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SUMMARY

By means of a graphical procedure, the capacity spectrum method compares the capacity of a structure with
the demands of earthquake ground motion on it. In the present version of the method, highly damped elastic
spectra have been used to determine seismic demand. A more straightforward approach for the determina-
tion of seismic demand is based on the use of the inelastic strength and displacement spectra which can be
obtained directly by time-history analyses of inelastic SDOF systems, or indirectly from elastic spectra.
The advantages of the two approaches (i.e. the visual representation of the capacity spectrum method and
the superior physical basis of inelastic demand spectra) can be combined. In this paper, the idea of using
inelastic demand spectra within the capacity spectrum method has been elaborated and is presented in an
easy to use format. The approach represents the so-called N2 method formulated in the format of the
capacity spectrum method. By reversing the procedure, a direct displacement-based design can be per-
formed. The application of the modi"ed capacity spectrum method is illustrated by means of two examples.
Copyright ( 1999 John Wiley & Sons, Ltd.
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INTRODUCTION

After recent earthquakes, especially the Northridge and Hyogoken}Nanbu (Kobe) earth-
quakes, a consensus has been reached that present codes need signi"cant improvements and
expansion.

In the U.S.A., the structural engineering community is in the process of developing a new
generation of design and rehabilitation procedures that will incorporate performance-based
engineering concepts. The most prominent examples are Vision 2000,1 ATC-40,2 and FEMA-
273.3 In Japan, the Building Standard will be revised into a performance-based design format. In
all documents, non-linear static analysis procedures play a central role. Among them, the
popularity of the so-called capacity spectrum method is increasing rapidly.

The capacity spectrum method was developed by Freeman.4,5 By means of a graphical
procedure, it compares the capacity of a structure with the demands of earthquake ground



Figure 1. Capacity spectrum method

motion on the structure (Figure 1). The graphical presentation makes possible a visual evaluation
of how the structure will perform when subjected to earthquake ground motion. The method is
easy to understand. The capacity of the structure is represented by a force}displacement curve,
obtained by non-linear static (pushover) analysis. The base shear forces and roof displacements
are converted to the spectral accelerations and spectral displacements of an equivalent Single-
Degree-Of-Freedom (SDOF) system, respectively. These spectral values de"ne the capacity
spectrum. The demands of the earthquake ground motion are de"ned by highly damped elastic
spectra. The Acceleration}Displacement Response Spectrum (ADRS) format6 is used, in which
spectral accelerations are plotted against spectral displacements, with the periods ¹ represented
by radial lines. The intersection of the capacity spectrum and the demand spectrum provides an
estimate of the inelastic acceleration (strength) and displacement demand.

A controversial part of the described method is the use of highly damped elastic spectra for the
determination of seismic demand. According to Krawinkler7 &there are two fundamental #aws
that render the quantitative use of the capacity spectrum method questionable. First, there is no
physical principle that justi"es the existence of a stable relationship between the hysteretic energy
dissipation of the maximum excursion and equivalent viscous damping, particularly for highly
inelastic systems. The second #aw is that the period associated with the intersection of the
capacity curve with the highly damped spectrum may have little to do with the dynamic response
of the inelastic system'. Due to these de"ciencies it was stated in Vision 2000 that &the theoretical
foundations of the method are open to question'. Freeman, the author of the capacity spectrum
method, wrote:5 &One controversial item of the capacity spectrum method, as well as for other
inelastic methods, is the relationship between inelastic response spectra and equivalent linear
elastic response spectra'. As an alternative to the ATC-40 recommendations, he presented
e!ective damping ratios based on Newmark}Hall studies.8

The lack of consensus on the de"nition of seismic demand is re#ected in the two di!erent
approaches used in recent US documents. Whereas the capacity spectrum method is the main
method used in ATC-40, it is the so-called displacement coe$cient method which is used in
FEMA-273. In this latter method, the displacement demand is, essentially, determined from the

980 P. FAJFAR

Copyright ( 1999 John Wiley & Sons, Ltd. Earthquake Engng. Struct. Dyn. 28, 979}993 (1999)



inelastic displacement spectra which are obtained from the elastic displacement spectra by using
a number of correction factors based on statistical analyses. Inelastic spectra are, in principle,
expected to be more accurate than elastic spectra with equivalent damping, especially in the
short-period range and in the case of high ductilities.

