be symmetrical about the origin

» The PMM interaction surface is calculated using FEMA-356 Equation 5-4

Shear Hinge
» The curve is symmetrical about the origin
» Slope between points B and C is taken as 3 % strain hardening
* Points C, D and E based on FEMA-356 Table 5-6, Link Beam, Item a

Analysis Results

For each output step in a nonlinear static or nonlinear direct-integration time-his-
tory analysis case, you may request analysis results for the hinges. These results in-
clude:

* The forces and/or moments carried by the hinge. Degrees of freedom not de-
fined for the hinge will report zero values, even though non-zero values are car-
ried rigidly through the hinge.

 The plastic displacements and/or rotations.
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The most extreme state experienced by the hinge in any degree of freedom.
This state does not indicate whether it occurred for positive or negative defor-
mation:

— AtoB
BtoC
— CtoD
DtoE
_ >E

The most extreme performance status experienced by the hinge in any degree
of freedom. This status does not indicate whether it occurred for positive or
negative deformation:

— AtoB
— Bto IO
— 10 to LS
LS to CP
- >CP

When you display the deflected shape in the graphical user interface for a nonlinear
static or nonlinear direct-integration time-history analysis case, the hinges are plot-
ted as colored dots indicating their most extreme state or status:

Bto IO
I0to LS
LS to CP
CPto C
CtoD

DtoE

>E

The colors used for the different states are indicated on the plot. Hinges that have
not experienced any plastic deformation (A to B) are not shown.
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The Shell Element

The Shell element is used to model shell, membrane, and plate behavior in planar
and three-dimensional structures. The shell element/object is one type of area ob-
ject. Depending on the type of section properties you assign to an area, the object
could also be used to model plane stress/strain and axisymmetric solid behavior.
These types of elements are discussed in the following two Chapters.

Basic Topics for All Users
* Overview
+ Joint Connectivity
» Degrees of Freedom
* Local Coordinate System
* Section Properties
* Mass
» Self-Weight Load
* Uniform Load

* Internal Force and Stress Output
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Advanced Topics
* Advanced Local Coordinate System
* Gravity Load
* Surface Pressure Load

* Temperature Load

Overview

128

The Shell element is a three- or four-node formulation that combines separate
membrane and plate-bending behavior. The four-joint element does not have to be
planar.

The membrane behavior uses an isoparametric formulation that includes transla-
tional in-plane stiffness components and a rotational stiffness component in the di-
rection normal to the plane of the element. See Taylor and Simo (1985) and Ibra-
himbegovic and Wilson (1991).

The plate bending behavior includes two-way, out-of-plane, plate rotational stiff-
ness components and a translational stiffness component in the direction normal to
the plane of the element. By default, a thin-plate (Kirchhoff) formulation is used
that neglects transverse shearing deformation. Optionally, you may choose a
thick-plate (Mindlin/Reissner) formulation which includes the effects of transverse
shearing deformation.

Structures that can be modeled with this element include:

e Three-dimensional shells, such as tanks and domes
 Plate structures, such as floor slabs

e Membrane structures, such as shear walls

For each Shell element in the structure, you can choose to model pure membrane,
pure plate, or full shell behavior. It is generally recommended that you use the full
shell behavior unless the entire structure is planar and is adequately restrained.

Each Shell element has its own local coordinate system for defining Material prop-
erties and loads, and for interpreting output. Temperature-dependent, orthotropic
material properties are allowed. Each element may be loaded by gravity and uni-
form loads in any direction; surface pressure on the top, bottom, and side faces; and
loads due to temperature change.

Overview



Chapter IX The Shell Element

A variable, four-to-eight-point numerical integration formulation is used for the
Shell stiffness. Stresses and internal forces and moments, in the element local coor-
dinate system, are evaluated at the 2-by-2 Gauss integration points and extrapo-
lated to the joints of the element. An approximate error in the element stresses or in-
ternal forces can be estimated from the difference in values calculated from differ-
ent elements attached to a common joint. This will give an indication of the accu-
racy of a given finite-element approximation and can then be used as the basis for
the selection of a new and more accurate finite element mesh.

Joint Connectivity

Each Shell element (and other types of area objects/elements) may have either of
the following shapes, as shown in Figure 30 (page 130):

* Quadrilateral, defined by the four joints j1, j2, j3, and j4.
 Triangular, defined by the three joints j1, j2, and j3.

The quadrilateral formulation is the more accurate of the two. The triangular ele-
ment is recommended for transitions only. The stiffness formulation of the three-
node element is reasonable; however, its stress recovery is poor. The use of the
quadrilateral element for meshing various geometries and transitions is illustrated
in Figure 31 (page 131).

The locations of the joints should be chosen to meet the following geometric condi-
tions:

» The inside angle at each corner must be less than 180°. Best results for the
quadrilateral will be obtained when these angles are near 90°, or at least in the
range of 45° to 135°.

* The aspect ratio of an element should not be too large. For the triangle, this is
the ratio of the longest side to the shortest side. For the quadrilateral, this is the
ratio of the longer distance between the midpoints of opposite sides to the
shorter such distance. Best results are obtained for aspect ratios near unity, or at
least less than four. The aspect ratio should not exceed ten.

 For the quadrilateral, the four joints need not be coplanar. A small amount of
twist in the element is accounted for by the program. The angle between the
normals at the corners gives a measure of the degree of twist. The normal at a
corner is perpendicular to the two sides that meet at the corner. Best results are
obtained if the largest angle between any pair of corners is less than 30°. This
angle should not exceed 45°.
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Face 6: Top (+3 face)

Face 5: Bottom (-3 face)

Four-node Quadrilateral Shell Element

Axis 2

Face 6: Top (+3 face)

Face 5: Bottom (-3 face)

Three-node Triangular Shell Element

Figure 30
Area Element Joint Connectivity and Face Definitions
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Triangular Region Circular Region
— |
\
Infinite Region Mesh Transition
Figure 31

Mesh Examples Using the Quadrilateral Area Element

These conditions can usually be met with adequate mesh refinement. The accuracy
of the thick-plate formulation is more sensitive to large aspect ratios and mesh dis-
tortion than is the thin-plate formulation.

Degrees of Freedom

The Shell element always activates all six degrees of freedom at each of its con-
nected joints. When the element is used as a pure membrane, you must ensure that

Degrees of Freedom 131



CSI Analysis Reference Manual

restraints or other supports are provided to the degrees of freedom for normal trans-
lation and bending rotations. When the element is used as a pure plate, you must en-
sure that restraints or other supports are provided to the degrees of freedom for in-
plane translations and the rotation about the normal.

The use of the full shell behavior (membrane plus plate) is recommended for all
three-dimensional structures.

See Topic “Degrees of Freedom” (page 29) in Chapter “Joints and Degrees of Free-
dom” for more information.

Local Coordinate System

Each Shell element (and other types of area objects/elements) has its own element
local coordinate system used to define Material properties, loads and output. The
axes of this local system are denoted 1, 2 and 3. The first two axes lie in the plane of
the element with an orientation that you specify; the third axis is normal.

It is important that you clearly understand the definition of the element local 1-2-3
coordinate system and its relationship to the global X-Y-Z coordinate system. Both
systems are right-handed coordinate systems. It is up to you to define local systems
which simplify data input and interpretation of results.

In most structures the definition of the element local coordinate system is ex-
tremely simple. The methods provided, however, provide sufficient power and
flexibility to describe the orientation of Shell elements in the most complicated
situations.

The simplest method, using the default orientation and the Shell element coordi-
nate angle, is described in this topic. Additional methods for defining the Shell ele-
ment local coordinate system are described in the next topic.

For more information:

» See Chapter “Coordinate Systems” (page 11) for a description of the concepts
and terminology used in this topic.

* See Topic “Advanced Local Coordinate System” (page 133) in this Chapter.

Normal Axis 3

Local axis 3 is always normal to the plane of the Shell element. This axis is directed
toward you when the path j1-j2-j3 appears counterclockwise. For quadrilateral ele-
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ments, the element plane is defined by the vectors that connect the midpoints of the
two pairs of opposite sides.

Default Orientation

The default orientation of the local 1 and 2 axes is determined by the relationship
between the local 3 axis and the global Z axis:

* The local 3-2 plane is taken to be vertical, i.e., parallel to the Z axis

* The local 2 axis is taken to have an upward (+Z) sense unless the element is
horizontal, in which case the local 2 axis is taken along the global +Y direction

» The local 1 axis is horizontal, i.e., it lies in the X-Y plane

The element is considered to be horizontal if the sine of the angle between the local
3 axis and the Z axis is less than 107,

The local 2 axis makes the same angle with the vertical axis as the local 3 axis
makes with the horizontal plane. This means that the local 2 axis points vertically
upward for vertical elements.

Element Coordinate Angle

The Shell element coordinate angle, ang, is used to define element orientations that
are different from the default orientation. It is the angle through which the local 1
and 2 axes are rotated about the positive local 3 axis from the default orientation.
The rotation for a positive value of ang appears counterclockwise when the local
+3 axis is pointing toward you.

For horizontal elements, ang is the angle between the local 2 axis and the horizontal
+Y axis. Otherwise, ang is the angle between the local 2 axis and the vertical plane
containing the local 3 axis. See Figure 32 (page 134) for examples.

Advanced Local Coordinate System

By default, the element local coordinate system is defined using the element coor-
dinate angle measured with respect to the global +Z and +Y directions, as described
in the previous topic. In certain modeling situations it may be useful to have more
control over the specification of the local coordinate system.

This topic describes how to define the orientation of the tangential local 1 and 2
axes, with respect to an arbitrary reference vector when the element coordinate an-
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Top row: ang = 45°
2nd row: ang = 90°
3rd row: ang= 0°
4th row: ang =-90°

For all elements,
Axis 3 points outward,
toward viewer

Figure 32
The Area Element Coordinate Angle with Respect to the Default Orientation

gle, ang, is zero. If ang is different from zero, it is the angle through which the local
1 and 2 axes are rotated about the positive local 3 axis from the orientation deter-
mined by the reference vector. The local 3 axis is always normal to the plane of the
element.

For more information:

* See Chapter “Coordinate Systems” (page 11) for a description of the concepts
and terminology used in this topic.
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* See Topic “Local Coordinate System” (page 132) in this Chapter.

Reference Vector

To define the tangential local axes, you specify a reference vector that is parallel to
the desired 3-1 or 3-2 plane. The reference vector must have a positive projection
upon the corresponding tangential local axis (1 or 2, respectively). This means that
the positive direction of the reference vector must make an angle of less than 90°
with the positive direction of the desired tangential axis.

To define the reference vector, you must first specify or use the default values for:

* A primary coordinate direction pldirp (the default is +Z)

* A secondary coordinate direction pldirs (the default is +Y). Directions pldirs
and pldirp should not be parallel to each other unless you are sure that they are
not parallel to local axis 3

* A fixed coordinate system csys (the default is zero, indicating the global coor-
dinate system)

» The local plane, local, to be determined by the reference vector (the default is
32, indicating plane 3-2)

You may optionally specify:

* A pair of joints, plveca and plvecb (the default for each is zero, indicating the
center of the element). If both are zero, this option is not used

For each element, the reference vector is determined as follows:

1. A vector is found from joint plveca to joint plvecb. If this vector is of finite
length and is not parallel to local axis 3, it is used as the reference vector V,,

2. Otherwise, the primary coordinate direction pldirp is evaluated at the center of
the element in fixed coordinate system csys. If this direction is not parallel to
local axis 3, it is used as the reference vector Vp

3. Otherwise, the secondary coordinate direction pldirs is evaluated at the center
of the element in fixed coordinate system csys. If this direction is not parallel to
local axis 3, it is used as the reference vector v,

4. Otherwise, the method fails and the analysis terminates. This will never happen
if pldirp is not parallel to pldirs
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Intersection of Element
Plane & Global Y-Z Plane
Intersection of Element

Plane & Global Z-X Plane V; pldirp = +X

pldirp =-Y V; V; pldirp =-X

<Y

For all cases: local = 32

V; pldirp =+Z

pldirp =+Y V;

V; pldirp=-Z

Intersection of Element
Plane & Global X-Y Plane

Figure 33
Area Element Local Coordinate System Using Coordinate Directions

A vector is considered to be parallel to local axis 3 if the sine of the angle between
them is less than 10~

The use of the coordinate direction method is illustrated in Figure 33 (page 136) for
the case where local = 32.

A special option is available for backward compatibility with previous versions of
the program. If pldirp is set to zero, the reference vector V, is directed from the

midpoint of side j1-j3 to the midpoint of side j2-j4 (or side j2-j3 for the triangle).
This is illustrated in Figure 30 (page 130), where the reference vector would be
identical to local axis 1. With this option, the orientation of the tangential local axes
is very dependent upon the mesh used.

Determining Tangential Axes | and 2

The program uses vector cross products to determine the tangential axes 1 and 2
once the reference vector has been specified. The three axes are represented by the
three unit vectors V|, V, and V3, respectively. The vectors satisfy the cross-product
relationship:
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Vl = Vz X V3
The tangential axes 1 and 2 are defined as follows:

 If the reference vector is parallel to the 3-1 plane, then:
V,=V;xV, and
V=V, xV;

 If the reference vector is parallel to the 3-2 plane, then:
Vi =V, xV; and
V, =V; xV,

In the common case where the reference vector is parallel to the plane of the ele-
ment, the tangential axis in the selected local plane will be equal to V.

Section Properties

A Shell Section is a set of material and geometric properties that describe the
cross-section of one or more Shell elements. Sections are defined independently of
the Shell elements, and are assigned to the area objects.

Section Type
When defining an area section, you have a choice of three basic element types:
* Shell — the subject of this Chapter, with translational and rotational degrees of

freedom, capable of supporting forces and moments

* Plane (stress or strain) — a two-dimensional solid, with translational degrees of
freedom, capable of supporting forces but not moments. This element is cov-
ered in Chapter “The Plane Element” (page 149).

* Asolid — axisymmetric solid, with translational degrees of freedom, capable of
supporting forces but not moments. This element is covered in Chapter “The
Asolid Element” (page 159).

For Shell sections, you may choose one of the following sub-types of behavior:

* Membrane — pure membrane behavior; only the in-plane forces and the normal
(drilling) moment can be supported

* Plate — pure plate behavior; only the bending moments and the transverse force
can be supported
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* Shell — full shell behavior, a combination of membrane and plate behavior; all
forces and moments can be supported

It is generally recommended that you use the full shell behavior unless the entire
structure is planar and is adequately restrained.

Thickness Formulation

Two thickness formulations are available, which determine whether or not trans-
verse shearing deformations are included in the plate-bending behavior of a plate or
shell element:

* The thick-plate (Mindlin/Reissner) formulation, which includes the effects of
transverse shear deformation

* The thin-plate (Kirchhoff) formulation, which neglects transverse shearing de-
formation

Shearing deformations tend to be important when the thickness is greater than
about one-tenth to one-fifth of the span. They can also be quite significant in the vi-
cinity of bending-stress concentrations, such as near sudden changes in thickness
or support conditions, and near holes or re-entrant corners.

Even for thin-plate bending problems where shearing deformations are truly negli-
gible, the thick-plate formulation tends to be more accurate, although somewhat
stiffer, than the thin-plate formulation. However, the accuracy of the thick-plate
formulation is more sensitive to large aspect ratios and mesh distortion than is the
thin-plate formulation.

It is generally recommended that you use the thick-plate formulation unless you are
using a distorted mesh and you know that shearing deformations will be small, or
unless you are trying to match a theoretical thin-plate solution.

The thickness formulation has no effect upon membrane behavior, only upon
plate-bending behavior.

Material Properties

The material properties for each Section are specified by reference to a previously-
defined Material. Orthotropic properties are used, even if the Material selected was
defined as anisotropic. The material properties used by the Shell Section are:

* The moduli of elasticity, el, €2, and e3
* The shear modulus, g12, g13, and g23

Section Properties



Chapter IX The Shell Element

» The Poisson’s ratios, ul2, ul3, and u23
* The coefficients of thermal expansion, al and a2
* The mass density, m, for computing element mass
» The weight density, w, for computing Self-Weight and Gravity Loads
The properties e3, ul3, and u23 are condensed out of the material matrix by assum-

ing a state of plane stress in the element. The resulting, modified values of el, €2,
g12, and ul2 are used to compute the membrane and plate-bending stiffnesses.

The shear moduli, g13 and g23, are used to compute the transverse shearing stiff-
ness if the thick-plate formulation is used. The coefficients of thermal expansion,
al and a2, are used for membrane expansion and thermal bending strain.

All material properties (except the densities) are obtained at the material tempera-
ture of each individual element.

See Chapter “Material Properties” (page 67) for more information.

Material Angle

The material local coordinate system and the element (Shell Section) local coordi-
nate system need not be the same. The local 3 directions always coincide for the
two systems, but the material 1 axis and the element 1 axis may differ by the angle a
as shown in Figure 34 (page 140). This angle has no effect for isotropic material
properties since they are independent of orientation.

See Topic “Local Coordinate System” (page 68) in Chapter “Material Properties”
for more information.

Thickness

Each Section has a constant membrane thickness and a constant bending thickness.
The membrane thickness, th, is used for calculating:

* The membrane stiffness for full-shell and pure-membrane Sections

* The element volume for the element self-weight and mass calculations
The bending thickness, thb, is use for calculating:

* The plate-bending and transverse-shearing stiffnesses for full-shell and pure-
plate Sections
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Mass

140

2 (Element)
2 (Material)
a 1 (Material)
a
[ » 1 (Element)

3 (Element, Material)

Figure 34
Shell Element Material Angle

Normally these two thicknesses are the same and you only need to specify th. How-
ever, for some applications, such as modeling corrugated surfaces, the membrane
and plate-bending behavior cannot be adequately represented by a homogeneous
material of a single thickness. For this purpose, you may specify a value of thb that
is different from th.

In a dynamic analysis, the mass of the structure is used to compute inertial forces.
The mass contributed by the Shell element is lumped at the element joints. No iner-
tial effects are considered within the element itself.

The total mass of the element is equal to the integral over the plane of the element of
the mass density, m, multiplied by the thickness, th. The total mass is apportioned
to the joints in a manner that is proportional to the diagonal terms of the consistent
mass matrix. See Cook, Malkus, and Plesha (1989) for more information. The total
mass is applied to each of the three translational degrees of freedom: UX, UY, and
UZ. No mass moments of inertia are computed for the rotational degrees of free-
dom.

