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SUMMARY

This paper aims to develop an improved understanding of the critical response of structures to multicomponent
seismic motion characterized by three uncorrelated components that are de�ned along its principal axes: two
horizontal and the vertical component. An explicit formula, convenient for code applications, has been derived
to calculate the critical value of structural response to the two principal horizontal components acting along
any incident angle with respect to the structural axes, and the vertical component of ground motion. The
critical response is de�ned as the largest value of response for all possible incident angles. The ratio rcr=rsrss
between the critical value of response and the SRSS response—corresponding to the principal components of
ground acceleration applied along the structure axes—is shown to depend on three dimensionless parameters:
the spectrum intensity ratio  between the two principal components of horizontal ground motion characterized
by design spectra A(Tn) and A(Tn); the correlation coe�cient � of responses rx and ry due to design spectrum
A(Tn) applied in the x- and y-directions, respectively; and �= ry=rx. It is demonstrated that the ratio rcr=rsrss
is bounded by 1 and

√
(2=1 + 2). Thus the largest value of the ratio is

√
2, 1.26, 1.13 and 1.08 for =0,

0.5, 0.75 and 0.85, respectively. This implies that the critical response never exceeds
√
2 times the result of

the SRSS analysis, and this ratio is about 1.13 for typical values of , say 0.75. The correlation coe�cient
� depends on the structural properties but is always bounded between −1 and 1. For a �xed value of ,
the ratio rcr=rsrss is largest if �=1 and �= ± 1. The parametric variations presented for one-storey buildings
indicate that this condition can be satis�ed by axial forces in columns of symmetric-plan buildings or can
be approximated by lateral displacements in resisting elements of unsymmetrical-plan buildings. Copyright
? 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The response of structures to multicomponent ground motion has been examined in several publica-
tions [1–9]. Translational ground motion is decomposed usually into three components: two in the
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horizontal plane and one in the vertical direction, with rotational ground motion neglected. When
de�ned along a special orthogonal system of axes, the ground motion components are uncorrelated
[10; 11]. This system of axes, de�ned as the principal axes of ground motion, are oriented such
that the major principal axis is horizontal and directed toward the epicentre of the earthquake, the
intermediate principal axis is in the orthogonal principal direction, and the minor principal axis is
vertical [10]. The components of the ground motion along any other orthogonal system of axes are
obviously correlated.
Because the location of the epicentre is not known, it is necessary to determine the response

of a structure for all possible orientations of the principal axes and design for the largest or
critical response. To determine this response, the CQC3 rule has been developed, which describes
the structural response as a function of the incident angle (the angle between the principal axes of
ground motion and the reference axes of the structure) of seismic components described in terms of
response spectra [6–8]. Because the CQC3 equation provides a simple formula for determining the
critical angle, it is not necessary to determine the response for various values of the incident angle.
The CQC3 equation, evaluated numerically for this critical angle, provides the critical response.
The overall objective of this paper is to develop an improved understanding of the critical re-

sponse of structures to multicomponent ground motion. The speci�c objectives are as follows:
(1) develop an explicit formula for the critical response in terms of the responses to single com-
ponents of ground motion applied separately along the three structural axes and the correlation
between these responses; (2) develop an upper bound for the critical response; and (3) identify
the ground motion and system parameters that inuence the critical response and the variation of
the response with the incident angle. The �rst part of the paper presents results applicable to any
structure, followed by a parametric study of one-story building systems.

2. CRITICAL RESPONSE OF STRUCTURES

2.1. Earthquake excitation

The excitation is de�ned in terms of design spectra associated with the principal directions of the
translational components of ground motion, which are oriented along the two horizontal axes 1 and
2 and the vertical axis z, as shown in Figure 1. The pseudo-acceleration spectra are denoted as
A(Tn) for the major principal axis, A(Tn) for the intermediate principal axis, and Az(Tn) for the
minor principal axis; Tn is the natural vibration period of a single-degree-of-freedom system.
Note that the design spectra in the two horizontal directions have the same shape and di�er

by the ratio  of spectrum intensities where 0 6  6 1. The ground acceleration components
along the principal axes (1, 2, and z) are assumed to be uncorrelated [10; 11]. They do correlate,
however, if de�ned along any other set of axes, for example, along x, y, and z (the reference
axes of the structure). As shown in Figure 1, � denotes the orientation of the earthquake’s major
principal axis relative to structural axis x. De�ned as the incident angle of the ground motion, �
in the counter-clockwise direction is taken to be positive.