In order to overcome the de"ciencies of the original version of the capacity spectrum method,
Bertero9 recommended to use &smoothed inelastic design response spectra' as demand spectra.
However, to realise this recommendation, the classical acceleration}period format was applied.
Reinhorn10 demonstrated that, as an alternative to the use of elastic spectra with equivalent
damping, inelastic demand spectra in the ADRS format can be applied within the capacity
spectrum method. So, the advantages of the two approaches (i.e. the visual representation of the
capacity spectrum method and the superior physical basis of inelastic demand spectra) can be
combined. The procedure eliminates the controversial part of the original procedure. Neither
equivalent viscous damping nor the period associated with the intersection of the capacity curve
with the highly damped spectrum is used.

Using the Reinhorn's idea, the author of this paper has formulated the so-called N2 method,
developed at the University of Ljubljana,11,12 in the format of the capacity spectrum method. All
equations given in Reference 12 remain valid. Looking from another perspective, the N2 method
in the new format is, in fact, a variant of the capacity spectrum method based on inelastic spectra.
Inelastic demand spectra are determined from a typical smooth elastic design spectrum. Reduc-
tion factors, that relate inelastic spectra to the basic elastic spectrum, are consistent with the
elastic spectrum. A simple transformation from a Multi-Degree-Of-Freedom (MDOF) to an
equivalent SDOF system is used. It turns out that, if the simple alternative for the reduction factor
spectrum (equation 6(a)) is applied, the proposed method is equivalent to the displacement
coe$cient method presented in FEMA-273.

This paper contains no basic original developments. It just synthesises existing information and
presents it in an easy to use format, which might be acceptable for practical design and for the
development of future design guidelines.

The paper is mainly restricted to the proposed modi"cation of the existing capacity spectrum
method. The problems connected with the pushover analysis are not discussed, because they
remain the same as in the original approach. Among them, the treatment of the contribution of
higher modes is especially important and di$cult. The reader may wish to consult, for instance,
the paper by Krawinkler and Seneviratna,13 in which pushover analysis is discussed in detail.

In the paper, it is also shown that di!erent design and performance evaluation approaches,
including deformation-controlled design, can be applied within the framework of the capacity
spectrum method. Four quantities de"ne structural behaviour: strength, displacement, ductility
and sti!ness. Design and/or performance evaluation begins by "xing two of them. The other two
are determined by calculations. Di!erent approaches di!er in the quantities that are chosen at the
beginning of the design or evaluation.

The force}displacement relationship, obtained by pushover analysis, corresponds to mono-
tonically increasing loading. In order to use it for seismic design, ultimate capacity should be
reduced due to cumulative damage e!ects. For this purpose the concept of equivalent ductility
factors14 can be employed. The procedure is brie#y summarized in this paper.

Seismic demand can, in principle, be de"ned by any inelastic spectra. The speci"c demand
spectra applied in this paper are based on statistical analyses, in which the near-fault, impulsive
type of ground motion has not been included. Thus, the proposed spectra may not be
adequate for this type of ground motion. Furthermore, care should be taken in the long-period
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Figure 2. Typical elastic acceleration (S
!%

) and displacement spectrum (S
$%

) for 5 per cent damping normalised to 1)0 g
peak ground acceleration

range, where actual displacements are typically constant, and in the very-long-period range,
where the spectral displacements decrease to the level of the peak ground displacement. Dis-
placement spectra are discussed in two recent papers.15,16 According to Whittaker et al.,17
the equal displacement rule is not conservative for systems with low strength (i.e. with a yield
strength to required elastic strength ratio of less than 0)2). Additional research on these topics
is needed.

The application of the modi"ed capacity spectrum method is illustrated by means of two
examples. It is shown that the capacity spectrum method can be used both for the seismic
performance evaluation of newly designed or existing structures, and as a tool for the implemen-
tation of the direct displacement-based design approach, in which design starts from a predeter-
mined target displacement.