Mass
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For more information:

* See Topic “Mass Density” (page 74) in Chapter “Material Properties”.
* See Subtopic “Thickness” (page 139) in this Chapter for the definition of th.
» See Chapter “Static and Dynamic Analysis” (page 255).

Self-Weight Load

Self-Weight Load activates the self-weight of all elements in the model. For a Shell
element, the self-weight is a force that is uniformly distributed over the plane of the
element. The magnitude of the self-weight is equal to the weight density, w, multi-
plied by the thickness, th.

Self-Weight Load always acts downward, in the global —Z direction. You may
scale the self-weight by a single scale factor that applies equally to all elements in
the structure.

For more information:

* See Topic “Weight Density” (page 75) in Chapter “Material Properties” for the
definition of w.
* See Subtopic “Thickness” (page 139) in this Chapter for the definition of th.

* See Topic “Self-Weight Load” (page 245) in Chapter “Load Cases.”

Gravity Load

Gravity Load can be applied to each Shell element to activate the self-weight of the
element. Using Gravity Load, the self-weight can be scaled and applied in any di-
rection. Different scale factors and directions can be applied to each element.

If all elements are to be loaded equally and in the downward direction, it is more
convenient to use Self-Weight Load.

For more information:

* See Topic “Self-Weight Load” (page 141) in this Chapter for the definition of
self-weight for the Shell element.

» See Topic “Gravity Load” (page 246) in Chapter “Load Cases.”
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Uniformly distributed force uzp acts on
the projected area of the midsurface.
This is equivalent to force uzp cosq
acting on the full midsurface area.

Global

Y Edge View of Shell Element

Figure 35
Example of Uniform Load Acting on the Projected Area of the Mid-surface

Uniform Load

142

Uniform Load is used to apply uniformly distributed forces to the midsurfaces of
the Shell elements. The direction of the loading may be specified in a fixed coordi-
nate system (global or Alternate Coordinates) or in the element local coordinate
system.

Load intensities are given as forces per unit area. Load intensities specified in dif-
ferent coordinate systems are converted to the element local coordinate system and
added together. The total force acting on the element in each local direction is given
by the total load intensity in that direction multiplied by the area of the mid-surface.
This force is apportioned to the joints of the element.

Forces given in fixed coordinates can optionally be specified to act on the projected
area of the mid-surface, i.e., the area that can be seen along the direction of loading.
The specified load intensity is automatically multiplied by the cosine of the angle
between the direction of loading and the normal to the element (the local 3 direc-
tion). This can be used, for example, to apply distributed snow or wind loads. See
Figure 35 (page 142).

See Chapter “Load Cases” (page 241) for more information.

Uniform Load
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Surface Pressure Load

The Surface Pressure Load is used to apply external pressure loads upon any of the
six faces of the Shell element. The definition of these faces is shown in Figure 30
(page 130). Surface pressure always acts normal to the face. Positive pressures are
directed toward the interior of the element.

The pressure may be constant over a face or interpolated from values given at the
joints. The values given at the joints are obtained from Joint Patterns, and need not
be the same for the different faces. Joint Patterns can be used to easily apply hydro-
static pressures.

The bottom and top faces are denoted Faces 5 and 6, respectively. The top face is
the one visible when the +3 axis is directed toward you and the path j1-j2-j3 ap-
pears counterclockwise. The pressure acting on the bottom or top face is integrated
over the plane of the element and apportioned to the corner joints..

The sides of the element are denoted Faces 1 to 4 (1 to 3 for the triangle), counting
counterclockwise from side j1-j2 when viewed from the top. The pressure acting
on a side is multiplied by the thickness, th, integrated along the length of the side,
and apportioned to the two joints on that side.

For more information:

* See Topic “Thickness” (page 139) in this Chapter for the definition of th.
* See Chapter “Load Cases” (page 241).

Temperature Load

The Temperature Load creates thermal strain in the Shell element. This strain is
given by the product of the Material coefficient of thermal expansion and the tem-
perature change of the element. The temperature change is measured from the ele-
ment Reference Temperature to the element Load Temperature.

Two independent Load Temperature fields may be specified:

» Temperature, t, which is constant through the thickness and produces mem-
brane strains

» Temperature gradient, t3, which is linear in the thickness direction and pro-
duces bending strains
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The temperature gradient is specified as the change in temperature per unit length.
The temperature gradient is positive if the temperature increases (linearly) in the
positive direction of the element local 3 axis. The gradient temperature is zero at the

mid-surface, hence no membrane strain is induced.

Each of the two Load Temperature fields may be constant over the plane of the ele-

ment or interpolated from values given at the joints.

The Reference Temperature gradient is always taken to be zero, hence the tempera-
ture change that produces the bending strain is equal to the Load Temperature gra-

dient.

See Chapter “Load Cases” (page 241) for more information.

Internal Force and Stress Output

The Shell element internal forces (also called stress resultants) are the forces and
moments that result from integrating the stresses over the element thickness. These

internal forces are:

* Membrane direct forces:

F +th/2 d
= (e) X
11 .[—th/z 11 3

F +th/2 d
= (e) X
22 .[—th/z 22 3

* Membrane shear force:

F +th/2 d
= (e) X
12 .[—th/z 12743

Plate bending moments:

+thb/2
My :_I—thb/z toy dxy
+thb/2
M Z_J—thb/z 16y dx;
 Plate twisting moment:
+thb/2
My :_.[—thb/z 101y dxs
* Plate transverse shear forces:
+thb/2
13 z.[—thb/z ©13 4X3
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v +thb/2 d
= Gy dx
23 I—thb/z 23 %73

where x, represents the thickness coordinate measured from the mid-surface of the
element.

It is very important to note that these stress resultants are forces and moments per
unit of in-plane length. They are present at every point on the mid-surface of the
element.

The transverse shear forces are computed from the moments using the equilibrium
equations:

Vis =—
dxl de
M, dM,,
Vs ==
dxl dX2

where x, and x, are in-plane coordinates parallel to the local 1 and 2 axes.

The sign conventions for the stresses and internal forces are illustrated in Figure 36
(page 147). Stresses acting on a positive face are oriented in the positive direction
of the element local coordinate axes. Stresses acting on a negative face are oriented
in the negative direction of the element local coordinate axes. A positive face is one
whose outward normal (pointing away from element) is in the positive local 1 or 2
direction.

Positive internal forces correspond to a state of positive stress that is constant
through the thickness. Positive internal moments correspond to a state of stress that
varies linearly through the thickness and is positive at the bottom. Thus:

_Fy _12My, (Eqns. 2)
Sn=——- 3 X3
th  thb
2 =~ 3 '3
th  thh
_Fp 12My,
2= 3
th  thp’
=l
thb
¢
thb
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G 33 =0

The transverse shear stresses given here are average values. The actual shear stress
distribution is parabolic, being zero at the top and bottom surfaces and taking a
maximum or minimum value at the mid-surface of the element.

The stresses and internal forces are evaluated at the standard 2-by-2 Gauss integra-
tion points of the element and extrapolated to the joints. Although they are reported
at the joints, the stresses and internal forces exist throughout the element. See
Cook, Malkus, and Plesha (1989) for more information.

Principal values and the associated principal directions are available for analysis
cases and combinations that are single valued. The angle given is measured coun-
terclockwise (when viewed from the top) from the local 1 axis to the direction of the
maximum principal value.

Shell element stresses and internal forces are reported at the joints. These values
can be interpolated over the whole element from the values at the joints.

For more information:

* See Topic “Stresses and Strains” (page 69) in Chapter “Material Properties.”

* See Subtopic “Thickness” (page 139) in this Chapter for the definition of th
and thb.

* See Chapter “Load Cases” (page 241).
» See Chapter “Analysis Cases” (page 255).
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F-MIN
Axis 2 7 F-NAX

Forces are per unit

of in-plane length Axis 1

j3
Transverse Shear (not shown)

Positive transverse shear forces and
stresses acting on positive faces
point toward the viewer

i i2
STRESSES AND MEMBRANE FORCES

Stress Sij Has Same Definition as Force Fij

Axis 2

M-MIN// \‘I\‘/I-MAX
NF

ja
Moments are per unit

of in-plane length Axis 1

it 2

PLATE BENDING AND TWISTING MOMENTS

Figure 36
Shell Element Stresses and Internal Forces
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Chapter X

The Plane Element

The Plane element is used to model plane-stress and plane-strain behavior in
two-dimensional solids. The Plane element/object is one type of area object. De-
pending on the type of section properties you assign to an area, the object could also
be used to model shell and axisymmetric solid behavior. These types of elements
are discussed in the previous and following Chapters.

Advanced Topics
* Overview
+ Joint Connectivity
» Degrees of Freedom
* Local Coordinate System
* Stresses and Strains
» Section Properties
* Mass
» Self-Weight Load
» Gravity Load
* Surface Pressure Load

» Pore Pressure Load
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* Temperature Load

* Stress Output

Overview
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The Plane element is a three- or four-node element for modeling two-dimensional
solids of uniform thickness. It is based upon an isoparametric formulation that in-
cludes four optional incompatible bending modes. The element should be planar; if
it is not, it is formulated for the projection of the element upon an average plane
calculated for the element.

The incompatible bending modes significantly improve the bending behavior of
the element if the element geometry is of a rectangular form. Improved behavior is
exhibited even with non-rectangular geometry.

Structures that can be modeled with this element include:

» Thin, planar structures in a state of plane stress

* Long, prismatic structures in a state of plane strain
The stresses and strains are assumed not to vary in the thickness direction.

For plane-stress, the element has no out-of-plane stiffness. For plane-strain, the ele-
ment can support loads with anti-plane shear stiffness.

Each Plane element has its own local coordinate system for defining Material prop-
erties and loads, and for interpreting output. Temperature-dependent, orthotropic
material properties are allowed. Each element may be loaded by gravity (in any di-
rection); surface pressure on the side faces; pore pressure within the element; and
loads due to temperature change.

An 2 x 2 numerical integration scheme is used for the Plane. Stresses in the element
local coordinate system are evaluated at the integration points and extrapolated to
the joints of the element. An approximate error in the stresses can be estimated from
the difference in values calculated from different elements attached to a common
joint. This will give an indication of the accuracy of the finite element approxima-
tion and can then be used as the basis for the selection of a new and more accurate
finite element mesh.

Overview
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Joint Connectivity

The joint connectivity and face definition is identical for all area objects, i.e., the
Shell, Plane, and Asolid elements. See Topic “Joint Connectivity” (page 129) in
Chapter “The Shell Element” for more information.

The Plane element is intended to be planar. If you define a four-node element that is
not planar, an average plane will be fit through the four joints, and the projection of
the element onto this plane will be used.

Degrees of Freedom

The Plane element activates the three translational degrees of freedom at each of its
connected joints. Rotational degrees of freedom are not activated.

The plane-stress element contributes stiffness only to the degrees of freedom in the
plane of the element. It is necessary to provide restraints or other supports for the
translational degrees of freedom that are normal to this plane; otherwise, the struc-
ture will be unstable.

The plane-strain element models anti-plane shear, i.e., shear that is normal to the
plane of the element, in addition to the in-plane behavior. Thus stiffness is created
for all three translational degrees of freedom.

See Topic “Degrees of Freedom” (page 29) in Chapter “Joints and Degrees of Free-
dom” for more information.

Local Coordinate System

The element local coordinate system is identical for all area objects, i.e., the Shell,
Plane, and Asolid elements. See Topics “Local Coordinate System” (page 132) and
“Advanced Local Coordinate System” (page 133) in Chapter “The Shell Element”
for more information.

Stresses and Strains

The Plane element models the mid-plane of a structure having uniform thickness,
and whose stresses and strains do not vary in the thickness direction.

Joint Connectivity 151



CSI Analysis Reference Manual

Plane-stress is appropriate for structures that are thin compared to their planar di-
mensions. The thickness normal stress (o 33) is assumed to be zero. The thickness
normal strain (¢33) may not be zero due to Poisson effects. Transverse shear
stresses (015, 013) and shear strains (y,, 73) are assumed to be zero. Displace-
ments in the thickness (local 3) direction have no effect on the element.

Plane-strain is appropriate for structures that are thick compared to their planar di-
mensions. The thickness normal strain (g 33) is assumed to be zero. The thickness
normal stress (c33) may not be zero due to Poisson effects. Transverse shear
stresses (15,0 13) and shear strains (y,, 73 ) are dependent upon displacements in
the thickness (local 3) direction.

See Topic “Stresses and Strains” (page 69) in Chapter “Material Properties” for
more information.

Section Properties
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A Plane Section is a set of material and geometric properties that describe the
cross-section of one or more Plane elements. Sections are defined independently of
the Plane elements, and are assigned to the area objects.

Section Type

When defining an area section, you have a choice of three basic element types:

* Plane (stress or strain) — the subject of this Chapter, a two-dimensional solid,
with translational degrees of freedom, capable of supporting forces but not mo-
ments.

» Shell — shell, plate, or membrane, with translational and rotational degrees of
freedom, capable of supporting forces and moments. This element is covered in
Chapter “The Shell Element” (page 127).

* Asolid — axisymmetric solid, with translational degrees of freedom, capable of
supporting forces but not moments. This element is covered in Chapter “The
Asolid Element” (page 159).

For Plane sections, you may choose one of the following sub-types of behavior:

» Plane stress

* Plane strain, including anti-plane shear

Section Properties
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Material Properties

The material properties for each Plane element are specified by reference to a previ-
ously-defined Material. Orthotropic properties are used, even if the Material se-
lected was defined as anisotropic. The material properties used by the Plane ele-
ment are:

» The moduli of elasticity, el, €2, and e3

* The shear modulus, g12

* For plane-strain only, the shear moduli, g13 and g23

» The Poisson’s ratios, ul2, ul3 and u23

» The coefficients of thermal expansion, al, a2, and a3

* The mass density, m, for computing element mass

» The weight density, w, for computing Self-Weight and Gravity Loads

The properties e3, ul3, u23, and a3 are not used for plane stress. They are used to
compute the thickness-normal stress (G 33) in plane strain.

All material properties (except the densities) are obtained at the material tempera-
ture of each individual element.

See Chapter “Material Properties” (page 67) for more information.

Material Angle

The material local coordinate system and the element (Plane Section) local coordi-
nate system need not be the same. The local 3 directions always coincide for the
two systems, but the material 1 axis and the element 1 axis may differ by the angle a
as shown in Figure 37 (page 154). This angle has no effect for isotropic material
properties since they are independent of orientation.

See Topic “Local Coordinate System” (page 68) in Chapter “Material Properties”
for more information.
Thickness

Each Plane Section has a uniform thickness, th. This may be the actual thickness,
particularly for plane-stress elements; or it may be a representative portion, such as
a unit thickness of an infinitely-thick plane-strain element.
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2 (Element)
2 (Material)
a 1 (Material)
a
[ » 1 (Element)

3 (Element, Material)

Figure 37
Plane Element Material Angle

The element thickness is used for calculating the element stiffness, mass, and loads.
Hence, joint forces computed from the element are proportional to this thickness.

Incompatible Bending Modes

By default each Plane element includes four incompatible bending modes in its
stiffness formulation. These incompatible bending modes significantly improve
the bending behavior in the plane of the element if the element geometry is of a rect-
angular form. Improved behavior is exhibited even with non-rectangular geometry.

If an element is severely distorted, the inclusion of the incompatible modes should
be suppressed. The element then uses the standard isoparametric formulation. In-
compatible bending modes may also be suppressed in cases where bending is not
important, such as in typical geotechnical problems.

Mass

In a dynamic analysis, the mass of the structure is used to compute inertial forces.
The mass contributed by the Plane element is lumped at the element joints. No iner-
tial effects are considered within the element itself.
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The total mass of the element is equal to the integral over the plane of the element of
the mass density, m, multiplied by the thickness, th. The total mass is apportioned
to the joints in a manner that is proportional to the diagonal terms of the consistent
mass matrix. See Cook, Malkus, and Plesha (1989) for more information. The total
mass is applied to each of the three translational degrees of freedom (UX, UY, and
UZ) even when the element contributes stiffness to only two of these degrees of
freedom.

For more information:

* See Topic “Mass Density” (page 74) in Chapter “Material Properties.”
» See Chapter “Analysis Cases” (page 255).

Self-Weight Load

Self-Weight Load activates the self-weight of all elements in the model. For a Plane
element, the self-weight is a force that is uniformly distributed over the plane of the
element. The magnitude of the self-weight is equal to the weight density, w, multi-
plied by the thickness, th.

Self-Weight Load always acts downward, in the global —Z direction. You may
scale the self-weight by a single scale factor that applies equally to all elements in
the structure.

For more information:

» See Topic “Weight Density” (page 75) in Chapter “Material Properties” for the
definition of w.

» See Topic “Thickness” (page 153) in this Chapter for the definition of th.
* See Topic “Self-Weight Load” (page 245) in Chapter “Load Cases.”

Gravity Load

Gravity Load can be applied to each Plane element to activate the self-weight of the
element. Using Gravity Load, the self-weight can be scaled and applied in any di-
rection. Different scale factors and directions can be applied to each element.

If all elements are to be loaded equally and in the downward direction, it is more
convenient to use Self~-Weight Load.

For more information:
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* See Topic “Self-Weight Load” (page 155) in this Chapter for the definition of
self-weight for the Plane element.

» See Topic “Gravity Load” (page 246) in Chapter “Load Cases.”

Surface Pressure Load

The Surface Pressure Load is used to apply external pressure loads upon any of the
three or four side faces of the Plane element. The definition of these faces is shown
in Figure 30 (page 130). Surface pressure always acts normal to the face. Positive
pressures are directed toward the interior of the element.

The pressure may be constant over a face or interpolated from values given at the
joints. The values given at the joints are obtained from Joint Patterns, and need not
be the same for the different faces. Joint Patterns can be used to easily apply hydro-
static pressures.

The pressure acting on a side is multiplied by the thickness, th, integrated along the
length of the side, and apportioned to the two or three joints on that side.

See Chapter “Load Cases” (page 241) for more information.

Pore Pressure Load

The Pore Pressure Load is used to model the drag and buoyancy effects of a fluid
within a solid medium, such as the effect of water upon the solid skeleton of a soil.

Scalar fluid-pressure values are given at the element joints by Joint Patterns, and in-
terpolated over the element. The total force acting on the element is the integral of
the gradient of this pressure field over the plane of the element, multiplied by the
thickness, th. This force is apportioned to each of the joints of the element. The
forces are typically directed from regions of high pressure toward regions of low
pressure.

See Chapter “Load Cases” (page 241) for more information.