2.2. Structural response-incident angle relation

The peak response of a structure to a single component of ground motion applied along one of
the structure axes is commonly evaluated using the response spectrum method. Accounting for
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Figure 1. De�nition of principal axes of ground motion, structural axes, and � in the horizontal plane.

the correlation among ground motion components mentioned above, these individual responses are
combined using the CQC3 rule to obtain the mean peak value r(�) of the total response [6–8],
where r is a speci�c response quantity that can be expressed as a linear function of the nodal
displacements of the structure

r(�)= {[r2x + (ry)2] cos2 �+ [(rx)2 + r2y] sin2 �+ 2(1− 2)rxy sin � cos �+ r2z }1=2 (1)

where rx and ry are the mean peak values of response quantity r due to a single component of
ground motion de�ned by the spectrum A(Tn) applied �rst along the x-direction and then along the
y-direction, respectively; and rz is the mean peak value of r due the vertical component of ground
motion de�ned by the spectrum Az(Tn). The peak response, rk (k = x; y; z), to these individual
components of ground motion is given by the CQC combination rule [12]

rk =

{∑
i

∑
j
�ijrkirkj

}1=2
(2)

where rki is the peak response due to the ith natural mode of vibration, and �ij is the modal
correlation coe�cient for modes i and j. The term rxy in Equation (1) is a cross-term of the modal
responses that contribute to rx and ry:

rxy =
∑
i

∑
j
�ijrxiryj (3)

Equations (2) and (3) can be written in terms of the modal static responses [13] as follows:

rk =

{∑
i

∑
j
�ijrstkir

st
kj Aki Akj

}1=2
rxy =

∑
i

∑
j
�ijrstxir

st
yj Axi Ayj (4)

where Aki is the spectral acceleration for the ith mode, k = x, y and z, and rstki is the ith modal
static response associated with ground motion in the kth direction.

2.3. SRSS response

If the principal components of ground acceleration are applied along the structural axes, the response
is given using Equation (1) with �=0◦ when the major principal component is oriented in the
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x-direction, and Equation (1) with �=90◦ when the major principal component is oriented in the
y-direction. Therefore,

r(�=0◦)= {r2x + (ry)2 + r2z }1=2; r(�=90◦)= {(rx)2 + r2y + r2z }1=2 (5)

These equations represent the SRSS combination of responses to the individual components of
ground motion. Here, the larger of these two response values will be de�ned as the SRSS response,
rsrss:

rsrss = max[r(�=0◦); r(�=90◦)] (6)

2.4. The cross-term rxy and correlation coe�cient �

If the principal components of ground motion coincide with the structural axes, i.e. the incident
angle is �=0 or 90◦, the total response is given by Equation (5) (the SRSS rule) by combining
uncorrelated responses to the three uncorrelated components of ground motion. For other values of
�, the responses are correlated, as indicated by the term containing rxy in Equation (1). Observing
the structure of Equation (3) for rxy and Equation (2) for rx and ry, it is apparent that rxy measures
the correlation between responses rx and ry to ground motions that are perfectly correlated.
The correlation coe�cient � for responses rx and ry is de�ned as

�=
rxy
rxry

(7)

which is de�ned for rx 6=0 and ry 6=0. For any structure and any spectral shape, � is bounded as
follows (see Appendix A):

−16 �6 1 (8)

The limiting values of �, 0 and ±1, denote that responses rx and ry (to perfectly correlated ground
motions) are uncorrelated and perfectly correlated, respectively.