SEISMIC DEMAND IN ADRS FORMAT

For an elastic SDOF system the following relation applies:

S
$%
"

¹2

4n2
S
!%

(1)

where S
!%

and S
$%

are values in the elastic spectrum of (pseudo)-acceleration (&pseudo' will be
omitted in the following text) and displacement, respectively, corresponding to the period ¹ and
a "xed viscous damping ratio. A typical smooth elastic acceleration spectrum for 5 per-
cent damping, normalized to a peak ground acceleration of 1)0 g, and the corresponding elastic
displacement spectrum, are shown in Figure 2. For an inelastic SDOF system with a bilinear
force}deformation relationship, the acceleration spectrum (S

!
) and displacement spectrum (S

$
)
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can be determined18 as
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(3)

where k is the ductility factor de"ned as the ratio between the maximum displacement and the
yield displacement, and R

l
is the reduction factor due to ductility, i.e. due to the hysteretic

energy dissipation of ductile structures. Note that Rk is not equivalent to the reduction (behav-
iour, response modi"cation) factor R used in seismic codes. The code reduction factor R takes
into account both energy dissipation and the so-called overstrength R

4
. It can be de"ned as

R"Rk R
4
.

Several proposals have been made for the reduction factor Rk. An excellent overview was made
by Miranda and Bertero.19 In this paper, we will make use of the formulae proposed by Vidic
et al.18 in slightly modi"ed form. They not only provide reasonably accurate results, but are also
very simple and suited for the use in the capacity spectrum method format.

Rk"(k!1)
¹

¹
0

#1, ¹)¹
0

(4)

Rk"k, ¹*¹
0

(5)

¹
0
"0)65k0)3¹

#
)¹

#
(6)

¹
#

is the characteristic period of the ground motion. It is typically de"ned as the transition
period where the constant acceleration segment of the response spectrum passes to the constant
velocity segment of the spectrum (Figure 2). It roughly corresponds to the period at which the
largest energy is imparted to the structure.

Equations (4) and (5) de"ne a bilinear R
l
spectrum (Figure 3). In the medium- and long-period

range the equal displacement rule applies (equations (3) and (5)), i.e. the displacement of the
inelastic system is equal to the displacement of the corresponding elastic system with the same
period. The transition period ¹

0
depends on the ductility (equation (6)). ¹

0
should not be larger

than ¹
#
. This limitation represents only a small modi"cation regarding the original proposal in

Reference 18.
Equations (4)}(6) were derived from a statistical study of a sti!ness-degrading system with 10

per cent strain hardening and 5 per cent mass-proportional damping. A bilinear hysteretic model
and damping proportional to instantaneous sti!ness were also studied. From more detailed
results presented by Vidic et al.18 it can be concluded that equations (4)}(6) represent the
approximate mean values of the di!erent combinations studied. Studies performed at Stanford
University (e.g. Reference 20) indicate only minor in#uence of the magnitude of the strain
hardening ratio on Rk, provided that this ratio is positive.

An even simpler version of Rk spectra can be obtained by "xing the transition period to ¹
#

¹
0
"¹

#
(6a)

This approach is, in the case of low ductility demand, conservative for short-period structures.
However, it further simpli"es the analysis procedure in the short-period range. Thus it may be
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Figure 3. Ductility-dependent reduction factor Rk compatible with elastic acceleration spectrum in Figure 2

Figure 4. Demand spectra for constant ductilities in ADRS format

an attractive alternative for designers. Note that the formula for the modi"cation factor C
1

in
FEMA-273 is based on the Rk spectra de"ned by equations (4), (5) and (6a).

Starting from the typical elastic design spectrum in Figure 1, and using equations (2)}(6) or (6a),
the demand spectra for the constant ductility factors k in ADRS format can be obtained
(Figure 4).
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In principle, any realistic elastic and corresponding (compatible) inelastic spectrum can be
applied. For example, for a speci"c acceleration time history, the elastic acceleration spectrum as
well as the inelastic spectra which take into account speci"c hysteretic behaviour can be
computed and used in the capacity spectrum method. However, elastic spectra for speci"c
accelerograms should not be combined with smooth Rk spectra because they are not compatible.
Furthermore, spectra which for di!erent reasons deviate from the actual spectral shape should
not be used. For example, the elastic acceleration spectra used as design spectra in codes are
usually increased in the medium- and long-period ranges. These spectra are not appropriate as
a basis for the determination of displacement spectra according to equation (1). They signi"cantly
overestimate displacements at longer periods.

The spectrum in Figure 2 has been intentionally cut o! at the period ¹"3 s. At longer periods
the displacement spectrum is typically constant. Consequently, the acceleration spectrum in the
long-period range typically decreases with the square of the period ¹. Depending on the
earthquake and site characteristics, the constant displacement range of the spectrum may begin
even at shorter periods, e.g. at about 2 s.16 In the very-long-period range, spectral displacements
decrease to the value of the peak ground displacement. The actual features of general purpose
elastic spectra in the long- and very-long-period ranges are still under investigation.