Temperature Load

The Temperature Load creates thermal strain in the Plane element. This strain is
given by the product of the Material coefficient of thermal expansion and the tem-
perature change of the element. The temperature change is measured from the ele-

156 Surface Pressure Load



Chapter X The Plane Element

ment Reference Temperature to the element Load Temperature. Temperature
changes are assumed to be constant through the element thickness.

See Chapter “Load Cases” (page 241) for more information.

Stress Output

The Plane element stresses are evaluated at the standard 2-by-2 Gauss integration
points of the element and extrapolated to the joints. See Cook, Malkus, and Plesha
(1989) for more information.

Principal values and their associated principal directions in the element local 1-2
plane are also computed for single-valued analysis cases. The angle given is meas-
ured counterclockwise (when viewed from the +3 direction) from the local 1 axis to
the direction of the maximum principal value.

For more information:

* See Chapter “Load Cases” (page 241).
» See Chapter “Analysis Cases” (page 255).
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The Asolid Element

The Asolid element is used to model axisymmetric solids under axisymmetric load-
ing.

Advanced Topics
* Overview
+ Joint Connectivity
» Degrees of Freedom
» Local Coordinate System
* Stresses and Strains
» Section Properties
* Mass
» Self-Weight Load
» Gravity Load
* Surface Pressure Load
* Pore Pressure Load
» Temperature Load
* Rotate Load
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» Stress Output

Overview

The Asolid element is a three- or four-node element for modeling axisymmetric
structures under axisymmetric loading. It is based upon an isoparametric formula-
tion that includes four optional incompatible bending modes.

The element models a representative two-dimensional cross section of the three-di-
mensional axisymmetric solid. The axis of symmetry may be located arbitrarily in
the model. Each element should lie fully in a plane containing the axis of symmetry.
If it does not, it is formulated for the projection of the element upon the plane con-
taining the axis of symmetry and the center of the element.

The geometry, loading, displacements, stresses, and strains are assumed not to vary
in the circumferential direction. Any displacements that occur in the circumfer-
ential direction are treated as axisymmetric torsion.

The use of incompatible bending modes significantly improves the in-plane bend-
ing behavior of the element if the element geometry is of a rectangular form. Im-
proved behavior is exhibited even with non-rectangular geometry.

Each Asolid element has its own local coordinate system for defining Material
properties and loads, and for interpreting output. Temperature-dependent,
orthotropic material properties are allowed. Each element may be loaded by gravity
(in any direction); centrifugal force; surface pressure on the side faces; pore pres-
sure within the element; and loads due to temperature change.

An 2 x 2 numerical integration scheme is used for the Asolid. Stresses in the ele-
ment local coordinate system are evaluated at the integration points and extrapo-
lated to the joints of the element. An approximate error in the stresses can be esti-
mated from the difference in values calculated from different elements attached to a
common joint. This will give an indication of the accuracy of the finite element ap-
proximation and can then be used as the basis for the selection of a new and more
accurate finite element mesh.

Joint Connectivity

The joint connectivity and face definition is identical for all area objects, i.e., the
Shell, Plane, and Asolid elements. See Topic “Joint Connectivity” (page 129) in
Chapter “The Shell Element” for more information.
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The Asolid element is intended to be planar and to lie in a plane that contains the
axis of symmetry. If not, a plane is found that contains the axis of symmetry and the
center of the element, and the projection of the element onto this plane will be used.

Joints for a given element may not lie on opposite sides of the axis of symmetry.
They may lie on the axis of symmetry and/or to one side of it.

Degrees of Freedom

The Asolid element activates the three translational degrees of freedom at each of
its connected joints. Rotational degrees of freedom are not activated.

Stiffness is created for all three degrees of freedom. Degrees of freedom in the
plane represent the radial and axial behavior. The normal translation represents
circumferential torsion.

See Topic “Degrees of Freedom” (page 29) in Chapter “Joints and Degrees of Free-
dom” for more information.

Local Coordinate System

The element local coordinate system is identical for all area objects, i.e., the Shell,
Plane, and Asolid elements. See Topics “Local Coordinate System” (page 132) and
“Advanced Local Coordinate System” (page 133) in Chapter “The Shell Element”
for more information.

The local 3 axis is normal to the plane of the element, and is the negative of the cir-
cumferential direction. The 1-2 plane is the same as the radial-axial plane, although
the orientation of the local axes is not restricted to be parallel to the radial and axial
axes.

The radial direction runs perpendicularly from the axis of symmetry to the center of
the element. The axial direction is parallel to the axis of symmetry, with the positive
sense being upward when looking along the circumferential (—3) direction with the
radial direction pointing to the right.
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Stresses and Strains

The Asolid element models the mid-plane of a representative sector of an axisym-
metric structure whose stresses and strains do not vary in the circumferential direc-
tion.

Displacements in the local 1-2 plane cause in-plane strains (y;;, Y22, Y1) and
stresses (511,02, 012)-

Displacements in the radial direction also cause circumferential normal strains:
u

— r
€33 =—
r

where u,. is the radial displacement, and r is the radius at the point in question. The
circumferential normal stress (c33) is computed as usual from the three normal
strains.

Displacements in the circumferential (local 3) direction cause only torsion, result-
ing in circumferential shear strains (y,,, y3) and stresses (5 ,,03).

See Topic “Stresses and Strains” (page 69) in Chapter “Material Properties” for
more information.

Section Properties

162

An Asolid Section is a set of material and geometric properties that describe the
cross-section of one or more Asolid elements. Sections are defined independently
of the Asolid elements, and are assigned to the area objects.

Section Type

When defining an area section, you have a choice of three basic element types:
* Asolid — the subject of this Chapter, an axisymmetric solid, with translational
degrees of freedom, capable of supporting forces but not moments.

* Plane (stress or strain) — a two-dimensional solid, with translational degrees of
freedom, capable of supporting forces but not moments. This element is cov-
ered in Chapter “The Plane Element” (page 149).
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 Shell — shell, plate, or membrane, with translational and rotational degrees of
freedom, capable of supporting forces and moments. This element is covered in
Chapter “The Shell Element” (page 127).

After selecting an Asolid type of section, you must supply the rest of the data de-
scribed below.

Material Properties

The material properties for each Asolid element are specified by reference to a pre-
viously-defined Material. Orthotropic properties are used, even if the Material se-
lected was defined as anisotropic. The material properties used by the Asolid ele-
ment are:

* The moduli of elasticity, el, e2, and e3

» The shear moduli, g12, g13, and g23

e The Poisson’s ratios, ul2, ul3 and u23

* The coefficients of thermal expansion, al, a2, and a3

» The mass density, m, for computing element mass

» The weight density, w, for computing Self-Weight and Gravity Loads

All material properties (except the densities) are obtained at the material tempera-
ture of each individual element.

See Chapter “Material Properties” (page 67) for more information.

Material Angle

The material local coordinate system and the element (Asolid Section) local coordi-
nate system need not be the same. The local 3 directions always coincide for the
two systems, but the material 1 axis and the element 1 axis may differ by the angle a
as shown in Figure 38 (page 164). This angle has no effect for isotropic material
properties since they are independent of orientation.

See Topic “Local Coordinate System” (page 68) in Chapter “Material Properties”
for more information.
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Figure 38
Asolid Element Material Angle
Axis of Symmetry

For each Asolid Section, you may select an axis of symmetry. This axis is specified
as the Z axis of an alternate coordinate system that you have defined. All Asolid el-
ements that use a given Asolid Section will have the same axis of symmetry.

For most modeling cases, you will only need a single axis of symmetry. However,
if you want to have multiple axes of symmetry in your model, just set up as many al-
ternate coordinate systems as needed for this purpose and define corresponding
Asolid Section properties.

You should be aware that it is almost impossible to make a sensible model that con-
nects Asolid elements with other element types, or that connects together Asolid el-
ements using different axes of symmetry. The practical application of having multi-
ple axes of symmetry is to have multiple independent axisymmetric structures in
the same model.

See Topic “Alternate Coordinate Systems” (page 16) in Chapter “Coordinate Sys-
tems” for more information.
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X, 3

Figure 39
Asolid Element Local Coordinate System and Arc Definition

Arc and Thickness

The Asolid element represents a solid that is created by rotating the element’s pla-
nar shape through 360° about the axis of symmetry. However, the analysis consid-
ers only a representative sector of the solid. You can specify the size of the sector,
in degrees, using the parameter arc. For example, are=360 models the full struc-
ture, and arc=90 models one quarter of it. See Figure 39 (page 165). Setting arc=0,
the default, models a one-radian sector. One radian is the same as 180°/x, or ap-
proximately 57.3°.

The element “thickness” (circumferential extent), /4, increases with the radial dis-
tance, 7, from the axis of symmetry:

T - arc
= r

180

Clearly the thickness varies over the plane of the element.

The element thickness is used for calculating the element stiffness, mass, and loads.
Hence, joint forces computed from the element are proportional to are.
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Incompatible Bending Modes

Mass

By default each Asolid element includes four incompatible bending modes in its
stiffness formulation. These incompatible bending modes significantly improve
the bending behavior in the plane of the element if the element geometry is of a rect-
angular form. Improved behavior is exhibited even with non-rectangular geometry.

If an element is severely distorted, the inclusion of the incompatible modes should
be suppressed. The element then uses the standard isoparametric formulation. In-
compatible bending modes may also be suppressed in cases where bending is not
important, such as in typical geotechnical problems.

In a dynamic analysis, the mass of the structure is used to compute inertial forces.
The mass contributed by the Asolid element is lumped at the element joints. No in-
ertial effects are considered within the element itself.

The total mass of the element is equal to the integral over the plane of the element of
the product of the mass density, m, multiplied by the thickness, /. The total mass is
apportioned to the joints in a manner that is proportional to the diagonal terms of
the consistent mass matrix. See Cook, Malkus, and Plesha (1989) for more infor-
mation. The total mass is applied to each of the three translational degrees of free-
dom (UX, UY, and UZ).

For more information:

* See Topic “Mass Density” (page 74) in Chapter “Material Properties.”
» See Chapter “Analysis Cases” (page 255).

Self-Weight Load

166

Self-Weight Load activates the self-weight of all elements in the model. For an
Asolid element, the self-weight is a force that is distributed over the plane of the
element. The magnitude of the self-weight is equal to the weight density, w, multi-
plied by the thickness, .

Self-Weight Load always acts downward, in the global —Z direction. If the down-
ward direction corresponds to the radial or circumferential direction of an Asolid
element, the Self-Weight Load for that element will be zero, since self-weight act-
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ing in these directions is not axisymmetric. Non-zero Self-Weight Load will only
exist for elements whose axial direction is vertical.

Y ou may scale the self-weight by a single scale factor that applies equally to all ele-
ments in the structure.

For more information:
» See Topic “Weight Density” (page 75) in Chapter “Material Properties” for the

definition of w.

* See Subtopic “Arc and Thickness” (page 165) in this Chapter for the definition
of h.

* See Topic “Self-Weight Load” (page 245) in Chapter “Load Cases.”

Gravity Load

Gravity Load can be applied to each Asolid element to activate the self-weight of
the element. Using Gravity Load, the self-weight can be scaled and applied in any
direction. Different scale factors and directions can be applied to each element.
However, only the components of Gravity load acting in the axial direction of an
Asolid element will be non-zero. Components in the radial or circumferential direc-
tion will be set to zero, since gravity acting in these directions is not axisymmetric.

If all elements are to be loaded equally and in the downward direction, it is more
convenient to use Self~-Weight Load.

For more information:

* See Topic “Self-Weight Load” (page 166) in this Chapter for the definition of
self-weight for the Asolid element.

» See Topic “Gravity Load” (page 246) in Chapter “Load Cases.”

Surface Pressure Load

The Surface Pressure Load is used to apply external pressure loads upon any of the
three or four side faces of the Asolid element. The definition of these faces is shown
in Figure 30 (page 130). Surface pressure always acts normal to the face. Positive
pressures are directed toward the interior of the element.

The pressure may be constant over a face or interpolated from values given at the
joints. The values given at the joints are obtained from Joint Patterns, and need not
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be the same for the different faces. Joint Patterns can be used to easily apply hydro-
static pressures.

The pressure acting on a side is multiplied by the thickness, 4, integrated along the
length of the side, and apportioned to the two or three joints on that side.

See Chapter “Load Cases” (page 241) for more information.

Pore Pressure Load

The Pore Pressure Load is used to model the drag and buoyancy effects of a fluid
within a solid medium, such as the effect of water upon the solid skeleton of a soil.

Scalar fluid-pressure values are given at the element joints by Joint Patterns, and in-
terpolated over the element. The total force acting on the element is the integral of
the gradient of this pressure field, multiplied by the thickness 4, over the plane of
the element. This force is apportioned to each of the joints of the element. The
forces are typically directed from regions of high pressure toward regions of low
pressure.

See Chapter “Load Cases” (page 241) for more information.

Temperature Load

The Temperature Load creates thermal strain in the Asolid element. This strain is
given by the product of the Material coefficient of thermal expansion and the tem-
perature change of the element. The temperature change is measured from the ele-
ment Reference Temperature to the element Load Temperature. Temperature
changes are assumed to be constant through the element thickness.

See Chapter “Load Cases” (page 241) for more information.

Rotate Load

168

Rotate Load is used to apply centrifugal force to Asolid elements. Each element is
assumed to rotate about its own axis of symmetry at a constant angular velocity.

The angular velocity creates a load on the element that is proportional to its mass,
its distance from the axis of rotation, and the square of the angular velocity. This
load acts in the positive radial direction, and is apportioned to each joint of the ele-
ment. No Rotate Load will be produced by an element with zero mass density.
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Since Rotate Loads assume a constant rate of rotation, it does not make sense to use
a Load Case that contains Rotate Load in a time-history analysis unless that Load
Case is applied quasi-statically (i.e., with a very slow time variation).

For more information:

» See Topic “Mass Density” (page 74) in Chapter “Material Properties.”
* See Chapter “Load Cases” (page 241).

Stress Output

The Asolid element stresses are evaluated at the standard 2-by-2 Gauss integration
points of the element and extrapolated to the joints. See Cook, Malkus, and Plesha
(1989) for more information.

Principal values and their associated principal directions in the element local 1-2
plane are also computed for single-valued analysis cases. The angle given is mea-
sured counterclockwise (when viewed from the +3 direction) from the local 1 axis
to the direction of the maximum principal value.

For more information:

* See Chapter “Load Cases” (page 241).
» See Chapter “Analysis Cases” (page 255).
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The Solid Element

The Solid element is used to model three-dimensional solid structures.

Advanced Topics

Overview

Joint Connectivity
Degrees of Freedom
Local Coordinate System
Advanced Local Coordinate System
Stresses and Strains
Solid Properties

Mass

Self-Weight Load
Gravity Load

Surface Pressure Load
Pore Pressure Load
Temperature Load

Stress Output
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Overview

The Solid element is an eight-node element for modeling three-dimensional struc-
tures and solids. It is based upon an isoparametric formulation that includes nine
optional incompatible bending modes.

The incompatible bending modes significantly improve the bending behavior of
the element if the element geometry is of a rectangular form. Improved behavior is
exhibited even with non-rectangular geometry.

Each Solid element has its own local coordinate system for defining Material prop-
erties and loads, and for interpreting output. Temperature-dependent, anisotropic
material properties are allowed. Each element may be loaded by gravity (in any di-
rection); surface pressure on the faces; pore pressure within the element; and loads
due to temperature change.

An 2 x 2 x 2 numerical integration scheme is used for the Solid. Stresses in the ele-
ment local coordinate system are evaluated at the integration points and extrapo-
lated to the joints of the element. An approximate error in the stresses can be esti-
mated from the difference in values calculated from different elements attached to a
common joint. This will give an indication of the accuracy of the finite element ap-
proximation and can then be used as the basis for the selection of a new and more
accurate finite element mesh.

Joint Connectivity

172

Each Solid element has six quadrilateral faces, with a joint located at each of the
eight corners as shown in Figure 40 (page 173). It is important to note the relative
position of the eight joints: the paths j1-j2-j3 and j5-j6-j7 should appear counter-
clockwise when viewed along the direction from j5 to j1. Mathematically stated,
the three vectors:

* V,,, from joints j1 to j2,
* Vi3, from joints j1 to j3,
* Vs, from joints j1 to j5,
must form a positive triple product, that is:

(Vi2 xVj3)-V5>0

Overview
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j1

Figure 40
Solid Element Joint Connectivity and Face Definitions

The locations of the joints should be chosen to meet the following geometric condi-
tions:

» The inside angle at each corner of the faces must be less than 180°. Best results
will be obtained when these angles are near 90°, or at least in the range of 45° to
135°.

* The aspect ratio of an element should not be too large. This is the ratio of the
longest dimension of the element to its shortest dimension. Best results are ob-
tained for aspect ratios near unity, or at least less than four. The aspect ratio
should not exceed ten.

These conditions can usually be met with adequate mesh refinement.

Degrees of Freedom

The Solid element activates the three translational degrees of freedom at each of its
connected joints. Rotational degrees of freedom are not activated. This element
contributes stiffness to all of these translational degrees of freedom.
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See Topic “Degrees of Freedom™ (page 29) in Chapter “Joints and Degrees of Free-
dom” for more information.

Local Coordinate System

Each Solid element has its own element local coordinate system used to define
Material properties, loads and output. The axes of this local system are denoted 1, 2
and 3. By default these axes are identical to the global X, Y, and Z axes, respec-
tively. Both systems are right-handed coordinate systems.

The default local coordinate system is adequate for most situations. However, for
certain modeling purposes it may be useful to use element local coordinate systems
that follow the geometry of the structure.

For more information:

* See Topic “Upward and Horizontal Directions” (page 13) in Chapter “Coordi-
nate Systems.”

* See Topic “Advanced Local Coordinate System” (page 174) in this Chapter.

Advanced Local Coordinate System

174

By default, the element local 1-2-3 coordinate system is identical to the global
X-Y-Z coordinate system, as described in the previous topic. In certain modeling
situations it may be useful to have more control over the specification of the local
coordinate system.

A variety of methods are available to define a solid-element local coordinate sys-
tem. These may be used separately or together. Local coordinate axes may be de-
fined to be parallel to arbitrary coordinate directions in an arbitrary coordinate sys-
tem or to vectors between pairs of joints. In addition, the local coordinate system
may be specified by a set of three element coordinate angles. These methods are de-
scribed in the subtopics that follow.