2.5. Critical angles

Because the value of � may not be known, it is prudent to design for that value of � that gives
the largest response. Di�erentiating Equation (1) with respect to � and setting the derivative equal
to zero gives the critical values of the incident angle [6–8].

�cr =
1
2
tan−1

[
2rxy
r2x − r2y

]
(9)

Equation (9) leads to two values of � between 0 and 180◦, separated by 90◦, which give the
maximum (rmax) and minimum (rmin) response values. Note that the critical values of � are in-
dependent of the intensity ratio  between the horizontal components of ground motion and are
not inuenced by the vertical component; in particular, �cr is the same whether the ground motion
contains one horizontal component or two components. For the special case of =1 (i.e. two
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equally intense horizontal components of ground motion), Equation (1) indicates that the response
is independent of the incident angle.
Equation (9) can be rewritten in terms of two dimensionless parameters, � and �:

tan(2�cr)=
2��
1− �2 (10)

where the response correlation coe�cient � is given by Equation (7), and � is a positive parameter
de�ned as the ratio of responses ry and rx:

�=
ry
rx

(11)

Observe that �cr = 0◦ if either one of � or � is equal to zero; if �=1, �cr = 45 or 135◦, depending
on the sign + or −, respectively, of the correlation coe�cient �.

2.6. Explicit formula for the critical response

To determine rmax and rmin, the maximum and the minimum values of r(�) in Equation (1),
usually the two numerical values of �cr determined from Equation (9) are substituted for �. We
can, however, derive explicit equations for rmax and rmin by recognizing that they represent the
combined response to three components of ground motion acting in directions 1, 2 and z, with
�= �cr, as shown in Figure 1. If the responses to these uncorrelated individual components of
ground motion are denoted by r1; r2 and rz, respectively, the combined response is given by the
SRSS rule

rmax = {r21 + (r2)2 + r2z }1=2; rmin = {(r1)2 + r22 + r2z }1=2 (12)

To determine r1 and r2, we specialize Equation (1) for a single horizontal component of ground
motion by substituting =0, delete the response to the vertical component, and substitute for
sin(�cr) and cos(�cr) determined from Equation (9). The result is similar to the equations for
principal stresses found in textbooks in mechanics:

r1;2 =



r2x + r

2
y

2
±

√√√√( r2x − r2y
2

)2
+ r2xy



1=2

(13)

Finally, by substituting Equation (13) into Equation (12), we obtain the critical response rcr:

rcr = rmax =


(1 + 2)

(
r2x + r

2
y

2

)
+ (1− 2)

√√√√( r2x − r2y
2

)2
+ r2xy + r

2
z



1=2

: (14)

The explicit formula given by Equation (14) is convenient for design purposes, especially code
applications, because it avoids computation of the two critical angles, as required in previous works
[6–8], and provides a rational basis to determine the critical response from rx, ry, and rxy. The �rst
two represent responses to an individual component of ground motion applied along the x- and
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Figure 2. Ratio of critical and SRSS values of response as a function of  for selected values of � and �.

the y-axis of the structure, respectively, responses that are commonly evaluated by the response
spectrum method; rxy is a measure of correlation between responses rx and ry. In addition, Equation
(14) is not computationally demanding, requiring calculation of rstki , Aki, and �ij, which are readily
available if the conventional CQC modal combination rule is implemented in the dynamic analysis
software to calculate rx and ry.

2.7. Bounds for the critical response

The ratio of the critical response due to horizontal ground motion, Equation (14) with rz =0, and
the response from SRSS analysis (Equations (5) and (6)), is given by

rcr
rsrss

=

{
(1 + 2)((1 + �2)=2) + (1− 2)