THE MODIFIED METHOD

The modi"ed capacity spectrum method consists of the following steps:

1. Determine the base shear}top displacement relationship by a pushover analysis. It is assumed
that the lateral force in the ith storey is proportional to the component of the assumed
displacement shape '

i
weighted by the storey mass m

i

P
i
"m

i
'

i
(7)

Such a distribution has a physical basis (inertia forces), and yields the simplest transforma-
tion from MDOF to SDOF systems (see Reference 12). However, any other reasonable
distribution can also be used. The distribution remains constant during the pushover
analysis.

2. ¹ransform the force}deformation relationship of the MDOF into that of an equivalent SDOF
system. Provided that the distribution of the lateral loading is de"ned by equation (7), the
transformation of all quantities is performed by means of the equation

Q"!Q* (8)

where Q* represents the quantities in the equivalent SDOF system (force F*, displacement
D*, and hysteretic energy E*

H
, if needed), and Q represents the corresponding quantities in

the MDOF system (base shear <, top displacement D
5
, and hysteretic energy E

H
). The

constant ! is de"ned as

!"

+m
i
'

i
+m

i
'2

i

(9)
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It is usually called modal participation factor. Note that the assumed displacement shape
' is normalized* the value at the top is equal to 1. Note also that any reasonable shape can
be used for '. Only in a special case ' represents the "rst mode shape. ! is equivalent to PF

1
in capacity spectrum method and to C

0
in displacement coe$cient method (ATC-40 and

FEMA-273). The value in the numerator represents the mass of the equivalent SDOF
system

m*"+m
i
'

i
(10)

Since the same transformation is used both for forces and displacements, the initial sti!ness
of the equivalent SDOF system remains the same as that of the MDOF system.

3. Idealize the force}displacement relationship of the equivalent SDOF system into an elastic
} perfectly plastic form. In this step, engineering judgement has to be used. In a regulatory
document, some guidelines may be given. For example, it may be required that the e!ective
lateral sti!ness shall be taken as the secant sti!ness calculated at a force equal to 60 per cent
of the yield strength (FEMA-273).

Note that the graphical procedure requires the post-yield sti!ness equal to zero. This is
because the reduction factor Rk is de"ned as the ratio of the required elastic strength to the
yield strength. The in#uence of moderate strain hardening is incorporated in the demand
spectra. Once again it should be emphasized that moderate strain hardening does not have
a signi"cant in#uence on displacement demand. In the case of strain softening, however, the
maximum displacements are increased.20 Based on this observation, a multiplication factor
(C

3
) was introduced in FEMA-273 into the method for determing the maximum displace-

ments. The value of this factor is 1)0 in the case of a positive post-yield sti!ness, whereas in
the case of a negative post-yield sti!ness C

3
is greater than 1)0. Such a factor can be easily

included in the formulae for the determination of demand spectra.
The elastic period of the idealised bilinear system ¹* can be determined as

¹*"2nS
m*D*

:
F*
:

(11)

where F*
:

and D*
:

are the yield strength and displacement, respectively.
If the forces in the force}deformation curve for the equivalent SDOF system are divided

by the equivalent mass m*, the acceleration}displacement relation (capacity curve) is
obtained.

4. Determine the seismic demand for the equivalent SDOF system. The intersection of the radial
line corresponding to the elastic sti!ness of the idealised bilinear system and the elastic
demand spectrum de"nes the strength required for elastic behaviour and the corresponding
elastic displacement demand.

If the elastic period ¹* is larger than ¹
0
, determined according to equation (6) or

equation (6a) depending on the representation of seismic demand, the inelastic displacement
demand is equal to the elastic one. The ductility demand is equal to the reduction factor and
it can be obtained from the graph. If ¹* is smaller than ¹

0
and the target ductility is low,

iteration is required unless a simple conservative assumption (6a) is used.
If the elastic period of the system is smaller than ¹

0
, the reduction factor Rk is "rst

determined, as the ratio between the elastic acceleration S
!%

and the yield acceleration S
!:
,

representing the acceleration demand of the inelastic system. The ductility demand is then
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calculated from the rearranged equation (4)

k"(Rk!1)
¹

0
¹*

#1 (4a)

The displacement demand is determined as

D*"S
$
"kD*

:
(12)

In both cases (¹*)¹
0

and ¹**¹
0
) the inelastic demand in terms of accelerations and

displacements corresponds to the intersection point of the capacity spectrum and the
demand spectrum corresponds to the ductility demand.