For more information:

* See Chapter “Coordinate Systems” (page 11).
* See Topic “Local Coordinate System” (page 174) in this Chapter.
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Chapter Xl The Solid Element

Reference Vectors

To define a solid-element local coordinate system you must specify two reference
vectors that are parallel to one of the local coordinate planes. The axis reference
vector, V, , must be parallel to one of the local axes (/= 1, 2, or 3) in this plane and

have a positive projection upon that axis. The plane reference vector, V, must
have a positive projection upon the other local axis (j = 1, 2, or 3, but / #}) in this
plane, but need not be parallel to that axis. Having a positive projection means that

the positive direction of the reference vector must make an angle of less than 90°
with the positive direction of the local axis.

Together, the two reference vectors define a local axis, /, and a local plane, i-j.
From this, the program can determine the third local axis, &, using vector algebra.

For example, you could choose the axis reference vector parallel to local axis 1 and
the plane reference vector parallel to the local 1-2 plane (/=1,j=2). Alternatively,
you could choose the axis reference vector parallel to local axis 3 and the plane ref-
erence vector parallel to the local 3-2 plane (/ =3, j =2). You may choose the plane
that is most convenient to define using the parameter local, which may take on the
values 12, 13, 21, 23, 31, or 32. The two digits correspond to / and j, respectively.
The default is value is 31.

Defining the Axis Reference Vector

To define the axis reference vector, you must first specify or use the default values
for:

* A coordinate direction axdir (the default is +Z)

» A fixed coordinate system csys (the default is zero, indicating the global coor-
dinate system)

You may optionally specify:

* A pair of joints, axveca and axvecb (the default for each is zero, indicating the
center of the element). If both are zero, this option is not used.

For each element, the axis reference vector is determined as follows:

1. A vector is found from joint axveca to joint axvech. If this vector is of finite
length, it is used as the reference vector V,,
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2. Otherwise, the coordinate direction axdir is evaluated at the center of the ele-
ment in fixed coordinate system csys, and is used as the reference vector V,,

Defining the Plane Reference Vector

To define the plane reference vector, you must first specify or use the default values
for:

* A primary coordinate direction pldirp (the default is +X)

* A secondary coordinate direction pldirs (the default is +Y). Directions pldirs
and pldirp should not be parallel to each other unless you are sure that they are
not parallel to local axis 1

* A fixed coordinate system csys (the default is zero, indicating the global coor-
dinate system). This will be the same coordinate system that was used to define
the axis reference vector, as described above

You may optionally specify:

* A pair of joints, plveca and plvecb (the default for each is zero, indicating the
center of the element). If both are zero, this option is not used.

For each element, the plane reference vector is determined as follows:

1. A vector is found from joint plveca to joint plvecb. If this vector is of finite
length and is not parallel to local axis /, it is used as the reference vector V,,

2. Otherwise, the primary coordinate direction pldirp is evaluated at the center of
the element in fixed coordinate system csys. If this direction is not parallel to
local axis 7, it is used as the reference vector Vp

3. Otherwise, the secondary coordinate direction pldirs is evaluated at the center
of the element in fixed coordinate system csys. If this direction is not parallel to
local axis 7, it is used as the reference vector Vp

4. Otherwise, the method fails and the analysis terminates. This will never happen
if pldirp is not parallel to pldirs

A vector is considered to be parallel to local axis [ if the sine of the angle between
them is less than 10~
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V, is parallel to axveca-axvecb
Vp is parallel to plveca-plvechb

V3 = Va
V2=V3xV, Allvectors normalized to unit length.
V1 = V2 X V3

V,

./;Ivecb

plveca

¥ Vp

Plane 3-1
axveca

Global

axvecb
X Y

Figure 41
Example of the Determination of the Solid Element Local Coordinate System
Using Reference Vectors for local=31. Point j is the Center of the Element.

Determining the Local Axes from the Reference Vectors

The program uses vector cross products to determine the local axes from the refer-
ence vectors. The three axes are represented by the three unit vectors V;, V, and
V5, respectively. The vectors satisfy the cross-product relationship:

Vl :V2 XV3

The local axis V; is given by the vector V, after it has been normalized to unit
length.

The remaining two axes, Vj and V,_, are defined as follows:
» If/andj permute in a positive sense, i.e., local = 12, 23, or 31, then:
Vi=V;xV, and
V, =V xV,;
» If/andj permute in a negative sense, i.e., local = 21, 32, or 13, then:
Vi =V, xV; and
V=V, xV;
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An example showing the determination of the element local coordinate system us-
ing reference vectors is given in Figure 41 (page 177).

Element Coordinate Angles

The solid-element local coordinate axes determined from the reference vectors may
be further modified by the use of three element coordinate angles, denoted a, b,
and c. In the case where the default reference vectors are used, the coordinate an-
gles define the orientation of the element local coordinate system with respect to
the global axes.

The element coordinate angles specify rotations of the local coordinate system
about its own current axes. The resulting orientation of the local coordinate system
is obtained according to the following procedure:

1. The local system is first rotated about its +3 axis by angle a
2. The local system is next rotated about its resulting +2 axis by angle b
3. The local system is lastly rotated about its resulting +1 axis by angle ¢

The order in which the rotations are performed is important. The use of coordinate
angles to orient the element local coordinate system with respect to the global sys-
tem is shown in Figure 4 (page 30).

Stresses and Strains

The Solid element models a general state of stress and strain in a three-dimensional
solid. All six stress and strain components are active for this element.

See Topic “Stresses and Strains” (page 69) in Chapter “Material Properties” for
more information.

Solid Properties
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A Solid Property is a set of material and geometric properties to be used by one or
more Solid elements. Solid Properties are defined independently of the Solid ele-
ments/objects, and are assigned to the elements.

Stresses and Strains
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Step 1: Rotation about
local 3 axis by angle a

Step 2: Rotation about new
local 2 axis by angle b

Step 3: Rotation about new
local 1 axis by angle ¢

Figure 42
Use of Element Coordinate Angles to Orient the
Solid Element Local Coordinate System
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Material Properties

The material properties for each Solid Property are specified by reference to a pre-
viously-defined Material. Fully anisotropic material properties are used. The mate-
rial properties used by the Solid element are:

* The moduli of elasticity, el, €2, and e3

* The shear moduli, g12, g13, and g23

« All of the Poisson’s ratios, ul2, ul3, u23, ..., u56

* The coefficients of thermal expansion, al, a2, a3, al2, al3, and a23

* The mass density, m, used for computing element mass

* The weight density, w, used for computing Self-Weight and Gravity Loads

All material properties (except the densities) are obtained at the material tempera-
ture of each individual element.

See Chapter “Material Properties” (page 67) for more information.

Material Angles

The material local coordinate system and the element (Property) local coordinate
system need not be the same. The material coordinate system is oriented with re-
spect to the element coordinate system using the three angles a, b, and ¢ according
to the following procedure:

* The material system is first aligned with the element system;

» The material system is then rotated about its +3 axis by angle a;

* The material system is next rotated about the resulting +2 axis by angle b;

* The material system is lastly rotated about the resulting +1 axis by angle c;

This is shown in Figure 43 (page 181). These angles have no effect for isotropic
material properties since they are independent of orientation.

See Topic “Local Coordinate System” (page 68) in Chapter “Material Properties”
for more information.
Incompatible Bending Modes

By default each Solid element includes nine incompatible bending modes in its
stiffness formulation. These incompatible bending modes significantly improve
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Mass

3 (Element)
A

Da

3 (Material)

2 (Material)

1 (Element) 2 (Element)

. Rotations are performed in the order
1 (Material) a-b-c about the axes shown.

Figure 43
Solid Element Material Angles

the bending behavior of the element if the element geometry is of a rectangular
form. Improved behavior is exhibited even with non-rectangular geometry.

If an element is severely distorted, the inclusion of the incompatible modes should
be suppressed. The element then uses the standard isoparametric formulation. In-
compatible bending modes may also be suppressed in cases where bending is not
important, such as in typical geotechnical problems.

In a dynamic analysis, the mass of the structure is used to compute inertial forces.
The mass contributed by the Solid element is lumped at the element joints. No iner-
tial effects are considered within the element itself-

The total mass of the element is equal to the integral of the mass density, m, over the
volume of the element. The total mass is apportioned to the joints in a manner that is
proportional to the diagonal terms of the consistent mass matrix. See Cook,
Malkus, and Plesha (1989) for more information. The total mass is applied to each
of the three translational degrees of freedom (UX, UY, and UZ).
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For more information:

* See Topic “Mass Density” (page 74) in Chapter “Material Properties.”
» See Chapter “Analysis Cases” (page 255).

Self-Weight Load

Self-Weight Load activates the self-weight of all elements in the model. For a Solid
element, the self-weight is a force that is uniformly distributed over the volume of
the element. The magnitude of the self-weight is equal to the weight density, w.

Self-Weight Load always acts downward, in the global —Z direction. You may
scale the self-weight by a single scale factor that applies equally to all elements in
the structure.

For more information:

* See Topic “Weight Density” (page 75) in Chapter “Material Properties” for the
definition of w.

* See Topic “Self-Weight Load” (page 245) in Chapter “Load Cases.”

Gravity Load

Gravity Load can be applied to each Solid element to activate the self-weight of the
element. Using Gravity Load, the self-weight can be scaled and applied in any di-
rection. Different scale factors and directions can be applied to each element.

If all elements are to be loaded equally and in the downward direction, it is more
convenient to use Self-Weight Load.

For more information:

* See Topic “Self-Weight Load” (page 182) in this Chapter for the definition of
self-weight for the Solid element.

* See Topic “Gravity Load” (page 246) in Chapter “Load Cases.”

Surface Pressure Load

The Surface Pressure Load is used to apply external pressure loads upon any of the
six faces of the Solid element. The definition of these faces is shown in Figure 40
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(page 173). Surface pressure always acts normal to the face. Positive pressures are
directed toward the interior of the element.

The pressure may be constant over a face or interpolated from values given at the
joints. The values given at the joints are obtained from Joint Patterns, and need not
be the same for the different faces. Joint Patterns can be used to easily apply hydro-
static pressures.

The pressure acting on a given face is integrated over the area of that face, and the
resulting force is apportioned to the four corner joints of the face.

See Chapter “Load Cases” (page 241) for more information.

Pore Pressure Load

The Pore Pressure Load is used to model the drag and buoyancy effects of a fluid
within a solid medium, such as the effect of water upon the solid skeleton of a soil.

Scalar fluid-pressure values are given at the element joints by Joint Patterns, and in-
terpolated over the element. The total force acting on the element is the integral of
the gradient of this pressure field over the volume of the element. This force is ap-
portioned to each of the joints of the element. The forces are typically directed from
regions of high pressure toward regions of low pressure.

See Chapter “Load Cases” (page 241) for more information.

Temperature Load

The Temperature Load creates thermal strain in the Solid element. This strain is
given by the product of the Material coefficient of thermal expansion and the tem-
perature change of the element. The temperature change is measured from the ele-
ment Reference Temperature to the element Load Temperature. Temperature
changes are assumed to be constant through the element thickness.

See Chapter “Load Cases” (page 241) for more information.

Stress Output

The Solid element stresses are evaluated at the standard 2 x 2 x 2 Gauss integration
points of the element and extrapolated to the joints. See Cook, Malkus, and Plesha
(1989) for more information.
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Principal values and their associated principal directions in the element local coor-
dinate system are also computed for single-valued analysis cases and combina-
tions. Three direction cosines each are given for the directions of the maximum and
minimum principal stresses. The direction of the middle principal stress is perpen-
dicular to the maximum and minimum principal directions.

For more information:

* See Chapter “Load Cases” (page 241).
* See Chapter “Analysis Cases” (page 255).
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The Link/Support Element—Basic

The Link element is used to connect two joints together. The Support element is
used to connect one joint to ground. Both element types use the same types of prop-
erties. Each Link or Support element may exhibit up to three different types of be-
havior: linear, nonlinear, and frequency-dependent, according to the types of prop-
erties assigned to that element and the type of analysis being performed.

This Chapter describes the basic and general features of the Link and Support ele-
ments and their linear behavior. The next Chapter describes advanced behavior,
which can be nonlinear or frequency-dependent.

Advanced Topics
* Overview
+ Joint Connectivity
» Zero-Length Elements
» Degrees of Freedom
* Local Coordinate System
* Advanced Local Coordinate System
* Internal Deformations

» Link/Support Properties
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* Coupled Linear Property
* Mass

» Self-Weight Load

* Gravity Load

* Internal Force and Deformation Output

Overview

186

A Link element is a two-joint connecting link. A Support element is a one-joint
grounded spring. Properties for both types of element are defined in the same way.
Each element is assumed to be composed of six separate “springs,” one for each of
six deformational degrees-of freedom (axial, shear, torsion, and pure bending).

There are two categories of Link/Support properties that can be defined: Lin-
ear/Nonlinear, and Frequency-Dependent. A Linear/Nonlinear property set must
be assigned to each Link or Support element. The assignment of a Fre-
quency-Dependent property set to a Link or Support element is optional.

All Linear/Nonlinear property sets contain linear properties that are used by the ele-
ment for linear analyses, and for other types of analyses if no other properties are
defined. Linear/Nonlinear property sets may have nonlinear properties that will be
used for all nonlinear analyses, and for linear analyses that continue from nonlinear
analyses.

Frequency-dependent property sets contain impedance (stiffness and damping)
properties that will be used for all frequency-dependent analyses. If a Fre-
quency-Dependent property has not been assigned to a Link/Support element, the
linear properties for that element will be used for frequency-dependent analyses.

The types of nonlinear behavior that can be modeled with this element include:

* Viscoelastic damping

* Gap (compression only) and hook (tension only)
* Multi-linear uniaxial elasticity

+ Uniaxial plasticity (Wen model)

* Multi-linear uniaxial plasticity with several types of hysteretic behavior: kine-
matic, Takeda, and pivot

 Biaxial-plasticity base isolator

Overview
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* Friction-pendulum base isolator, with or without uplift prevention. This can
also be used for modeling gap-friction contact behavior

Each element has its own local coordinate system for defining the force-
deformation properties and for interpreting output.

Each Link/Support element may be loaded by gravity (in any direction).

Available output includes the deformation across the element, and the internal
forces at the joints of the element.

Joint Connectivity

Each Link/Support element may take one of the following two configurations:
* A Link connecting two joints, I and j; it is permissible for the two joints to
share the same location in space creating a zero-length element

* A Support connecting a single joint, j, to ground

Lero-Length Elements

The following types of Link/Support elements are considered to be of zero length:

* Single-joint Support elements

* Two-joint Link elements with the distance from joint I to joint j being less than
or equal to the zero-length tolerance that you specify.

The length tolerance is set using the Auto Merge Tolerance in the graphical user in-
terface. Two-joint elements having a length greater than the Auto Merge Tolerance
are considered to be of finite length. Whether an element is of zero length or finite
length affects the definition of the element local coordinate system, and the internal
moments due to shear forces.

Degrees of Freedom

The Link/Support element always activates all six degrees of freedom at each of its
one or two connected joints. To which joint degrees of freedom the element con-
tributes stiffness depends upon the properties you assign to the element. You must
ensure that restraints or other supports are provided to those joint degrees of free-
dom that receive no stiffness.
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For more information:

* See Topic “Degrees of Freedom” (page 29) in Chapter “Joints and Degrees of
Freedom.”

* See Topic “Link/Support Properties” (page 196) in this Chapter.

Local Coordinate System

Each Link/Support element has its own element local coordinate system used to
define force-deformation properties and output. The axes of this local system are
denoted 1, 2 and 3. The first axis is directed along the length of the element and cor-
responds to extensional deformation. The remaining two axes lie in the plane per-
pendicular to the element and have an orientation that you specify; these directions
correspond to shear deformation.

It is important that you clearly understand the definition of the element local 1-2-3
coordinate system and its relationship to the global X-Y-Z coordinate system. Both
systems are right-handed coordinate systems. It is up to you to define local systems
which simplify data input and interpretation of results.

In most structures the definition of the element local coordinate system is ex-
tremely simple. The methods provided, however, provide sufficient power and
flexibility to describe the orientation of Link/Support elements in the most compli-
cated situations.

The simplest method, using the default orientation and the Link/Support ele-
ment coordinate angle, is described in this topic. Additional methods for defining
the Link/Support element local coordinate system are described in the next topic.

For more information:

* See Chapter “Coordinate Systems” (page 11) for a description of the concepts
and terminology used in this topic.

* See Topic “Advanced Local Coordinate System” (page 190) in this Chapter.

Longitudinal Axis |

Local axis 1 is the longitudinal axis of the element, corresponding to extensional
deformation. This axis is determined as follows:

* For elements of finite length this axis is automatically defined as the direction
from joint I to joint j
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» For zero-length elements the local 1 axis defaults to the +Z global coordinate
direction (upward)

For the definition of zero-length elements, see Topic “Zero-Length Elements”
(page 187) in this Chapter.

Default Orientation

The default orientation of the local 2 and 3 axes is determined by the relationship
between the local 1 axis and the global Z axis. The procedure used here is identical
to that for the Frame element:

* The local 1-2 plane is taken to be vertical, i.e., parallel to the Z axis

* The local 2 axis is taken to have an upward (+Z) sense unless the element is ver-
tical, in which case the local 2 axis is taken to be horizontal along the global +X
direction

» The local 3 axis is always horizontal, i.e., it lies in the X-Y plane

An element is considered to be vertical if the sine of the angle between the local 1
axis and the Z axis is less than 10°.

The local 2 axis makes the same angle with the vertical axis as the local 1 axis
makes with the horizontal plane. This means that the local 2 axis points vertically
upward for horizontal elements.

Coordinate Angle

The Link/Support element coordinate angle, ang, is used to define element orienta-
tions that are different from the default orientation. It is the angle through which the
local 2 and 3 axes are rotated about the positive local 1 axis from the default orien-
tation. The rotation for a positive value of ang appears counterclockwise when the
local +1 axis is pointing toward you. The procedure used here is identical to that for
the Frame element.

For vertical elements, ang is the angle between the local 2 axis and the horizontal
+X axis. Otherwise, ang is the angle between the local 2 axis and the vertical plane
containing the local 1 axis. See Figure 44 (page 190) for examples.
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Local 1 Axis is Parallel to +Y Axis Local 1 Axis is Not Parallel to X, Y, or Z Axes
Local 2 Axis is Rotated 90° from Z-1 Plane Local 2 Axis is Rotated 30° from Z-1 Plane
AZ A

ang=30°
. 3
i Y X / b\ Y
XA\//' \e j
e
ang=90° 1
Local 1 Axis is Parallel to +Z Axis Local 1 Axis is Parallel to —Z Axis
Local 2 Axis is Rotated 90° from X-1 Plane Local 2 Axis is Rotated 30° from X-1 Plane
Figure 44
The Link/Support Element Coordinate Angle with Respect to the Default
Orientation

Advanced Local Coordinate System

By default, the element local coordinate system is defined using the element coor-
dinate angle measured with respect to the global +Z and +X directions, as described
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in the previous topic. In certain modeling situations it may be useful to have more
control over the specification of the local coordinate system.