√
((1− �2)=2)2 + (��)2

1 + (�)2 or 2 + �2

}1=2
(15)

wherein the denominator has two alternatives expressions: the �rst is valid if r(�=0◦)¿ r(�=90◦),
implying that rx ¿ ry or �6 1; the second applies if r(�=0◦)6 r(�=90◦), implying that rx 6 ry
or � ¿ 1. Note that the ratio rcr=rsrss depends on dimensionless parameters �; �, and . It can be
shown that rcr=rsrss is identical for � values that are reciprocal to each other.
Figure 2 plots Equation (16) as a function of correlation coe�cient � for several values of �

and four values of : as the spectrum intensity ratio  increases, we would expect rsrss and rcr to
increase, however, rcr=rsrss decreases. For =1, rcr=rsrss = 1, independent of � and �, implying that
the SRSS analysis is correct only if both horizontal components of ground motion have the same
intensity. For �xed values of ¡1 and �, the response ratio rcr=rsrss is largest at �= ±1, i.e. when
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Figure 3. Upperbound for the ratio of critical and SRSS values of response as a
function of the spectrum intensity ratio .

responses rx and ry are perfectly correlated. Among all values of �, rcr=rsrss is largest for �=1, i.e.
rx = ry. For �=0, rcr=rsrss = 1, independent of � and , implying that the SRSS analysis is correct
if responses rx and ry are uncorrelated. For a �xed value of , rcr=rsrss is largest when �= ± 1 and
�=1, simultaneously; the latter condition implies that �cr = 45 or 135◦.
The critical response is bounded as follows (see Appendix B):

rsrss 6 rcr 6 rsrss

√
2

1 + 2
(16)

Plotted as a function of  (see Figure 3), the upper bound value, (rcr=rsrss)max, has values
√
2, 1.26,

1.13, and 1.08 for =0, 0.5, 0.75, and 0.85, respectively, implying that the critical response value
does not exceed

√
2 times the resut of the SRSS analysis [14]. For typical values of the spectrum

intensity ratio , say 0.75, this ratio is 1.13. Equation (16) and the resulting conclusions are valid
for any structure and any spectral shape A(Tn).

3. ONE-STOREY SYMMETRICAL-PLAN BUILDINGS

3.1. System and ground motion

Consider an idealized one-storey system with a rigid square slab of mass m supported on four
massless columns clamped at the slab and at the base (Figure 4). The height of the columns is
0.4 times the bay length, L. The �rst natural vibration mode involves uncoupled motion in the
x-direction at period Tx, and the second mode describes uncoupled motion in the y-direction at
period Ty. The damping ratio � is assumed to be 5 per cent in both modes.
The ground motion consists of two horizontal components. The major principal component is

de�ned by the pseudo-acceleration design spectrum [15] shown in Figure 5, for peak ground accel-
eration, velocity, and displacement equal to 0:5 g, 24 in=s and 18 in, respectively, 84.1 percentile
response and 5 per cent damping. The intermediate principal component of ground motion is de�ned
by  times the spectrum shown in Figure 5.
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Figure 4. One-storey square building with four columns.

Figure 5. Pseudo-acceleration design spectrum.

3.2. Structural response

By specializing Equation (4) for the system depicted in Figure 4, and recognizing that only the
�rst mode contributes to rx and only the second mode to ry, we obtain

rx = |rstx1|Ax1; ry = |rsty2|Ay2; rxy = �12rstx1r
st
y2Ax1Ay2 (17)

Substituting Equation (17) into Equations (7) and (11), gives � and � for the system shown in
Figure 4:

�= �12 sign

(
rsty2
rstx1

)
; �=

∣∣∣∣∣ r
st
y2

rstx1

∣∣∣∣∣ Ay2Ax1 (18)

where the notation “sign” means that � is positive if rstx1 and r
st
y2 have the same algebraic sign and

is negative if the two algebraic signs are di�erent. The response correlation coe�cient � is simply
the modal correlation coe�cient �12, but with a positive or negative sign.
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Table I. Modal static responses, response correlation coe�cient and response ratio.

Response quantity rstx1 rsty2 � �

Vb m 0 Unde�ned 0
Na +0:1m +0:1m +�12 Ay2=Ax1
Nb −0:1m +0:1m −�12 Ay2=Ax1
Nc −0:1m −0:1m +�12 Ay2=Ax1
Nd +0:1m −0:1m −�12 Ay2=Ax1

Figure 6. Correlation coe�cient � for the axial force in four columns of the one-storey symmetrical building.