5. Check performance at the expected maximum displacement. The procedure is the same as in
the original method. First, the displacement has to be transformed back from the SDOF to
the MDOF system (equation (8)). Then the performance at maximum displacement is
evaluated on the global and local level.

If equation (6a) is used, the displacement demand according to the proposed procedure
corresponds to the displacement demand determined by the displacement coe$cient
method (ATC-40 and FEMA-273). This is because the constant C (equation (9)) corresponds
to the coe$cient C

0
, whereas the ratio k/Rk corresponds to the coe$cient C

1
. The

coe$cients C
2
and C

3
are not included in the proposed procedure, i.e. they are set equal to 1.

However, if so desired, they can easily be incorporated into the procedure.

DEFORMATION CONTROLLED DESIGN

At the International Workshop on Seismic Design Methodologies for the Next Generation of
Codes,21 the following recommendations, inter alia, were made:

(1) &Future seismic engineering practice should be based on explicit and quanti"able perfor-
mance criteria, considering multiple performance and hazard levels'.

(2) &The most suitable approach for seismic design to achieve the objectives of performance
based engineering appears to be deformation controlled design. It is recommended that deforma-
tion controlled design be implemented in future codes, both by enhancing force-based design
through veri"cation of deformation targets and by the development of direct deformation based
design approaches'.

Both force-based and deformation-based approaches can be easily implemented within the
capacity spectrum method. There are four important parameters which de"ne structural behav-
iour: strength, displacement, ductility, and elastic sti!ness. In the capacity spectrum method these
characteristics are represented by the acceleration S

!
, the displacement S

$
, the ductility factor

k, and the elastic period ¹. The four quantities are related by equation (3). An additional
relationship de"nes seismic acceleration demand as a function of k and ¹ (equations (2), (4)}(6)).
Seismic demand in terms of the elastic acceleration spectrum S

!%
is de"ned in the input data.

Consequently, there are two equations (relations) for four unknown quantities. It follows that two
quantities need to be chosen, and the other two computed. In di!erent approaches, di!erent
quantities are chosen at the beginning (Table I). The usual force-based design typically starts
by assuming the period and the ductility capacity. Then the seismic forces (related to strength)
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Table I. Assumed and determined structural characteristics in di!erent approaches

Force-based Displacement- Performance
design based design evaluation

Assumed Period (sti!ness) Displacement Sti!ness
Ductility Ductility Strength

Determined Strength Period (sti!ness) Displacement
Displacement Strength Ductility

are determined, and "nally the displacement demand is calculated. In a performance evalu-
ation procedure, the strength and the period are known, whereas the displacement and
ductility demands are calculated. In direct displacement-based design, the starting points are
typically displacement and ductility demands. The quantities to be determined are period and
strength.

It should be noted that in all cases the strength corresponds to the actual strength and not to
the design-base shear in seismic codes. Design-base shear is, for a number of reasons, in all
practical cases less than the actual strength. The ratio between the actual and design strength is
called the overstrength factor R

4
.

CUMULATIVE DAMAGE CONSIDERATIONS

In some cases, especially for existing structures with poor detailing subjected to long-duration
ground motions, cumulative damage e!ects caused by several inelastic cycles may be very
important. These e!ects can be easily incorporated into the described procedures by using the
so-called &equivalent ductility factors'.14 The idea behind the equivalent ductility factor is to
reduce the monotonic deformation capacity of an element and/or a structure as a consequence of
cumulative damage due to the dissipation of hysteretic energy. The relation between the ultimate
monotonic and cyclic deformation capacity depends on the damage model used. In the case of the
Park}Ang damage model,22 the following relation applies:14

k
#

k
.