This topic describes how to define the orientation of the transverse local 2 and 3
axes with respect to an arbitrary reference vector when the element coordinate an-
gle, ang, is zero. If ang is different from zero, it is the angle through which the local
2 and 3 axes are rotated about the positive local 1 axis from the orientation deter-
mined by the reference vector.

This topic also describes how to change the orientation of the local 1 axis from the
default global +Z direction for zero-length elements. The local 1 axis is always di-
rected from joint I to joint j for elements of finite length.

For more information:

* See Chapter “Coordinate Systems” (page 11) for a description of the concepts
and terminology used in this topic.

* See Topic “Local Coordinate System” (page 187) in this Chapter.

Axis Reference Vector

To define the local 1 axis for zero-length elements, you specify an axis reference
vector that is parallel to and has the same positive sense as the desired local 1 axis.
The axis reference vector has no effect upon finite-length elements.

To define the axis reference vector, you must first specify or use the default values
for:

* A coordinate direction axdir (the default is +Z)

* A fixed coordinate system csys (the default is zero, indicating the global coor-
dinate system). This will be the same coordinate system that is used to define
the plane reference vector, as described below

Y ou may optionally specify:

* A pair of joints, axveca and axvecb (the default for each is zero, indicating the
center of the element). If both are zero, this option is not used

For each element, the axis reference vector is determined as follows:

1. A vector is found from joint axveca to joint axvechb. If this vector is of finite
length, it is used as the reference vector V,
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2. Otherwise, the coordinate direction axdir is evaluated at the center of the ele-
ment in fixed coordinate system csys, and is used as the reference vector V,,

The center of a zero-length element is taken to be at joint j.

The local 1 axis is given by the vector V, after it has been normalized to unit length.

Plane Reference Vector

To define the transverse local axes 2 and 3, you specify a plane reference vector
that is parallel to the desired 1-2 or 1-3 plane. The procedure used here is identical
to that for the Frame element.

The reference vector must have a positive projection upon the corresponding trans-
verse local axis (2 or 3, respectively). This means that the positive direction of the
reference vector must make an angle of less than 90° with the positive direction of
the desired transverse axis.

To define the reference vector, you must first specify or use the default values for:

* A primary coordinate direction pldirp (the default is +Z)

* A secondary coordinate direction pldirs (the default is +X). Directions pldirs
and pldirp should not be parallel to each other unless you are sure that they are
not parallel to local axis 1

* A fixed coordinate system csys (the default is zero, indicating the global coor-
dinate system). This will be the same coordinate system that was used to define
the axis reference vector, as described above

* The local plane, local, to be determined by the reference vector (the default is
12, indicating plane 1-2)

You may optionally specify:

* A pair of joints, plveca and plvecb (the default for each is zero, indicating the
center of the element). If both are zero, this option is not used

For each element, the reference vector is determined as follows:

1. A vector is found from joint plveca to joint plvecb. If this vector is of finite
length and is not parallel to local axis 1, it is used as the reference vector V.

2. Otherwise, the primary coordinate direction pldirp is evaluated at the center of
the element in fixed coordinate system csys. If this direction is not parallel to
local axis 1, it is used as the reference vector V.
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YA
pldirp = +Y

pldirs = -X 1
local = 12

ZA ang=900>\ AX

y%‘ S 3
2

Local 1 Axis is Not Parallel to pldirp (+Y) Local 1 Axis is Parallel to pldirp (+Y)
| ocal 2 Axis is Rotated 90° from Y-1 Plane | ocal 2 Axis is Rotated 90° from X-1 Plane

Figure 45
The Link/Support Element Coordinate Angle with Respect to Coordinate
Directions

3. Otherwise, the secondary coordinate direction pldirs is evaluated at the center
ofthe element in fixed coordinate system esys. Ifthis direction is not parallel to
local axis 1, it is used as the reference vector V.

4. Otherwise, the method fails and the analysis terminates. This will never happen
if pldirp is not parallel to pldirs

A vector is considered to be parallel to local axis 1 if the sine of the angle between
them is less than 10~

The use of the Link/Support element coordinate angle in conjunction with coordi-
nate directions that define the reference vector is illustrated in Figure 45 (page
193). The use of joints to define the reference vector is shown in Figure 46 (page
194).

Determining Transverse Axes 2 and 3

The program uses vector cross products to determine the transverse axes 2 and 3
once the reference vector has been specified. The three axes are represented by the
three unit vectors V;, V, and V3, respectively. The vectors satisfy the cross-product
relationship:
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The following two specifications are equivalent: Plane 1-2 Ve (2)
(a) local=12, plveca=0, plvecb=100 Axis 1
(b) local=13, plveca=101, plvecb=102

<V

Figure 46
Using Joints to Define the Link/Support Element Local Coordinate System

Vl = V2 X V3
The transverse axes 2 and 3 are defined as follows:

+ [f the reference vector is parallel to the 1-2 plane, then:
V3=V, xV, and
V, =V; xV,

+ If the reference vector is parallel to the 1-3 plane, then:
V, =V, xV, and
V; =V, xV,

In the common case where the reference vector is perpendicular to axis V;, the
transverse axis in the selected plane will be equal to V..

Internal Deformations

Six independent internal deformations are defined for the Link/Support element.
These are calculated from the relative displacements of joint j with respect to:
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* Joint I for a two-joint element

* The ground for a single-joint element

For two-joint Link/Support elements the internal deformations are defined as:

 Axial: dyl = u1j—uii
* Shear in the 1-2 plane: du2 = u2j — u2i — dj2 r3j — (L — dj2) r3j
e Shear in the 1-3 plane: dy3 = u3j — u3i + dj3 r2j + (L — dj3) i
 Torsion: drl =71j—1li

* Pure bending in the 1-3 plane: d;2 = r2i — r2j
* Pure bending in the 1-2 plane: d;3 =r3j—r3i

where:

* uli, u2i, U3i, r'li, 72i, and r3j are the translations and rotations at joint I

* ulj, u2j, usj, r1j, 2j, and r3j are the translations and rotations at joint j

* dj2 is the distance you specify from joint j to the location where the shear de-
formation d,,2 is measured (the default is zero, meaning at joint j)

» dj3 is the distance you specify from joint j to the location where the shear de-
formation d,3 is measured (the default is zero, meaning at joint j)

» Lis the length of the element

All translations, rotations, and deformations are expressed in terms of the element
local coordinate system.

Note that shear deformation can be caused by rotations as well as translations.
These definitions ensure that all deformations will be zero under rigid-body mo-
tions of the element.

Important! Note that dj2 is the location where pure bending behavior is measured
in the 1-2 plane, in other words, it is where the moment due to shear is taken to be
zero. Likewise, dj3 is the location where pure bending behavior is measured in the
1-3 plane.

Itis important to note that the negatives of the rotations 7, and ,, have been used for
the definition of shear and bending deformations in the 1-3 plane. This provides
consistent definitions for shear and moment in both the Link/Support and Frame el-
ements.

Three of these internal deformations are illustrated in Figure 47 (page 196).
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Figure 47

Internal Deformations for a Two-Joint Link Element

For one-joint grounded-spring elements the internal deformations are the same as
above, except that the translations and rotations at joint I are taken to be zero:

* Axial: dul = ulj
* Shear in the 1-2 plane: du2 = u2j — dj2 r3j
* Shear in the 1-3 plane: dy3 = u3j + dj3 r2j
* Torsion: dr1 = rij

* Pure bending in the 1-3 plane: dj2 = —1j
* Pure bending in the 1-2 plane: d;3 = r3j

Link/Support Properties

A Link/Support Property is a set of structural properties that can be used to define
the behavior of one or more Link or Support elements. Each Link/Support Property
specifies the force-deformation relationships for the six internal deformations.
Mass and weight properties may also be specified.
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Link/Support Properties are defined independently of the Link and Support ele-
ments and are referenced during the definition of the elements.

There are two categories of Link/Support properties that can be defined:

* Linear/Nonlinear. A Linear/Nonlinear property set must be assigned to each
Link or Support element.

* Frequency-Dependent. The assignment of a Frequency-Dependent property
set to a Link or Support element is optional.

All Linear/Nonlinear property sets contain linear properties that are used by the ele-
ment for linear analyses, and for other types of analyses if no other properties are
defined. Linear/Nonlinear property sets may also have nonlinear properties that
will be used for all nonlinear analyses, and for linear analyses that continue from
nonlinear analyses.

Frequency-dependent property sets contain impedance (stiffness and damping)
properties that will be used for all frequency-dependent analyses. If a Fre-
quency-Dependent property has not been assigned to a Link/Support element, the
linear properties for that element will be used for frequency-dependent analyses.

This is summarized in the table of Figure 48 (page 198).

Local Coordinate System

Link/Support Properties are defined with respect to the local coordinate system of
the Link or Support element. The local 1 axis is the longitudinal direction of the ele-
ment and corresponds to extensional and torsional deformations. The local 2 and 3
directions correspond to shear and bending deformations.

See Topic “Local Coordinate System” (page 187) in this Chapter.

Internal Spring Hinges

Each Link/Support Property is assumed to be composed of six internal “springs” or
“Hinges,” one for each of six internal deformations. Each “spring” may actually
consist of several components, including springs and dashpots. The force-
deformation relationships of these springs may be coupled or independent of each
other.

Figure 49 (page 199) shows the springs for three of the deformations: axial, shear in
the 1-2 plane, and pure-bending in the 1-2 plane. It is important to note that the
shear spring is located a distance dj2 from joint j. All shear deformation is assumed
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198

Analvsis Analysis Element has | Element has Actual
Case ,i: o Case Initial Nonlinear Freq. Dep. Property
yp Conditions Properties? | Properties? Used
Zero Yes or No Yes or No Linear
Linear . No Yes or No Linear
Nonlinear
Case Yes Yes or No Nonlinear
No Yes or No Linear
Nonlinear Any
Yes Yes or No Nonlinear
No Linear
Zero Yes or No
Yes Freq. Dep.
Frequency .
Dependent No No Linear
Nonlinear Yes No Nonlinear
Case
Yes or No Yes Freq. Dep.
Figure 48

Link/Support Stiffness Properties Actually Used for Different Types of Analysis

to occur in this spring; the links connecting this spring to the joints (or ground) are
rigid in shear. Deformation of the shear spring can be caused by rotations as well as
translations at the joints. The force in this spring will produce a linearly-varying
moment along the length. This moment is taken to be zero at the shear spring, which
acts as a moment hinge. The moment due to shear is independent of, and additive

to, the constant moment in the element due to the pure-bending spring.

The other three springs that are not shown are for torsion, shear in the 1-3 plane, and

pure-bending in the 1-3 plane. The shear spring is located a distance dj3 from joint

J-

The values of dj2 and dj3 may be different, although normally they would be the

same for most elements.
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Figure 49

Three of the Six Independent Spring Hinges in a Link/Support Element

Spring Force-Deformation Relationships

There are six force-deformation relationships that govern the behavior of the ele-

ment, one for each of the internal springs:

+ Axial: Jul vs. dul
e Shear: Juz vs. dy2 , fu3 vs. du3
e Torsional: fr1vs. dy1

+ Purebending: fi2vs.dr2, f33 Vs. d3

where f, ., and f, are the internal-spring forces; and f,, f,, and f,, are the internal-

spring moments.

Each of these relationships may be zero, linear only, or linear/nonlinear for a given
Link/Support Property. These relationships may be independent or coupled. The
forces and moments may be related to the deformation rates (velocities) as well as

to the deformations.
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Figure 50

Link/Support Element Internal Forces and Moments, Shown Acting at the Joints

Element Internal Forces

The Link/Support element internal forces, P, V2, V'3, and the internal moments, 7,
M?2, M3, have the same meaning as for the Frame element. These are illustrated in
Figure 50 (page 200). These can be defined in terms of the spring forces and mo-
ments as:

Axial:
Shear in the 1-2 plane:
Shear in the 1-3 plane:

Torsion:

Pure bending in the 1-3 plane:
Pure bending in the 1-2 plane:

200 Link/Support Properties

P=fu

V2=fu2, M3s=(d—dj2)fi2
V3=fuz, M2s=(d-dj3)fu3
=/

M2p=fi2

M3p =13
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where d is the distance from joint j. The total bending-moment resultants M2 and
M 3 composed of shear and pure-bending parts:

M2=M2, + M2,
M3=M3, + M3,

These internal forces and moments are present at every cross section along the
length of the element.

See Topic “Internal Force Output” (page 112) in Chapter “The Frame Element.”

Uncoupled Linear Force-Deformation Relationships

If each of the internal springs are linear and uncoupled, the spring force-
deformation relationships can be expressed in matrix form as:

fil Tky O 0 0 0 07(dy, (Eqn. 1)
Su2 kpp 00 0 0 ||d,
Jus| _ ks 00 0 |]dygs
Sfn ko 00 f1dy
S sym. ka0 |1dp;
Il L kys|ldrs

where k, k, k,, k., k,, and k, are the linear stiffness coefficients of the internal

ul® “Tu22 “tu3d TUrl? TUr2d

springs.

This can be recast in terms of the element internal forces and displacements at joint
j for a one-joint element as:

(Eqn. 2)
P (ky O 0 0 0 0 T u
V2 k, 0 0 0 —dj2 k,, s
V3| k,; O —dj3 k,; 0 s
T k., 0 0 "
M2 sym. ko +dj32 k.3 0 —ry
M3), | Koy +di2° ko | | 13 )

This relationship also holds for a two-joint element if all displacements at joint I are
ZEero.
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Hinge at Joint j Hinge near Joint i No hinge

Figure 51
Location of Shear Spring at a Moment Hinge or Point of Inflection

Similar relationships hold for linear damping behavior, except that the stiffness
terms are replaced with damping coefficients, and the displacements are replaced
with the corresponding velocities.

Consider an example where the equivalent shear and bending springs are to be
computed for a prismatic beam with a section bending stiffness of £/ in the 1-2
plane. The stiffness matrix at joint j for the 1-2 bending plane is:

{Vz} EI[ 12 —-6L] {uz}

=3 2

M3 i 15 L—6L 4L J 3

From this it can be determined that the equivalent shear spring has a stiffness of

k= 12E—3I located at dj2 = é, and the equivalent pure-bending spring has a stiff-
L

ness of k,; = ﬂ

For an element that possesses a true moment hinge in the 1-2 bending plane, the
pure-bending stiffness is zero, and dj2 is the distance to the hinge. See Figure 51
(page 202).

Link/Support Properties
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Types of Linear/Nonlinear Properties

The primary Linear/Nonlinear Link/Support Properties may be of the following
types:

» Coupled Linear

* Damper

* Gap

* Hook

* Multi-linear Elastic

* Multi-linear Plastic

 Plastic (Wen)

» Hysteretic (Rubber) Isolator

* Friction-Pendulum Isolator

» Tension/Compression Friction Pendulum Isolator
The first type, Coupled Linear, may have fully coupled linear stiffness and damp-

ing coefficients. This property type is described in Topic “Coupled Linear Prop-
erty” (page 203) in this Chapter.

All other property types are considered nonlinear. However, for each nonlinear
property type you also specify a set of uncoupled linear stiffness and damping coef-
ficients that are used instead of the nonlinear properties for linear analyses. These
substitute linear properties are called “linear effective stiffness” and “linear effec-
tive damping” properties.

For more information:

» See Topic “Coupled Linear Property” (page 203) in this Chapter.
* See Chapter “The Link/Support Element—Advanced” (page 207).

Coupled Linear Property

The Coupled Linear Link/Support Property is fully linear. It has no nonlinear be-
havior. The linear behavior is used for all linear and nonlinear analyses. It is also
used for frequency-dependent analyses unless frequency-dependent properties
have been assigned to the Link/Support element.

The stiffness matrix of Eqn. (1) (page 201) may now be fully populated:

Coupled Linear Property 203



CSI Analysis Reference Manual

Mass

204

S| [ka ki ks kun ki kaes | [da (Eqn. 3)
Ju2 ki ks kion ki ks | | din
Jus | _ ks kuzn kuzra kuaes | [ dus
fr ko ke ks || da
S sym. kia  kyaps | |d
f) L kys | ds

where k , k .k .k

ul® “Tulu2d “u2> ulu3®

ternal springs.

k

u2u3?

k

u3’ °*

., k, are the linear stiffness coefficients of the in-

The corresponding matrix of Eqn. (2) (page 201) can be developed from the rela-
tionships that give the element internal forces in terms of the spring forces and mo-
ments. See Topic “Element Internal Forces” (page 200) in this Chapter.

Similarly, the damping matrix is fully populated and has the same form as the stiff-
ness matrix. Note that the damping behavior is active for all dynamic analyses. This
is in contrast to linear effective damping, which is not active for nonlinear analyses.

In a dynamic analysis, the mass of the structure is used to compute inertial forces.
The mass contributed by the Link or Support element is lumped at the joints I and j.
No inertial effects are considered within the element itself.

For each Link/Support Property, you may specify a total translational mass, m.
Half of the mass is assigned to the three translational degrees of freedom at each of
the element’s one or two joints. For single-joint elements, half of the mass is as-
sumed to be grounded.

You may additionally specify total rotational mass moments of inertia, mr1, mr2,
and mr3, about the three local axes of each element. Half of each mass moment of
inertia is assigned to each of the element’s one or two joints. For single-joint ele-
ments, half of each mass moment of inertia is assumed to be grounded.

The rotational inertias are defined in the element local coordinate system, but will
be transformed by the program to the local coordinate systems for joint I and j. If
the three inertias are not equal and element local axes are not parallel to the joint lo-
cal axes, then cross-coupling inertia terms will be generated during this transforma-
tion. These will be discarded by the program, resulting in some error.

Mass
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It is strongly recommended that there be mass corresponding to each nonlinear de-
formation load in order to generate appropriate Ritz vectors for nonlinear time-
history analysis. Note that rotational inertia is needed as well as translational mass
for nonlinear shear deformations if either the element length or dj is non-zero.

For more information:

» See Chapter “Static and Dynamic Analysis” (page 255).
* See Topic “Nonlinear Deformation Loads” (page 205) in this Chapter.