Figure 7. Response ratio � for the axial forces in four columns of the one-storey symmetrical building.

Table I shows the modal static responses, the response correlation coe�cient �, and the response
ratio � for selected response quantities: base shear Vb in the x-direction and axial forces Na, Nb,
Nc, and Nd in columns a, b, c, and d, respectively (Figure 4). Although not shown in Table I,
shear forces and bending moments along the x-direction in the columns, have the same � and �
values as for the base shear Vb.
The response correlation coe�cient � for the axial forces in columns a, b, c and d is plotted

against the period ratio Tx=Ty in Figure 6. This is the well-known modal correlation coe�cient
found in texbooks [13], but with a positive or negative sign depending upon the response quantity
being considered. Figure 6 con�rms the earlier result (Equation (8)) that � is bounded by −1
and 1; �= + 1 or −1 when Tx =Ty, i.e., the x- and y-vibration modes have identical vibration
periods. For the design spectrum of Figure 5, the response ratio � for the axial force in the four
columns (Table I) is plotted against the period ratio Tx=Ty in Figure 7, for three di�erent values
of Ty. Observe that �=1 if Tx =Ty, but may be larger or smaller than 1 depending on the values
of Tx=Ty and Ty.
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Figure 8. Variation of response with incident angle for several values of : (a) base shear in x-direction
for systems with Tx =0:5 s, (b) column axial force for systems with Tx = Ty = 0:5 s, (c) column axial

force for systems with Tx = Ty=3, Ty =0:5 s.

3.3. Variation of response with incident angle

The variation of Vb, normalized relative to the structural weight (w=mg) with �, is presented
in Figure 8(a) for systems with Tx =0:5 s and several values of . Because ry =0 and rxy =0
(Equation (17) and Table I), these results are not dependent on Ty. The value of rx is obtained
from Equation (17), Table I, and the design spectrum (Figure 5): rx =1:355w.
To interpret these results, Equation (1) is specialized whereby r is replaced by Vb=w:

Vb(�)
w

=
A(Tx)
g

√
cos2 �+ 2 sin2 � (19)

wherein for this system A(Tx)=g=1:355. Note in Figure 8(a), if both components of ground mo-
tion have the same intensity (=1), the x-base shear is independent of �; Equation (19) gives
Vb(�)= 1:355w. For a �xed �, the response increases as  increases, indicating increasing inten-
sity of the weaker component of ground motion, as intuition would suggest and illustrated by
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Equation (1). As we shall see later, these two observations apply to all response quantities, but
the following observations are restricted to Vb: for any value of ¡1, Vb is largest if �=0◦ and
smallest if �=90◦.
These observations can be explained easily: �=0◦ implies that the stronger component of ground

motion is applied along the x-direction, which clearly gives the maximum base shear in the x-
direction: Vb(�=0◦)= 1:355w (from Equation (19)); the weaker component of ground motion does
not contribute to the x-base shear. �=90◦ means that the weaker component of ground motion
is applied along the x-direction, which clearly gives the smallest base shear in the x-direction:
Vb(�=90◦)= 1:355w (from Equation (19)), with no contribution from the stronger component of
ground motion acting in the y-direction. For other values of �, both components of ground motion
contribute to Vb, which takes on intermediate values.
The variation of the axial force Na in column a, normalized relative to the structural weight with

�, is presented in Figure 8(b) for a system with identical periods Tx =Ty =0:5 s. For this response
quantity, rx ≡ Nax; ry ≡ Nay; and rxy ≡ Naxy are all non-zero and inuenced by both Tx and Ty.
For this system, Nax =Nay =0:1mA(Tx) (from Equation (17) and Table I), and �= + 1 and �=1
(from Equation (18) and Table I).
To interpret the results shown in Figure 8(b), we specialize Equation (1) by replacing r with

Na=w:

Na(�)
w

=
0:1A(Tx)

g
{(1 + 2) + 2(1− 2) sin � cos �}1=2 (20)