"

1

1#bc2k
#

. (13)

where k
#

and k
.

represent the ductility capacity under cyclic (earthquake) and monotonic
loading, respectively. The same ratio applies to displacements. The ratio depends on the ampli-
tude of vibrations in terms of the ultimate ductility k

#
and on two additional non-dimensional

parameters. The "rst of these is the structure-dependent parameter b, which de"nes the strength
degradation due to cyclic loading in the Park}Ang model. The second one is the parameter c,
which is related to the ratio between the dissipated hysteretic energy and the maximum
displacement. It depends mainly on the characteristic period of the ground motion and on the
duration of the strong part of the ground motion. In addition, it depends slightly on the hysteretic
behaviour and on the period of the ground motion. In an average case (b"0)15, c"1)0, k

#
"4)

988 P. FAJFAR

Copyright ( 1999 John Wiley & Sons, Ltd. Earthquake Engng. Struct. Dyn. 28, 979}993 (1999)



the ratio between the two ductilities k
#
and k

.
amounts to 0)625. Consequently, in order to assure

a ductility capacity under earthquake loading equal to k"k
#
"4, a monotonic ductility capacity

of k
.
"6)4 should be provided.

Following the concept of equivalent deformation capacity the e!ect of cumulative damage
can be easily taken into account in the capacity spectrum method by appropriately reducing
the capacity determined by pushover analysis at both the global (structure) and local (element)
level.

ILLUSTRATIVE EXAMPLES

In order to demonstrate the applicability of the proposed method, a four-storey reinforced
concrete frame building has been analysed. Full-scale pseudo-dynamic tests were conducted on
the building in the European Laboratory for Structural Assessment (ELSA) of the Joint Research
Centre of the European Commission in Ispra. The bare frame building was designed according to
Eurocodes 2 and 8 as a high ductility class structure for a peak ground acceleration of 0)3 g and
medium soil conditions. The design-base shear coe$cient amounted to 0)15. The storey heights
are 3)5 m in the "rst storey and 3)0 m in the storeys above. The storey masses from the bottom to
the top amount to 87, 86, 86, and 83 t.

By using the proposed method we will estimate the top displacement. The ground motion is
de"ned by a peak ground acceleration twice as large as the design peak ground acceleration, i.e.
a
'
"0)6 g, and an elastic acceleration response spectrum according to Eurocode 8, for subsoil

class B (¹
#
"0)6 s) and 5 per cent damping. The normalized spectrum is shown in Figure 2.

A linear displacement shape is assumed: 'T
"[0)28 , 0)52 , 0)76 , 1)00]

The lateral force pattern is obtained from equation (1), and normalized so that the force at the
top is equal to 1)0: PT

"[0)293 , 0)539 , 0)787 , 1)000]
With this force pattern, pushover analysis yields the base shear}top displacement relationship

shown in Figure 5.
The MDOF system is transformed to an equivalent SDOF system using equation (8). The

equivalent mass amounts to m*"217 t (equation (10)), and the transformation constant is
!"1)34 (equation (9)).

A bilinear idealization of the pushover curve (Figure 5) is based on the following consider-
ations:

(1) The post-yield sti!ness is equal to zero.
(2) The areas under the original and idealized curve within the range of interest are approxim-

ately equal.
(3) The two curves cross at a force equal to 60 per cent of the yield strength.
(4) The resulting yield strength and displacement amount to F*

:
"830 kN and D*

:
"6)1 cm.

The elastic period is ¹*"0)79 s.

The capacity curve (Figure 5) is obtained by dividing the forces in the idealized pushover curve
by the equivalent mass. The acceleration at the yield point amounts to S

!:
"F*

:
/m*"

830/217"3)82 m/s2"0)39 g.

The capacity curve and demand spectra are compared in Figure 6. Equations (4)}(6) were used
to obtain the inelastic demand spectra.

CAPACITY SPECTRUM METHOD 989

Copyright ( 1999 John Wiley & Sons, Ltd. Earthquake Engng. Struct. Dyn. 28, 979}993 (1999)



Figure 5. Pushover curve and corresponding capacity spectrum for the 4-storey RC frame

Figure 6. Demand and capacity spectra for two illustrative examples

In the case of unlimited elastic behaviour of the structure, seismic demand is represented by the
intersection of the elastic demand spectrum and the line corresponding to the elastic period
(¹*"0)79 s) of the equivalent SDOF system. The values S

!%
"1)14 g and S

$%
"17)7 cm are

obtained. The reduction factor Rk amounts to Rk"S
!%
/S

!:
"1)14 g/0)39 g"2)92.
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Figure 7. Direct displacement-based method in capacity spectrum method format (a) 4-storey RC frame, (b) single-storey
structure

The period of the system ¹*"0)79 is larger than ¹
#
"0)6. For the inelastic spectra used,

¹
#
will always be larger than ¹

0
. Thus the equal displacement rule (equations (3) and (5)) applies:

k"Rk"2)92, S
$
"S

$%
"17)7 cm.