Self-Weight Load

Self-Weight Load activates the self-weight of all elements in the model. For each
Link/Support Property, a total self-weight, w, may be defined. Half of this weight is
assigned to each joint of each Link/Support element using that Link/Support Prop-
erty. For single-joint elements, half of the weight is assumed to be grounded.

Self-Weight Load always acts downward, in the global —Z direction. You may
scale the self-weight by a single scale factor that applies equally to all elements in
the structure.

See Topic “Self-Weight Load” (page 245) in Chapter “Load Cases” for more infor-
mation.

Gravity Load

Gravity Load can be applied to each Link/Support element to activate the self-
weight of the element. Using Gravity Load, the self-weight can be scaled and ap-
plied in any direction. Different scale factors and directions can be applied to each
element.

If all elements are to be loaded equally and in the downward direction, it is more
convenient to use Self-Weight Load.

For more information:

» See Topic “Self-Weight Load” (page 205) in this Chapter for the definition of
self-weight for the Link/Support element.

» See Topic “Gravity Load” (page 246) in Chapter “Load Cases.”
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Internal Force and Deformation Output

Link/Support element internal forces and deformations can be requested for analy-
sis cases and combinations.

Results for linear analyses are based upon the linear effective-stiffness and
effective-damping properties and do not include any nonlinear effects. Only the re-
sults for nonlinear analysis cases include nonlinear behavior.

The element internal forces were defined in Subtopic “Element Internal Forces”
(page 200) of this Chapter. The internal deformations were defined in Topic “Inter-
nal Deformations” (page 194) of this Chapter.

The element internal forces are labeled P, V2, V3, T, M2, and M3 in the output. The
internal deformations are labeled U1, U2, U3, R1, R2, and R3 in the output, corre-
sponding to the values ofd ,d,, d ., d. . d, andd,.

u2% “u3’? 2

For more information:

* See Chapter “Load Cases” (page 241).
» See Chapter “Analysis Cases” (page 255).
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The Link/Support Element—Advanced

The basic, linear behavior of the Link and Support elements was described in the
previous Chapter. The present Chapter describes the use of the Link and Support el-
ements to model nonlinear behavior and frequency-dependent behavior.

Advanced Topics

Overview

Nonlinear Link/Support Properties

Linear Effective Stiffness

Linear Effective Damping

Viscous Damper Property

Gap Property

Hook Property

Multi-Linear Elasticity Property

Wen Plasticity Property

Multi-Linear Kinematic Plasticity Property
Multi-Linear Takeda Plasticity Property
Multi-Linear Pivot Hysteretic Plasticity Property

207
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* Hysteretic (Rubber) Isolator Property
* Friction-Pendulum Isolator Property
* Nonlinear Deformation Loads

» Frequency-Dependent Properties

Overview

The basic features of the Link and Support elements were described in the previous
Chapter, “The Link/Support Element—Basic” (page 185).

This Chapter describes the various type of nonlinear properties that are available,
the concepts of linear effective stiffness and damping, the use of nonlinear defor-
mation loads for Ritz-vector analysis, and frequency-dependent properties.

Nonlinear Link/Support Properties

208

The nonlinear properties for each Link/Support Property must be of one of the
various types described below. The type determines which degrees of freedom may
be nonlinear and the kinds of nonlinear force-deformation relationships available
for those degrees of freedom.

Every degree of freedom may have linear effective-stiffness and effective-damping
properties specified, as described below in Subtopics “Linear Effective Stiffness”
and “Linear Effective Damping.”

During nonlinear analysis, the nonlinear force-deformation relationships are used
at all degrees of freedom for which nonlinear properties were specified. For all
other degrees of freedom, the linear effective stiffnesses are used during a nonlinear
analysis.

Nonlinear properties are not used for any other type of analysis. Linear effective
stiffnesses are used for al/ degrees of freedom for all linear analyses.

Each nonlinear force-deformation relationship includes a stiffness coefficient, k.
This represents the linear stiffness when the nonlinear effect is negligible, e.g., for
rapid loading of the Damper; for a closed Gap or Hook; or in the absence of yield-
ing or slipping for the Plasticl, Isolatorl, or Isolator2 properties. If k is zero, no
nonlinear force can be generated for that degree of freedom, with the exception of
the pendulum force in the Isolator2 property.

Overview
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IMPORTANT! Youmay sometimes be tempted to specify very large values for k,
particularly for Damper, Gap, and Hook properties. Resist this temptation! If you
want to limit elastic deformations in a particular internal spring, it is usually suffi-
cient to use a value of k that is from 10° to 10" times as large as the corresponding
stiffness in any connected elements. Larger values of k may cause numerical diffi-
culties during solution. See the additional discussion for the Damper property be-
low.

Linear Effective Stiffness

For each nonlinear type of Link/Support Property, you may specify six uncoupled
linear effective-stiffness coefficients, ke, one for each of the internal springs.

The linear effective stiffness represents the total elastic stiffness for the Link/Sup-
port element that is used for all linear analyses that start from zero initial condi-
tions. The actual nonlinear properties are ignored for these types of analysis.

If you do not specify nonlinear properties for a particular degree of freedom, then
the linear effective stiffness is used for that degree of freedom for all linear and non-
linear analyses.

The effective force-deformation relationships for the Link/Support Properties are
given by Equation 1 above with the appropriate values of ke substituted for &, & ,,
k. k., k,andk,.

u3% "rl> T2

Special Considerations for Modal Analyses

The effective stiffness properties are not used for nonlinear degrees of freedom dur-
ing nonlinear time-history analysis. However, nonlinear modal time-history analy-
ses do make use of the vibration modes that are computed based on the effective
stiffness if the modal analysis itself start from zero initial conditions. During time
integration the behavior of these modes is modified so that the structural response
reflects the actual stiffness and other nonlinear parameters specified. The rate of
convergence of the nonlinear iteration may be improved by changing the effective
stiffness.

Following are some guidelines for selecting the linear effective stiffness. You
should deviate from these as necessary to achieve your modeling and analysis
goals. In particular, you should consider whether you are more interested in the re-
sults to be obtained from linear analyses, or in obtaining modes that are used as the
basis for nonlinear modal time-history analyses.
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* When carrying out analyses based on the UBC ‘94 code or similar, the effective
stiffness should usually be the code-defined maximum effective stiffness

» For Gap and Hook elements the effective stiffness should usually be zero or k,
depending on whether the element is likely to be open or closed, respectively,
in normal service

* For Damper elements, the effective stiffness should usually be zero
* For other elements, the stiffness should be between zero and k

» If you have chosen an artificially large value for k, be sure to use a much
smaller value for ke to help avoid numerical problems in nonlinear modal
time-history analyses

In the above, k is the nonlinear stiffness property for a given degree of freedom. See
Chapter “The Link/Support Element—Basic” (page 185).

For more information, see Topic “Nonlinear Modal Time-History Analysis
(FNA)” (page 263) in Chapter “Nonlinear Time-History Analysis.”

Linear Effective Damping

210

For each nonlinear-type of Link/Support Property, you may specify six uncoupled
linear effective-damping coefficients, ce, one for each of the internal springs. By
default, each coefficient ce is equal to zero.

The linear effective damping represents the total viscous damping for the
Link/Support element that is used for response-spectrum analyses, for linear and
periodic time-history analyses, and for frequency-dependent analyses if fre-
quency-dependent properties have not been assigned to a given Link or Support el-
ement. The actual nonlinear properties are ignored for these types of analysis. Ef-
fective damping can be used to represent energy dissipation due to nonlinear damp-
ing, plasticity, or friction.

The effective force/deformation-rate relationships for the Link/Support Properties
are given by Equation 1 above with the appropriate values of ce substituted for £,
k,, k. k,, k, and k,, and deformation rates substituted for the corresponding defor-

mations.

For response-spectrum and linear modal time-history analysis, the effective damp-
ing values are converted to modal damping ratios assuming proportional damping,
i.e., the modal cross-coupling damping terms are ignored. These effective
modal-damping values are added to any other modal damping that you specify di-

Linear Effective Damping
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rectly. The program will not permit the total damping ratio for any mode to exceed
99.995%.

Important Note: Modal cross-coupling damping terms can be very significant for
some structures. A linear analysis based on effective-damping properties may
grossly overestimate or underestimate the amount of damping present in the struc-
ture.

Nonlinear time-history analysis is strongly recommended to determine the effect of
added energy dissipation devices. Nonlinear time-history analysis does not use the
effective damping values since it accounts for energy dissipation in the elements di-
rectly, and correctly accounts for the effects of modal cross-coupling.

Viscous Damper Property

For each deformational degree of freedom you may specify independent damping
properties. The damping properties are based on the Maxwell model of viscoelas-
ticity (Malvern, 1969) having a nonlinear damper in series with a spring. See Figure
52 (page 212).

If you do not specify nonlinear properties for a degree of freedom, that degree of
freedom is linear using the effective stiffness, which may be zero.

The nonlinear force-deformation relationship is given by:
[ =Kd, —cd P

where K is the spring constant, ¢ is the damping coefficient, cexp is the damping ex-
ponent, d;, is the deformation across the spring, and d . is the deformation rate

across the damper. The damping exponent must be positive; the practical range is
between 0.2 and 2.0. The spring and damping deformations sum to the total internal
deformation:

d=d, +d,

If pure damping behavior is desired, the effect of the spring can be made negligible
by making it sufficiently stiff. The spring stiffness should be large enough so that
the characteristic time of the spring-dashpot system, given by 1 =c¢/k (when
cexp =1), is an order of magnitude smaller than the size of the load steps. The load
steps are the time intervals over which the load is changing. The stiffness should
not be made excessively large or else numerical sensitivity may result.

Viscous Damper Property 211



CSI Analysis Reference Manual

Damper Gap Hook

v
=l ——_open - %open

Figure 52
Damper, Gap, and Hook Property Types, Shown for Axial Deformations

Gap Property

For each deformational degree of freedom you may specify independent gap
(“compression-only”) properties. See Figure 52 (page 212).

All internal deformations are independent. The opening or closing of a gap for one
deformation does not affect the behavior of the other deformations.

If you do not specify nonlinear properties for a degree of freedom, that degree of
freedom is linear using the effective stiffness, which may be zero.

The nonlinear force-deformation relationship is given by:
/ _{ k (d +open) if d +open<0

0 otherwise

where K is the spring constant, and open is the initial gap opening, which must be
Zero or positive.

Hook Property

For each deformational degree of freedom you may specify independent hook
(“tension-only”) properties. See Figure 52 (page 212).
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All internal deformations are independent. The opening or closing of a hook for one
deformation does not affect the behavior of the other deformations.

If you do not specify nonlinear properties for a degree of freedom, that degree of
freedom is linear using the effective stiffness, which may be zero.

The nonlinear force-deformation relationship is given by:

. k (d —open) if d —open>0
o otherwise

where Kk is the spring constant, and open is the initial hook opening, which must be

Zero or positive.

Multi-Linear Elasticity Property

For each deformational degree of freedom you may specify multi-linear elastic
properties.

All internal deformations are independent. The deformation in one degree of free-
dom does not affect the behavior of any other. If you do not specify nonlinear prop-
erties for a degree of freedom, that degree of freedom is linear using the effective
stiffness, which may be zero.

The nonlinear force-deformation relationship is given by a multi-linear curve that
you define by a set of points. The curve can take on almost any shape, with the fol-
lowing restrictions:

* One point must be the origin, (0,0)

» At least one point with positive deformation, and one point with negative de-
formation, must be defined

* The deformations of the specified points must increase monotonically, with no
two values being equal

* The forces (moments) can take on any value
The slope given by the last two specified points on the positive deformation axis is
extrapolated to infinite positive deformation. Similarly, the slope given by the last

two specified points on the negative deformation axis is extrapolated to infinite
negative deformation.

The behavior is nonlinear but it is elastic. This means that the element loads and un-
loads along the same curve, and no energy is dissipated.
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Figure 53
Wen Plasticity Property Type for Uniaxial Deformation

Wen Plasticity Property

214

For each deformational degree of freedom you may specify independent uniaxial-
plasticity properties. The plasticity model is based on the hysteretic behavior pro-
posed by Wen (1976). See Figure 53 (page 214).

All internal deformations are independent. The yielding at one degree of freedom
does not affect the behavior of the other deformations.

If you do not specify nonlinear properties for a degree of freedom, that degree of
freedom is linear using the effective stiffness, which may be zero.

The nonlinear force-deformation relationship is given by:
f =ratio k d +(1 —ratio) yield z

where K is the elastic spring constant, yield is the yield force, ratio is the specified
ratio of post-yield stiffness to elastic stiffness (k), and z is an internal hysteretic
variable. This variable has a range of | z | <1, with the yield surface represented by
| z| =1 The initial value of z is zero, and it evolves according to the differential
equation:

Wen Plasticity Property
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A
exp ® ¥ ratio-k
yield ——
exp =1
exp =2 K
k
d
Figure 54

Definition of Parameters for the Wen Plasticity Property

~yield

k |d(1-]z|®) if dz>0

d otherwise
where exp is an exponent greater than or equal to unity. Larger values of this expo-
nent increases the sharpness of yielding as shown in Figure 54 (page 215). The
practical limit for exp is about 20. The equation for z is equivalent to Wen’s model
with 4 =1land o = =05.

Multi-Linear Kinematic Plasticity Property

This model is based upon kinematic hardening behavior that is commonly observed
in metals. For each deformational degree of freedom you may specify multi-linear
kinematic plasticity properties. See Figure 55 (page 216).

All internal deformations are independent. The deformation in one degree of free-
dom does not affect the behavior of any other. If you do not specify nonlinear prop-
erties for a degree of freedom, that degree of freedom is linear using the effective
stiffness, which may be zero.
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Figure 55
Multi-linear Kinematic Plasticity Property Type for Uniaxial Deformation

The nonlinear force-deformation relationship is given by a multi-linear curve that
you define by a set of points. The curve can take on almost any shape, with the fol-
lowing restrictions:

* One point must be the origin, (0,0)

* At least one point with positive deformation, and one point with negative de-
formation, must be defined

* The deformations of the specified points must increase monotonically, with no
two values being equal

* The forces (moments) at a point must have the same sign as the deformation
(they can be zero)

* The final slope at each end of the curve must not be negative
The slope given by the last two points specified on the positive deformation axis is
extrapolated to infinite positive deformation. Similarly, the slope given by the last

two points specified on the negative deformation axis is extrapolated to infinite
negative deformation.

The given curve defines the force-deformation relationship under monotonic load-
ing. The first slope on either side of the origin is elastic; the remaining segments de-

216 Multi-Linear Kinematic Plasticity Property
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Figure 56
Multi-linear Kinematic Plasticity Property Type for Uniaxial Deformation
Shown is the behavior under cyclic loading of increasing magnitude

fine plastic deformation. If the deformation reverses, it follows the two elastic seg-
ments before beginning plastic deformation in the reverse direction.

Under the rules of kinematic hardening, plastic deformation in one direction
“pulls” the curve for the other direction along with it. Matching pairs of points are
linked.

Consider the points labeled as follows:

* The origin is point 0
* The points on the positive axis are labeled 1, 2, 3..., counting from the origin

* The points on the negative axis are labeled —1, -2, -3..., counting from the ori-
gin.
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See Figure 56 (page 217) for an example, where three points are defined on either
side of the origin. This figure shows the behavior under cyclic loading of increasing
magnitude.

In this example, the loading is initially elastic from point O to point 1. As loading
continues from point 1 to point 2, plastic deformation occurs. This is represented by
the movement of point 1 along the curve toward point 2. Point—1 is pulled by point
1 to move an identical amount in both the force and deformation directions. Point 0
also moves along with point 1 and —1 to preserve the elastic slopes.

When the load reverses, the element unloads along the shifted elastic line from
point 1 to point —1, then toward point —2. Point —2 has not moved yet, and will not
move until loading in the negative direction pushes it, or until loading in the posi-
tive direction pushes point 2, which in turn pulls point —2 by an identical amount.

When the load reverses again, point 1 is pushed toward point 2, then together they
are pushed toward point 3, pulling points —1 and —2 with them. This procedure is
continued throughout the rest of the analysis. The slopes beyond points 3 and -3 are
maintained even as these points move.

When you define the points on the multi-linear curve, you should be aware that
symmetrical pairs of points will be linked, even if the curve is not symmetrical.
This gives you some control over the shape of the hysteretic loop.

Multi-Linear Takeda Plasticity Property

This model is very similar to the Multi-Linear Kinematic model, but uses a degrad-
ing hysteretic loop based on the Takeda model, as described in Takeda, Sozen, and
Nielsen (1970). The specification of the properties is identical to that for the Kine-
matic model, only the behavior is different. In particular, when crossing the hori-
zontal axis upon unloading, the curve follows a secant path to the backbone force
deformation relationship for the opposite loading direction. See Figure 57 (page
219).

Multi-Linear Pivot Hysteretic Plasticity Property

218

This model is similar to the Multi-Linear Takeda model, but has additional parame-
ters to control the degrading hysteretic loop. It is particularly well suited for rein-
forced concrete members, and is based on the observation that unloading and re-
verse loading tend to be directed toward specific points, called pivots points, in the

Multi-Linear Takeda Plasticity Property
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Figure 57
Multi-linear Takeda Plasticity Property Type for Uniaxial Deformation

force-deformation (or moment-rotation) plane. This model is fully described in
Dowell, Seible, and Wilson (1998).

The specification of the properties is identical to that for the Kinematic or Takeda
model, with the addition of the following scalar parameters:

* al, which locates the pivot point for unloading to zero from positive force

* a2, which locates the pivot point for unloading to zero from negative force

* B1, which locates the pivot point for reverse loading from zero toward positive
force

* [2, which locates the pivot point for reverse loading from zero toward negative
force

* 1, which determines the amount of degradation of the elastic slopes after plas-
tic deformation.

These parameters are illustrated in Figure 58 (page 220).
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Figure 58
Multi-linear Takeda Plasticity Property Type for Uniaxial Deformation

Hysteretic (Rubber) Isolator Property

This is a biaxial hysteretic isolator that has coupled plasticity properties for the two
shear deformations, and linear effective-stiffness properties for the remaining four
deformations. The plasticity model is based on the hysteretic behavior proposed by
Wen (1976), and Park, Wen and Ang (1986), and recommended for base-isolation
analysis by Nagarajaiah, Reinhorn and Constantinou (1991). See Figure 59 (page
221).