Observe in Figure 8(b) that the axial force for any angle � may be larger or smaller than the axial
force for �=0 or 90◦; because Nax =Nay; Na is the same for these two � values. The maximum
and the minimum values of Na occur for incident angles when �=45 and 135◦, respectively,
con�rming the earlier result for �= + 1 and �=1, as in this example.
The variation of Na with � can be explained as follows: consider �rst a single component of

ground motion, i.e. =0, in which case Equation (20) gives Na = 0:1355w for �=0 and 90◦,
Na = 0:1355w

√
2 for �=45◦, and Na = 0 for �=135◦. Ground motion in the x-direction (�=0◦)

excites only the x-mode of vibration, and the axial force is Na = 0:1355w. Similarly, ground mo-
tion in the y-direction (�=90◦) excites only the y-mode of vibration, and the axial force is
Na = 0:1355w.
Ground motion ug(t) along a diagonal (�=45◦) can be resolved using two components:

ug(t) cos 45◦ in the x-direction and ug(t) sin 45◦ in the y-direction. These resolved components
result in axial force Nax =(0:1355w) cos 45◦ and Nay =(0:1355w) sin 45◦, respectively. Because
the responses are perfectly correlated (�12 = 1), these two peak values occur simultaneously. Thus
the combined peak value becomes Na = (0:1355w) cos 45◦+(0:1355w) sin 45◦=0:192w: A parallel
development for �=135◦ leads to Na = (0:1355w) cos 135◦ + (0:1355w) sin 135◦=0; both results
are the same as obtained in Equation (20), shown in Figure 8(b).
Next, we consider two components of ground motion. As the intensity of the second component

increases, i.e.  increases, the response value increases for all values of �, consistent with intuition.
As discussed earlier, because the less intense component of ground motion along �=135◦ causes
no axial force, the response is una�ected by  if the incident angle is �=45◦.
The variation of the axial force Na in column a normalized relative to the structural weight

w with �, is presented in Figure 8(c) for a system with well-separated periods: Tx =0:167 s and
Ty =0:5 s. For this system, Nax =Nay =0:1355w (from Equation (17), Table I, and Figure 5); �=1
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Figure 9. Variation of structural response with Tx for several values of � and two values of . Parts (a) and
(b) show results for Vb=w; parts (c) and (d) are for Na=w.

and �12∼=0, hence Naxy∼=0 and �∼=0 (from Equation (18), Table I, and Figures 6 and 7). To interpret
the results shown in Figure 8(c), we specialize Equation (1) with r replaced by Na=w:

Na(�)
w

∼=0:1355
√
1 + 2 (21)

Observe in Figure 8(c) that the axial force is essentially independent of the incident angle �, which
is the case because for a system with well separated periods, Naxy =0 and Nax =Nay.

3.4. Variation of response with Tx

The peak value of Vb, normalized relative to the weight w, for systems with a �xed Ty =0:5 s is
plotted for =0 and 0.75 against Tx in Figures 9(a) and 9(b). For �=0◦, the plot is identical to
the design spectrum shown in Figure 5; for other values of �, the plot appears to be multiplied by a
�-dependent factor that is less than one. In Equation (19) this factor is equal to one for �=0◦ and
 for �=90◦, and takes on values between one and  for other values of �. This simple variation
of Vb with Tx is because the x-base shear due to ground motion in the y-direction is zero.
The variation of Na with Tx shown in Figures 9(c)–(d) is more complicated because it is a�ected

by ground motion in both x- and y-directions. These results permit several observations. If �=0◦,
the variation of Na=w with Tx is identical to the design spectrum, except for a scale factor that
is dependent on the spectrum intensity ratio, as suggested by Equation (20). For other values of
�, the variation of Na=w with Tx is more complicated and is dependent on the values of � and
, reaching a peak when Tx =Ty, the largest being when �=45◦; reasons for these trends were
identi�ed in the preceding section.
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Figure 10. Variation of the ratio of critical and SRSS responses and critical angle with Tx=Ty for the axial force
in column “a” of the one-storey symmetrical building; Ty =0:5 s.