The seismic demand for the equivalent SDOF system is graphically represented by the
intersection of the capacity curve and the demand spectrum for k"2)92. Note, however, that the
inelastic seismic demand can be determined without constructing the demand spectra.

In the next step the displacement demand of the equivalent SDOF system is transformed back
to the top displacement of the MDOF system (equation (8)): D

5
"1)34]17)7"23)7 cm.

The next steps of analysis include determination of local seismic demands, comparisons with
available capacity (here reductions due to cumulative damage can be taken into account) and
estimation of local and global damping indices. Discussion of these steps is, however, outside the
scope of this paper.

The computed top displacement agrees well with both the experimental top displacement
(21 cm) and the top displacements determined by non-linear time-history analyses (22}30 cm).23
These results were obtained with a smaller damping (1 per cent) and a smaller intensity of
excitation (a

'
"0)45 g).

In the example, a performance evaluation of an existing (already designed) building was made.
In direct displacement-based design the procedure is reversed (Figure 7(a)). Let us start from
a target displacement of D

5
"23)7 cm. The corresponding displacement of the equivalent SDOF

system is S
$
"23)7/1)34"17)7 cm. From the spectrum in Figure 6 it is evident that the period of

the structure is in the medium-period range. Thus, the equal displacement rule applies. The period
of the structure corresponds to the radial line through the intersection of the elastic spectrum and
the vertical line corresponding to the constant displacement S

$
"17)7 cm. The values

S
!%
"1)14 g and ¹*"2pJ(S

$
/S

!%
)"0)79 s are obtained. An in"nite number of structures

exist which comply with the target displacement. In the next step, either ductility or strength
has to be assumed. For example, if we assume ductility k"2)92, the acceleration
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demand is S
!
"S

!%
/2)92"0)39 g. The required base shear of the building is equal to

<"!m* S
!
"1112 kN.

The next example is intended to demonstrate the procedure in the case of a short-period
structure. We will analyse a SDOF system with a yield strength of F

:
"F*

:
"0)5 mg (where m is

the mass and g is the acceleration of gravity), and a yield displacement of D
:
"D*

:
"1)12. The

yield acceleration S
!:

amounts to 0)5 g. Seismic demand is represented by the same demand
spectra as in the "rst example.

The elastic period of the system amounts to ¹*"0)3 s. The capacity curve is plotted in
Figure 6. The seismic demand in terms of the acceleration and displacement of an elastic structure
with the same period amounts to 1)5 g and 3)35 cm, respectively. The reduction factor Rk is equal
to 3)0. We assume that the ductility demand is greater than about 4)0 and, as a consequence,
¹

0
"¹

#
"0)6 (equation (6)). The ductility demand is obtained using equation (4a) (k"5)0). The

assumption ¹
0
"¹

#
turns out to be correct. The displacement demand is computed from

equation (12) (D"D*"S
$
"5)0]1)12"5)6 cm). Again, the seismic demand is graphically

represented by the intersection of the capacity curve and the demand spectrum for k"5)0
(Figure 6).

In the direct displacement-based design the procedure is reversed, and we start with the target
displacement S

$
"5)6 cm (Figure 7b). The spectra indicate that the period of the structure is

within the short-period range. Thus the equal displacement rule does not apply. In order to
determine the period, either the ductility or acceleration demand has to be assumed. Let us
assume a ductility of k"5. The acceleration demand (S

!
"0)5 g) corresponds to the intersection

of the vertical line (S
$
"5)6 cm) and the inelastic demand spectrum for k"5. The yield

displacement is equal to 5)6/5"1)12 cm and the period is ¹*"2pJ(1)12/981/0)5)"0)3 s.

CONCLUSIONS

The seismic demand in the capacity spectrum method can be represented by inelastic spectra. In
principle, any realistic inelastic spectra can be used. However, they should be compatible with the
basic elastic spectrum. The speci"c demand spectra applied in this paper are simple and
reasonably accurate for a broad range of design situations. It has been shown that the perfor-
mance evaluation procedure, called the N2 method, can be formulated in the format of the
capacity spectrum method. Furthermore, by reversing the procedure, a direct deformation-based
design can be performed.
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