For each shear deformation degree of freedom you may independently specify ei-
ther linear or nonlinear behavior:

 If both shear degrees of freedom are nonlinear, the coupled force-deformation
relationship is given by:

S =ratio2 k2 d,, +(1-ratio2) yield2 z,
fu3 =ratio3 k3 d,; +(1-ratio3) yield3 z;

where k2 and k3 are the elastic spring constants, yield2 and yield3 are the yield
forces, ratio2 and ratio3 are the ratios of post-yield stiffnesses to elastic stift-

220 Hysteretic (Rubber) Isolator Property



Chapter XIV  The Link/Support Element—Advanced

L}

Figure 59
Hysteretic Isolator Property for Biaxial Shear Deformation

nesses (k2 and k3), and z, and z5 are internal hysteretic variables. These vari-

ables have a range of 222 + 232 <1, with the yield surface represented by
\1222 + 232 =1. The initial values of z, and z; are zero, and they evolve ac-

cording to the differential equations:
(k2 2]
5) [1=ay 2,2 —a37273] J yield2 " L
ZI3 L_az Zy Zy 1_(13 Z32 k3 d
[yield3 “3J

Where:

1 lf duz 22 >O
a, =
0 otherwise
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b o)1 if d,s 23>0
0 otherwise
These equations are equivalent to those of Park, Wen and Ang (1986) with 4 =1
and =y =05.

* Ifonly one shear degree of freedom is nonlinear, the above equations reduce to
the uniaxial plasticity behavior of the Plastic1 property with exp =2 for that de-
gree of freedom.

A linear spring relationship applies to the axial deformation, the three moment de-
formations, and to any shear deformation without nonlinear properties. All linear
degrees of freedom use the corresponding effective stiffness, which may be zero.

Friction-Pendulum Isolator Property

222

This is a biaxial friction-pendulum isolator that has coupled friction properties for
the two shear deformations, post-slip stiffness in the shear directions due the pen-
dulum radii of the slipping surfaces, gap behavior in the axial direction, and linear
effective-stiffness properties for the three moment deformations. See Figure 60
(page 223).

This element can also be used to model gap and friction behavior between contact-
ing surfaces.

The friction model is based on the hysteretic behavior proposed by Wen (1976),
and Park, Wen and Ang (1986), and recommended for base-isolation analysis by
Nagarajaiah, Reinhorn and Constantinou (1991). The pendulum behavior is as rec-
ommended by Zayas and Low (1990).

The friction forces and pendulum forces are directly proportional to the compres-
sive axial force in the element. The element cannot carry axial tension.

The axial force, P, is always nonlinear, and is given by:

kld, if d, <0

0 otherwise

PEful :{

Stiffness k1 must be positive in order to generate nonlinear shear force in the ele-
ment.

For each shear deformation degree of freedom you may independently specify ei-
ther linear or nonlinear behavior:

Friction-Pendulum Isolator Property
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Figure 60

Friction-Pendulum Isolator Property for Biaxial Shear Behavior
This element can be used for gap-friction contact problems

 If both shear degrees of freedom are nonlinear, the friction and pendulum ef-
fects for each shear deformation act in parallel:

fu2 :fqu +fu2p
fu3 :quf +fu3p

The frictional force-deformation relationships are given by:

Jurp=—Puy 2y
Jusp=—Pusz z3

where 11, and p5 are friction coefficients, and z, and z5 are internal hysteretic
variables. The friction coefficients are velocity-dependent according to:

Friction-Pendulum Isolator Property 223
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u, = fast2 —(fast2 —slow2)e "
1y = fast3 —(fast3 —slow3)e "
where slow2 and slow3 are the friction coefficients at zero velocity, fast2 and

fast3 are the friction coefficients at fast velocities, v is the resultant velocity of
sliding:

A% :\’duzz +du32

r is an effective inverse velocity given by:

e rate2 d’uzz + rate3 du32

2
v

and rate2 and rate3 are the inverses of characteristic sliding velocities. For a
Teflon-steel interface the coefficient of friction normally increases with sliding
velocity (Nagarajaiah, Reinhorn, and Constantinou, 1991).

The internal hysteretic variables have a range of 4/ 222 +z3 2 < 1, with the yield
surface represented by 4/ 222 +2z3 ? —1. The initial values of z, and z5 are zero,

and they evolve according to the differential equations:

k2

———dy
ZZ _ 1_a2 222 _a3 Z2 Z3 PHZ "
23 —az Zz Z3 1—a3 Z32 id 3
u

Pu;

where k2 and k3 are the elastic shear stiffnesses of the slider in the absence of
sliding, and

L)L if d, zy>0
0 otherwise

b o)1 if d,; 23>0
3= )
0 otherwise

These equations are equivalent to those of Park, Wen and Ang (1986) with 4 =1
and B =y =05.

This friction model permits some sliding at all non-zero levels of shear force;
the amount of sliding becomes much larger as the shear force approaches the

Friction-Pendulum Isolator Property
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“yield” value of P . Sliding at lower values of shear force can be minimized by
using larger values of the elastic shear stiffnesses.

The pendulum force-deformation relationships are given by:

d
=_p u2
fu2p radius2
_ du3
f”3p B radius3

A zero radius indicates a flat surface, and the corresponding shear force is zero.
Normally the radii in the two shear directions will be equal (spherical surface),
or one radius will be zero (cylindrical surface). However, it is permitted to
specify unequal non-zero radii.

» Ifonly one shear degree of freedom is nonlinear, the above frictional equations
reduce to:

Jr=—Pnz

—rate d

u = fast —(fast —slow) e

_Pu ]

Kk {dﬂ—zz) if dz>0

d otherwise

The above pendulum equation is unchanged for the nonlinear degree of free-
dom.

A linear spring relationship applies to the three moment deformations, and to any
shear deformation without nonlinear properties. All linear degrees of freedom use
the corresponding effective stiffness, which may be zero. The axial degree of free-
dom is always nonlinear for nonlinear analyses.

Nonlinear Deformation Loads

A nonlinear deformation load is a set of forces and/or moments on the structure
that activates a nonlinear internal deformation of an Link/Support element. A non-
linear internal deformation is an Link/Support internal deformation for which non-
linear properties have been specified.

Nonlinear deformation loads are used as starting load vectors for Ritz-vector analy-
sis. Their purpose is to generate Modes that can adequately represent nonlinear be-
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havior when performing nonlinear modal time-history analyses. A separate nonlin-
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ear deformation load should be used for each nonlinear internal deformation of
each Link/Support element.

When requesting a Ritz-vector analysis, you may specify that the program use
built-in nonlinear deformation loads, or you may define your own Load Cases for
this purpose. In the latter case you may need up to six of these Load Cases per
Link/Support element in the model.

The built-in nonlinear deformation loads for a single two-joint Link element are
shown in Figure 61 (page 226). Each set of forces and/or moments is
self-equilibrating. This tends to localize the effect of the load, usually resulting in a
better set of Ritz-vectors. For a single-joint element, only the forces and/or mo-
ments acting on joint j are needed.

It is strongly recommended that mass or mass moment of inertia be present at each
degree of freedom that is acted upon by a force or moment from a nonlinear defor-
mation load. This is needed to generate the appropriate Ritz vectors.

For more information:

» See Topic “Internal Deformations” (page 194) in this Chapter.

* See Topic “Link/Support Properties” (page 196) in this Chapter.

» See Topic “Mass” (page 204) in this Chapter.

» See Topic “Ritz-Vector Analysis” (page 263) in Chapter “Analysis Cases.”

* See Topic “Nonlinear Modal Time-History Analysis (FNA)” (page 263) in
Chapter “Analysis Cases.”

Frequency-Dependent Link/Support Properties

Each Link or Support element can have an optional set of frequency-dependent
properties assigned to it in addition to the linear/nonlinear property set that must al-
ways be assigned. Frequency-dependent properties are only used for frequency-do-
main types of analyses, such as Steady-State or Power-Spectral-Density analyses.

Frequency-dependent properties represent the complex impedance of the element.
There is areal part that represents the stiffness and inertial effects, and an imaginary
part that represents the hysteretic damping effects. Frequency-dependent proper-
ties for the six degrees of freedom of the element may be may be coupled or uncou-
pled coupled, as given by:
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228

S| [Z2a Zuna Zuws  Zun Za2 Zues |4 (Eqn. 4)
Ju2 Zwy Zwuws Zwan Zu2r2 Zu2rd | |42
fu3 _ Zu3 Zu3rl Zu3r2 Zudr3 du3
Sn Zn Zeya Zpe || dn
S sym. Zyy Zp | |de2
f) L z;3 |43

where z,; =k, +ic,; is the impedance term in the ul degree of freedom, and
where k,; is the stiffness/inertial component, ¢, is the damping component, and i
is the square root of —1. The other impedance terms are similar.

In Eqn. (4), the force terms on the left-hand side of the equation and the displace-
ment terms on the right-hand side of the equations are also complex. The real parts
of these terms represent the behavior at a phase angle of zero, with time variation
given by the cosine function, and the imaginary parts represent behavior at a phase

angle of 90°, with time variation given by the sine function.

Each of the 21 impedance terms may vary with frequency. You define the variation
for each term as a set of points giving stiffness vs. frequency and damping vs. fre-
quency. It is not unusual for the stiffness term to be negative over part of the range.

A common use for frequency-dependent properties would be in Support elements
that represent the far-field radiation-damping effect of the soil region under a rigid
foundation.

Frequency-Dependent Link/Support Properties
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The Tendon Object

Tendons are a special type of object that can be embedded inside other objects
(frames, shells, planes, asolids, and solids) to represent the effect of prestressing
and post-tensioning. These tendons attach to the other objects and impose load
upon them.

Advanced Topics
* Overview
* Geometry
» Discretization
» Tendons Modeled as Loads or Elements
» Connectivity
* Degrees of Freedom
* Local Coordinate Systems
» Section Properties
» Nonlinear Properties
* Mass

» Prestress Load
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» Self-Weight Load
* Gravity Load

* Temperature Load
* Strain Load

* Internal Force Output

Overview

Tendons are a special type of object that can be embedded inside other objects
(frames, shells, planes, asolids, and solids) to represent the effect of prestressing
and post-tensioning. These tendons attach to the other objects through which they
pass and impose load upon them.

Y ou may specify whether the tendons are to be modeled as independent elements in
the analysis, or just to act upon the rest of the structure as loads. Modeling as loads
is adequate for linear analyses when you know the losses that will be caused by
elastic shortening and time-dependent effects.

Tendons should be modeled as elements if you want the program to calculate the
losses due to elastic shortening and time-dependent effects, if you want to consider
nonlinearity in the Tendons, or if you want to know the forces acting in the Tendons
due to other loading on the structure.

Tendon objects share some features with Frame elements, which will be cross-ref-
erenced in this Chapter.

Geometry
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Any number of tendons may be defined. Each tendon is drawn or defined as a type
ofline object between two joints, I and j. The two joints must not share the same lo-
cation in space. The two ends of the Tendon are denoted end I and end J, respec-
tively.

The Tendon may have an arbitrary curved or segmented shape in three dimensions
between those points, and may be offset at the ends from these joints.

Overview
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Discretization

A Tendon may be a long object with complicated geometry, but it will be automati-
cally discretized into shorter segments for purposes of analysis. You must specify
the maximum length of these discretization segments during the definition of the
Tendon. These lengths can affect how the Tendon loads the structure and the accu-
racy of the analysis results. You should choose shorter lengths for cables with
highly curved geometry, or Tendons that pass through parts of the structure with
complicated geometry or changes in properties. If you are not sure what value to
use, try several different values to see how they affect the results.

Tendons Modeled as Loads or Elements

You have a choice for each Tendon how it is to be modeled for analysis:

* As equivalent loads that act upon the structure

* As independent elements with stiffness, mass and loading

Modeling as loads is adequate for linear analyses when you know in advance the
losses that will be caused by elastic shortening and time-dependent effects.

Tendons should be modeled as elements if you want the program to calculate the
losses due to elastic shortening and time-dependent effects, if you want to consider
nonlinearity in the Tendons, or if you want to know the forces acting in the Tendons
due to other loading on the structure. The discretized Tendon is internally analyzed
as a series of equivalent short, straight Frame elements.

Connectivity

The Tendon connected to Frame, Shell, Plane, Asolid, and Solid elements through
which it passes along its length. This connection is made automatically by the pro-
gram. In addition, it is connected to the two end joints, i and j, if the ends of the
Tendon do not fall inside an element.

To determine the elements through which the Tendon passes, the program uses the
concept of a bounding box:

* For Frame elements, the bounding box is a rectangular prism bounded by the
length of the element and its maximum cross-sectional dimensions in the local
2 and 3 directions.
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* For Shell, Plane, and Asolid elements, it is the hexahedron bounded by the four
sides of the element and the upper and lower surfaces in the local 3 direction,
with thickness being considered.

* For Solid elements, it is the volume bounded by the six faces.

For Tendons modeled as loads, if any portion of the Tendon passes through the
bounding box of an element, load from the tendon is transferred to that element.

For Tendons modeled as elements, if any discretization point (i.e., either end of a
discretization segment) falls within the bounding box of an element, that point is
connected by an interpolation constraint to all joints of that element. This means
that for large discretizations, the tendon may not actually be connected to every ele-
ment through which it passes.

By default, the Tendon will be checked for connection against all elements in the
model. You may restrict this by specifying a group of objects to which the Tendon
may connect. The Tendon will not connect to any objects that are not in that group.
See Topic “Groups” (page 9) in Chapter “Objects and Elements” for more informa-
tion.

Degrees of Freedom

The Tendon object has six degrees of freedom along its length. However, its effect
upon the structure depends upon the elements to which it connects. When connect-
ing to Frame and Shell elements, it may transmit forces and moments to the joints in
those elements. When connecting to Planes, Asolids, and Solids, it only transmits
forces to the joints.

Even when modeled as elements, a Tendon adds no additional degrees of freedom
to a structure, since it is always constrained to act with the elements that contain it.
The exception would be if there is a portion of the Tendon which is not embedded
in any other element. At each un-contained discretization point, an internal joint
would be created with six degrees of freedom. This is not recommended.

For more information, please see Topic “Degrees of Freedom” (page 29) in Chapter
“Joints and Degrees of Freedom.”

Local Coordinate Systems
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Each Tendon object has two local coordinate systems:

Degrees of Freedom
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+ Base-line local coordinate system, which is fixed for the whole object

» Naturallocal coordinate system, which varies along the length of the Tendon

These are described in the following.

Base-line Local Coordinate System

The Tendon base-line local coordinate system is used only to define the Tendon
natural local coordinate system.

The axes of base-line system are denoted 1, 2 and 3. The first axis is directed along
the straight line connecting the joints i and j that were used to define the Tendon.
The remaining two axes lie in the plane perpendicular to this axis with an orienta-
tion that you specify. The base-line local coordinate system is fixed for the length
of the Tendon, regardless of the Tendon’s trajectory in space.

Base-line local axes are defined exactly the same as for a Frame element connected
to joints i and j, except the Tendon has zero joint offsets. Please see Topics “Local
Coordinate System” (page 82) and “Advanced Local Coordinate System” (page
85) in Chapter “The Frame Element”.

Natural Local Coordinate System

The Tendon natural local coordinate system is used to define section properties,
loads, and internal force output. This coordinate system is defined with respect to
the base-line local coordinate system as follows:

* The 1 direction is directed along the tangent to the Tendon, in the direction
from end I to end J.

» The 2 direction is parallel to the 1-2 plane of the base-line local coordinate sys-
tem.

» The 3 direction is computed as the cross product of the natural local 1 and 2 di-
rections.

See Topic “Local Coordinate Systems” (page 232) in this Chapter for more infor-
mation.
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Section Properties

234

A Tendon Section is a set of material and geometric properties that describe the
cross-section of one or more Tendon objects. Sections are defined independently of
the Tendons, and are assigned to the Tendon objects.

The cross section shape is always circular. The Section has axial, shear, bending
and torsional properties, although we are primarily interested in only the axial be-
havior.

Material Properties

The material properties for the Section are specified by reference to a previ-
ously-defined Material. Isotropic material properties are used, even if the Material
selected was defined as orthotropic or anisotropic. The material properties used by
the Section are:

* The modulus of elasticity, el, for axial stiffness and bending stiffness

* The shear modulus, g12, for torsional stiffness and transverse shear stiffness

* The coefficient of thermal expansion, al, for axial expansion and thermal
bending strain

* The mass density, m, for computing element mass

* The weight density, w, for computing Self-Weight Loads

The material properties el, g12, and al are all obtained at the material temperature
of'each individual Tendon object, and hence may not be unique for a given Section.

See Chapter “Material Properties” (page 67) for more information.

Geometric Properties and Section Stiffnesses

The cross section shape is always circular. You may specify either the diameter or
the area, a. The axial stiffness of the Section is given by a -el.

The remaining section properties are automatically calculated for the circular
shape. These, along with their corresponding Section stiffnesses, are given by:

* The moment of inertia, i33, about the 3 axis for bending in the 1-2 plane, and
the moment of inertia, i22, about the 2 axis for bending in the 1-3 plane. The
corresponding bending stiffnesses of the Section are given by i33-el and
i22 -el;

Section Properties
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» The torsional constant, j. The torsional stiffness of the Section is given by
j-g12. For a circular section, the torsional constant is the same as the polar mo-
ment of inertia.

» The shear areas, as2 and as3, for transverse shear in the 1-2 and 1-3 planes, re-
spectively. The corresponding transverse shear stiffnesses of the Section are
given by as2 -g12 and as3 - g12.

Property Modifiers

As part of the definition of the section properties, you may specify scale factors to
modify the computed section properties. These may be used, for example, to reduce
bending stiffness, although this is generally not necessary since the tendons are
usually very slender.

Individual modifiers are available for the following eight terms:

» The axial stiffness a -el

* The shear stiffnesses as2 -g12 and as3 -g12
» The torsional stiffness j-g12

» The bending stiffnesses i33 -el and i22 -el
* The section mass a-m

* The section weight a-w

Nonlinear Properties

Two types of nonlinear properties are available for the Tendon object: ten-
sion/compression limits and plastic hinges.

Important! Nonlinear properties only affect Tendons that are modeled as ele-
ments, not Tendons modeled as loads.

When nonlinear properties are present in the Tendon, they only affect nonlinear
analyses. Linear analyses starting from zero conditions (the unstressed state) be-
have as if the nonlinear properties were not present. Linear analyses using the stift-
ness from the end of a previous nonlinear analysis use the stiffness of the nonlinear
property as it existed at the end of the nonlinear case.
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Tension/Compression Limits

You may specify a maximum tension and/or a maximum compression that a Ten-
don may take. In the most common case, you can define no-compression behavior
by specifying the compression limit to be zero.