For values of � di�erent than 45◦, increasing the value of  smoothes the di�erences between
the axial force at each angle �, although signi�cant di�erences remain when =0:75 as shown in
Figure 9(d). For the limit case of =1, the responses are independent of �.

3.5. Critical response and critical angle

Next, the ratio rcr=rsrss of the critical response and the response from the SRSS analysis (Equation
(15)), and the critical angle (Equation (10)) are examined for two response quantities: base shear
Vb in the x-direction and axial force Na in column a. For the x-base shear, this ratio is always
equal to one and the critical angle is zero. Such is the case because the x-base shear is not a�ected
by the y-component of ground motion; ry = �=0, as shown in Table I.
The above-mentioned results for the axial force in column a are presented in Figure 10 for a

one-storey system with �xed Ty =0:5 s and Tx over a range of values. As the spectrum intensity
ratio  increases, we expect rsrss and rcr to increase, however rcr=rsrss decreases.
The SRSS analysis gives the correct critical response if the vibration periods, Tx and Ty, are

well separated, because the responses rx and ry are then essentially uncorrelated. The ratio rc=rsrss
is largest for systems with Tx =Ty, as this condition implies that responses rx and ry are perfectly
correlated; the largest value of rc=rsrss is equal to the upperbound in Equation (16) and Figure 3.
Thus the discrepancy between rsrss and rcr may be signi�cant for systems with closely spaced
periods of vibration and smaller values of the spectrum intensity ratio.
The critical angle of incidence depends on the period ratio Tx=Ty, but not on the spectrum in-

tensity ratio. It varies between 45 and 90◦, as shown in Figure 10(b). If Tx=Ty is much smaller or
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much larger than one, �cr is close to 90◦, implying that the response reaches its critical value when
the stronger component of horizontal ground motion is applied along the y-axis of the structure.
Such is the case because in this range of period ratios, �¿1 or ry¿rx for systems with Ty =0:5 s.
For systems where Tx=Ty is close to one, the critical angle is 45◦ for reasons identi�ed in the
preceding section.

4. ONE-STOREY UNSYMMETRICAL-PLAN BUILDINGS

4.1. System and ground motion

Consider an idealized one-storey unsymmetrical-plan building with a rigid slab supported by any
number of lateral resisting elements oriented along directions x and y (Figure 11). The system has
three degrees of freedom: translations of the centre of mass (CM) along x- and y-directions and
rotation of the slab about a vertical axis passing through the CM. The eccentricity of the centre
of rigidity CR relative to CM is given by distances ex and ey (Figure 11); ex=r and ey=r are the
normalized eccentricities, where r is the radius of gyration of the oor about the vertical axis passing
through the CM. A 5 per cent damping ratio is assumed for each of the three vibration modes.
Introduced for reference purposes, Tx, Ty and T� are the vibration periods of the corresponding
symmetrical-plan (or torsionally uncoupled) system with ex = ey =0, but the mass and x-, y-, and
�-sti�nesses are identical to the coupled system.
The major and the intermediate principal components of ground motion are de�ned by A(Tn) and

A(Tn), respectively, applied at incident angle � (Figure 11), where A(Tn) is the design spectrum
of Figure 5. No vertical ground motion is considered.

4.2. Critical response of one-way unsymmetrical systems

Consider �rst a system with mass and sti�ness properties symmetrical about the y-axis (ex=r=0)
but unsymmetrical about the x-axis with ey=r=0:3. Its uncoupled vibration periods are de�ned
as follows: Ty =0:66 s (the intersection of the constant and hyperbolic branches of the design
spectrum); Tx and T� are varied, but Tx=T�=1. Ground motion in the x-direction excites the two
natural vibration modes (periods T1 and T2) that contain coupled x-lateral and torsional motion.
Ground motion in the y-direction excites only the mode (period T3) that describes uncoupled motion
in the y-lateral direction. The periods of the three natural vibration modes are plotted against Tx=Ty
in Figure 12(a).
We will study the edge displacement of the system in the y-direction (dx=r=1:225 for a square