If you specify a tension limit, it must be zero or a positive value. If you specify a
compression limit, it must be zero or a negative value. If you specify a tension and
compression limit of zero, the Tendon will carry no axial force.

The tension/compression limit behavior is elastic. Any axial extension beyond the
tension limit and axial shortening beyond the compression limit will occur with
zero axial stiffness. These deformations are recovered elastically at zero stiffness.

Bending, shear, and torsional behavior are not affected by the axial nonlinearity.

Plastic Hinge

Mass

You may insert plastic hinges at any number of locations along the length of the
Tendon. Detailed description of the behavior and use of plastic hinges is presented
in Chapter “Frame Hinge Properties” (page 115). For Tendons, only the use of axial
hinges generally makes sense

In a dynamic analysis, the mass of the structure is used to compute inertial forces.
When modeled as elements, the mass contributed by the Tendon is lumped at each
discretization point along the length of the Tendon. When modeled as loads, no
mass is contributed to the model. This is not usually of any significance since the
mass of a Tendon is generally small.

The total mass of the Tendon is equal to the integral along the length of the mass
density, m, multiplied by the cross-sectional area, a.

Prestress Load
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Each Tendon produces a set of self-equilibrating forces and moments that act on the
rest of the structure. You may assign different Prestress loading in different Load
Cases.

Mass
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In a given Load Case, the Prestress Load for any Tendon is defined by the follow-
ing parameters:

Tension in the Tendon, before losses.

Jacking location, either end I or end J, where the tensioning of the Tendon will
occur

Curvature coefficient. This specifies the fraction of tension loss (due to fric-
tion) per unit of angle change (in radians) along the length of the Tendon,
measured from the jacking end.

Wobble coefficient. This specifies the fraction of tension loss (due to friction)
per unit of Tendon length, measured from the jacking end, due to imperfect
straightness of the tendon.

Anchorage set slip. This specifies the length of slippage at the jacking end of
the Tendon due to the release of the jacking mechanism.

The following additional load parameters may be specified that only apply when
the Tendon is modeled as loads:

Elastic shortening stress, due to compressive shortening in the elements that
are loaded by the Tendon. This may be due to loads from the Tendon itself or
from other loads acting on the structure.

Creep stress, due to compressive creep strains in the elements that are loaded
by the Tendon.

Shrinkage stress, due to compressive shrinkage strains in the elements that are
loaded by the Tendon.

Steel relaxation stress, due to tensile relaxation strains in the Tendon itself.

For Tendons modeled as elements, the elastic shortening stress is automatically ac-
counted for in all analyses; the time-dependent creep, shrinkage, and relaxation
stresses can be accounted for by performing a time-dependent staged-construction
analysis. See Topic “Staged Construction” (page 337) in Chapter “Nonlinear Static
Analysis” for more information.

To account for complicated jacking procedures, you can specify different prestress
loads in different Load Cases and apply them as appropriate.

Self-Weight Load

Self-Weight Load activates the self-weight of all elements in the model. For a
Tendon object, the self-weight is a force that is distributed along the length of the
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element. The magnitude of the self-weight is equal to the weight density, w, multi-
plied by the cross-sectional area, a.

Self-Weight Load always acts downward, in the global —Z direction. You may
scale the self-weight by a single scale factor that applies equally to all elements in
the structure.

For more information:
* See Topic “Weight Density” (page 75) in Chapter “Material Properties” for the

definition of w.

* See Topic “Section Properties” (page 234) in this Chapter for the definition of
a.

* See Topic “Self-Weight Load” (page 245) in Chapter “Load Cases.”

Gravity Load

Gravity Load can be applied to each Tendon to activate the self-weight of the
object. Using Gravity Load, the self-weight can be scaled and applied in any direc-
tion. Different scale factors and directions can be applied to each element.

If all elements are to be loaded equally and in the downward direction, it is more
convenient to use Self-Weight Load.

For more information:

* See Topic “Self-Weight Load” (page 106) in this Chapter for the definition of
self-weight for the Frame element.

* See Topic “Gravity Load” (page 246) in Chapter “Load Cases.”

Temperature Load
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The Temperature Load creates thermal strain in the Tendon object. This strain is
given by the product of the Material coefficient of thermal expansion and the tem-
perature change of the object. The temperature change is measured from the Ten-
don Reference Temperature to the Tendon Load Temperature.

For any Load Case, you may specify a Load Temperature field that is constant over
the cross section and produces axial strains. This temperature field may be constant
along the element length or interpolated from values given at the joints.

Gravity Load
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See Chapter “Load Cases” (page 241) for more information.

Internal Force Output

The Tendon internal forces are the forces and moments that result from integrat-
ing the stresses over the object cross section. These internal forces are:

» P, the axial force

* V2, the shear force in the 1-2 plane

* V3, the shear force in the 1-3 plane

» T, the axial torque

» M2, the bending moment in the 1-3 plane (about the 2 axis)
* M3, the bending moment in the 1-2 plane (about the 3 axis)

These internal forces and moments are present at every cross section along the
length of the Tendon, and may be plotted or tabulated as part of the analysis results.
Internal force output is defined with respect to the Tendon natural local coordinate
system. See Subtopic “Natural Local Coordinate System” (page 233) in this Chap-
ter.

Important! Internal force output is only available for Tendons that are modeled as
elements.

The sign convention is the same as for a Frame element, as illustrated in Figure 28
(page 113). Positive internal forces and axial torque acting on a positive 1 face are
oriented in the positive direction of the natural local coordinate axes. Positive inter-
nal forces and axial torque acting on a negative face are oriented in the negative di-
rection of the natural local coordinate axes. A positive 1 face is one whose outward
normal (pointing away from the object) is in the positive local 1 direction.

Positive bending moments cause compression at the positive 2 and 3 faces and ten-
sion at the negative 2 and 3 faces. The positive 2 and 3 faces are those faces in the
positive local 2 and 3 directions, respectively, from the neutral axis.
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Figure 62
Tendon Object Internal Forces and Moments
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Load Cases

A Load Case is a specified spatial distribution of forces, displacements, tempera-
tures, and other effects that act upon the structure. A Load Case by itself does not
cause any response of the structure. Load Cases must be applied in Analysis Cases
in order to produce results.

Basic Topics for All Users
* Overview
* Load Cases, Analysis Cases, and Combinations
* Defining Load Cases
» Coordinate Systems and Load Components
» Force Load
» Restraint Displacement Load
» Spring Displacement Load
» Self-Weight Load
* Concentrated Span Load
* Distributed Span Load

* Tendon Prestress Load

241



CSI Analysis Reference Manual

Uniform Load

Acceleration Loads

Advanced Topics

Gravity Load

Surface Pressure Load
Pore Pressure Load
Temperature Load
Reference Temperature
Rotate Load

Joint Patterns

Overview

Each Load Case may consist of an arbitrary combination of the available load
types:

Concentrated forces and moments acting at the joints

Displacements of the grounded ends of restraints at the joints
Displacements of the grounded ends of springs at the joints

Self-weight and/or gravity acting on all element types

Concentrated or distributed forces and moments acting on the Frame elements
Distributed forces acting on the Shell elements

Surface pressure acting on the Shell, Plane, Asolid, and Solid elements
Pore pressure acting on the Plane, Asolid, and Solid elements

Thermal expansion acting on the Frame, Shell, Plane, Asolid, and Solid ele-
ments

Prestress load due to Tendons acting in Frame, Shell, Plane, Asolid, and Solid
elements

Centrifugal forces acting on Asolid elements

For practical purposes, it is usually most convenient to restrict each Load Case to a
single type of load, using Analysis Cases and Combinations to create more compli-
cated combinations.
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Load Cases, Analysis Cases, and Combinations

A Load Case is a specified spatial distribution of forces, displacements, tempera-
tures, and other effects that act upon the structure. A Load Case by itself does not
cause any response of the structure.

Load Cases must be applied in Analysis Cases in order to produce results. An
Analysis Case defines how the Load Cases are to be applied (e.g., statically or dy-
namically), how the structure responds (e.g., linearly or nonlinearly), and how the
analysis is to be performed (e.g., modally or by direct-integration.) An Analysis
Case may apply a single Load Case or a combination of Loads.

The results of Analysis Cases can be combined after analysis by defining Combi-
nations, also called Combos. A Combination is a sum or envelope of the results
from different Analysis Cases. For linear problems, algebraic-sum types of combi-
nations make sense. For nonlinear problems, it is usually best to combine loads in
the Analysis Cases, and use Combinations only for computing envelopes.

When printing, plotting, or displaying the response of the structure to loads, you
may request results for Analysis Cases and Combinations, but not directly for Load
Cases.

When performing design, only the results from Combinations are used. Combina-
tions can be automatically created by the design algorithms, or you can create your
own. Ifnecessary, you can define Combinations that contain only a single Analysis
Case.

» See Chapter “Analysis Cases” (page 255).
* See Topic “Combinations (Combos)” (page 264) in Chapter “Analysis Cases”.

Defining Load Cases

You can define as many Load Cases as you want, each with a unique name that you
specify. Within each Load Case, any number of joints or elements may be loaded
by any number of different load types.

Each Load Case has a design type, such as DEAD, WIND, or QUAKE. This identi-
fies the type of load applied so that the design algorithms know how to treat the load
when it is applied in an analysis case.

Load Cases, Analysis Cases, and Combinations 243



CSI Analysis Reference Manual

Coordinate Systems and Load Components
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Certain types of loads, such as temperature and pressure, are scalars that are inde-
pendent of any coordinate system. Forces and displacements, however, are vectors
whose components depend upon the coordinate system in which they are specified.

Vector loads may be specified with respect to any fixed coordinate system. The
fixed coordinate system to be used is specified as esys. If esys is zero (the default),
the global system is used. Otherwise esys refers to an Alternate Coordinate System.

The X, Y, and Z components of a force or translation in a fixed coordinate system
are specified as ux, uy, and uz, respectively. The X, Y, and Z components of a mo-
ment or rotation are specified as rx, ry, and rz, respectively.

Most vector loads may also be specified with respect to joint and element local co-
ordinate systems. Unlike fixed coordinate systems, the local coordinate systems
may vary from joint to joint and element to element.

The 1, 2, and 3 components of a force or translation in a local coordinate system are
specified as ul, u2, and u3, respectively. The 1, 2, and 3 components of a moment
or rotation are specified as r1, r2, and r3, respectively.

You may use a different coordinate system, as convenient, for each application of a
given type of load to a particular joint or element. The program will convert all
these loads to a single coordinate system and add them together to get the total load.

See Chapter “Coordinate Systems” (page 11) for more information.

Effect upon Large-Displacements Analysis

In a large-displacements analysis, all loads specified in a joint or element local co-
ordinate system will rotate with that joint or element. All loads specified in a fixed
coordinate system will not change direction during the analysis.

For linear analyses, and analyses considering only P-delta geometric nonlinearity,
the direction of loading does not change during the analysis.

See Chapter “Geometric Nonlinearity” (page 307) for more information.

Coordinate Systems and Load Components
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Force Load

Force Load applies concentrated forces and moments to the joints. You may spec-
ify components ux, uy, uz, rx, ry, and rz in any fixed coordinate system csys, and
components ul, u2, u3, rl, r2, and r3 in the joint local coordinate system. Force
values are additive after being converted to the joint local coordinate system.

See Topic “Force Load” (page 40) in Chapter “Joints and Degrees of Freedom” for
more information.

Restraint Displacement Load

Restraint Displacement Load applies specified ground displacements (translations
and rotations) along the restrained degrees of freedom at the joints. You may spec-
ify components ux, uy, uz, rx, ry, and rz in any fixed coordinate system esys, and
components ul, u2, u3, rl, r2, and r3 in the joint local coordinate system. Dis-
placement values are additive after being converted to the joint local coordinate
system.

See Topic “Restraint Displacement Load” (page 40) in Chapter “Joints and De-
grees of Freedom” for more information.

Spring Displacement Load

Spring Displacement Load applies specified displacements (translations and rota-
tions) at the grounded end of spring supports at the joints. You may specify compo-
nents ux, uy, uz, rx, ry, and rz in any fixed coordinate system csys, and compo-
nents ul, u2, u3, rl, r2, and r3 in the joint local coordinate system. Displacement
values are additive after being converted to the joint local coordinate system.

See Topic “Spring Displacement Load” (page 43) in Chapter “Joints and Degrees
of Freedom” for more information.

Self-Weight Load

Self-Weight Load activates the self-weight of all elements in the model. Self-
weight always acts downward, in the global —Z direction. You may scale the self-
weight by a single scale factor that applies to the whole structure. No Self-Weight
Load can be produced by an element with zero weight.
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For more information:
+ See Topic “Upward and Horizontal Directions” (page 13) in Chapter “Coordi-
nate Systems.”

* See Topic “Self-Weight Load” (page 106) in Chapter “The Frame Element.”

* See Topic “Self-Weight Load” (page 141) in Chapter “The Shell Element.”

* See Topic “Self-Weight Load” (page 155) in Chapter “The Plane Element.”

* See Topic “Self-Weight Load” (page 166) in Chapter “The Asolid Element.”
* See Topic “Self-Weight Load” (page 182) in Chapter “The Solid Element.”

* See Topic “Self-Weight Load” (page 205) in Chapter “The Link/Support Ele-
ment—Basic.”

* See Topic “Self-Weight Load” (page 237) in Chapter “The Tendon Object.”

Gravity Load
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Gravity Load activates the self-weight of the Frame, Shell, Plane, Asolid, Solid,
and Link/Support elements. For each element to be loaded, you may specify the
gravitational multipliers ux, uy, and uz in any fixed coordinate system esys. Multi-
plier values are additive after being converted to the global coordinate system.

Each element produces a Gravity Load, having three components in system csys,
equal to its self-weight multiplied by the factors ux, uy, and uz. This load is appor-
tioned to each joint of the element. For example, if uz =—2, twice the self-weight is
applied to the structure acting in the negative Z direction of system csys. No Grav-
ity Load can be produced by an element with zero weight.

The difference between Self-Weight Load and Gravity Load is:

* Self-Weight Load acts equally on all elements of the structure and always in
the global —Z direction

» Gravity Load may have a different magnitude and direction for each element in
the structure

Both loads are proportional to the self-weight of the individual elements.
For more information:

* See Topic “Gravity Load” (page 106) in Chapter “The Frame Element.”
* See Topic “Gravity Load” (page 141) in Chapter “The Shell Element.”

Gravity Load
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* See Topic “Gravity Load” (page 155) in Chapter “The Plane Element.”
» See Topic “Gravity Load” (page 167) in Chapter “The Asolid Element.”
» See Topic “Gravity Load” (page 182) in Chapter “The Solid Element.”

* See Topic “Gravity Load” (page 205) in Chapter “The Link/Support Ele-
ment—Basic.”

* See Topic “Gravity Load” (page 238) in Chapter “The Tendon Object.”

Concentrated Span Load

Concentrated Span Load applies concentrated forces and moments at arbitrary lo-
cations on Frame elements. You may specify components ux, uy, uz, rx, ry, and rz
in any fixed coordinate system csys, and components ul, u2, u3, r1, r2, and r3 in
the Frame element local coordinate system. Force values are additive after being
converted to the Frame element local coordinate system.

See Topic “Concentrated Span Load” (page 107) in Chapter “The Frame Element”
for more information.

Distributed Span Load

Distributed Span Load applies distributed forces and moments at arbitrary loca-
tions on Frame elements. You may specify components ux, uy, uz, rx, ry, and rz in
any fixed coordinate system csys, and components ul, u2, u3, rl, r2, and r3 in the
Frame element local coordinate system. Force values are additive after being con-
verted to the Frame element local coordinate system.

See Topic “Distributed Span Load” (page 107) in Chapter “The Frame Element”
for more information.

Tendon Prestress Load

Tendons are a special type of object that can be embedded inside other objects
(frames, shells, planes, asolids, and solids) to represent the effect of prestressing
and post-tensioning. These tendons attach to the other objects and impose load
upon them.
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You may specify whether the tendons are to be modeled as independent elements in
the analysis, or just to act upon the rest of the structure as loads. This affects the
types of loads that are directly imposed upon the structure.

See Topic “Prestress Load” (page 236) in Chapter “The Tendon Object” for more
information.

Uniform Load

Uniform Load applies uniformly distributed forces to the mid-surface of Shell ele-
ments. You may specify components ux, uy, and uz in any fixed coordinate system
csys, and components ul, u2, and u3 in the element local coordinate system. Force
values are additive after being converted to the element local coordinate system.

See Topic “Uniform Load” (page 142) in Chapter “The Shell Element” for more in-
formation.

Surface Pressure Load
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Surface Pressure Load applies an external pressure to any of the outer faces of the
Shell, Plane, Asolid, and Solid elements. The load on each face of an element is
specified independently.

You may specify pressures, p, that are uniform over an element face or interpolated
from pressure values given by Joint Patterns. Hydrostatic pressure fields may easily
be specified using Joint Patterns. Pressure values are additive.

For more information:
* See Topic “Surface Pressure Load” (page 143) in Chapter “The Shell Ele-

ment.”

* See Topic “Surface Pressure Load” (page 156) in Chapter “The Plane Ele-
ment.”

* See Topic “Surface Pressure Load” (page 167) in Chapter “The Asolid Ele-
ment.”

* See Topic “Surface Pressure Load” (page 182) in Chapter “The Solid Ele-
ment.”

* See Topic “Joint Patterns” (page 252) in this Chapter.

Uniform Load
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Earth Dam Flow Lines
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Figure 63
Flow-net Analysis of an Earth Dam to Obtain Pore Pressures

Pore Pressure Load

Pore Pressure Load models the drag and buoyancy effects of a fluid within a solid
medium, such as the effect of water upon the solid skeleton of a soil. Pore Pressure
Load may be used with Shell, Asolid, and Solid elements.

Scalar fluid-pressure values are given at the element joints by Joint Patterns, and in-
terpolated over the element. These pressure values may typically be obtained by
flow-net analysis, such as illustrated in Figure 63 (page 249). Hydrostatic pressure
fields may easily be specified using Joint Patterns. Pressure values are additive.

The total force acting on the element is the integral of the gradient of this pressure
field over the volume of the element. This force is apportioned to each of the joints
of the element. The forces are typically directed from regions of high pressure to-
ward regions of low pressure.

Note that although pressures are specified, it is the pressure gradient over an ele-
ment that causes the load. Thus a uniform pressure field over an element will cause
no load. Pressure differences between elements a