plan) due to a single component (=0) of ground motion acting at an arbitrary angle �, which is
characterized by the design spectrum shown in Figure 5. For this response quantity, the correlation
coe�cient � (Equation (7)), the response ratio � (Equation (11)), the critical angle �cr (Equa-
tion (10)), and the critical response rcr (Equation (14)) are computed and plotted as a function of
the uncoupled period ratio Tx=Ty. The response has been normalized relative to the displacement of
the corresponding symmetric system, which is given by A(Ty)÷ (2�=Ty)2 = 14:67 cm. Also plotted
are the response values r (�=0◦) and r (�=90◦), Equation (15), for the two special cases of
ground motion applied in the x-direction (�=0◦) and in the y-direction (�=90◦), respectively. The
latter response is independent of Tx=Ty because the response to ground motion in the y-direction,
the axis of symmetry, is independent of Tx and Ty is �xed. For �=0◦, the displacement increases
as Tx becomes larger.

Copyright ? 2000 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2000; 29:1759–1778



CRITICAL RESPONSE OF STRUCTURES 1773

Figure 11. One-storey unsymmetric building.

For the cases when Tx=Ty� 1 or � 1, the periods T1 and T2 are well separated from T3 (Figure
12(a)), the correlation coe�cient � approaches zero (Figure 12(b)), the critical angle �cr approaches
90◦ when Tx=Ty� 1 and 0◦ when Tx=Ty� 1 (Figure 12(c)), and the critical response rcr approaches
r (�=90◦) for Tx=Ty� 1 and r (�=0◦) when Tx=Ty� 1 (Figure 12(d)). These results can be
explained as follows: when Tx=Ty� 1, �¿1 (Figure 12(b)), which implies ry is much larger than
rx, therefore the response is the largest when the ground motion is applied in the y-direction. The
opposite situation occurs when Tx=Ty� 1, where �¡1 (Figure 12(b)), implying that rx is much
larger than ry; therefore the response is largest when the ground motion is applied in the x-direction.
For systems with Tx =Ty, �=0 (Figure 12(b)); thus based on Figure 2, it would be expected that
rcr=rsrss = 1. This is con�rmed by the results shown later in Figure 13(a).
On the contrary, observe that when one of the natural vibration periods, T1 or T2, is equal to

vibration period T3 in Figure 12(a), the correlation coe�cient � is close to −1 or +1, respectively,
� tends to 1 (Figure 12(b)), the critical angle is close to 135 or 45◦, respectively (Figure 12(c)),
and the critical response rcr (Figure 12(d)) has two peaks that exceed the two responses r (�=0◦)
and r (�=90◦). This observation can be explained as follows: When T1 or T2 is equal to T3, the
correlation between the modal responses increases, therefore the cross term rxy and the correlation
coe�cient � increases; T1 =T3 implies that Tx=Ty =0:85, and T2 =T3 occurs at Tx=Ty =1:15, which
de�ne the two peaks in the critical response values shown in Figure 12(d). In addition, the pa-
rameter � is close to 1 in the same period range. Thus, as pointed out previously in Figure 2, the
simultaneity of � approaching 1 and � approaching −1 or +1 leads to an increase in the critical
response with respect to the responses r (�=0◦) and r (�=90◦), as con�rmed by the results
shown in Figure 12(d).

4.3. Critical response of unsymmetric systems

The ratio of the critical value of the response to its SRSS value, rcr=rsrss, is computed from Equation
(15) and plotted against the period ratio Tx=Ty in Figure 13. This �gure is organized in three parts
to show (a) the e�ect of the spectrum intensity ratio , for ex=r=0, ey=r=0:3 and Tx=T�=1;
(b) the e�ect of Tx=T�, for ex=r=0, ey=r=0:3 and =0; and (c) the e�ect of the eccentricity
ex=r, for Tx=T�=1, ey=r=0:3 and =0. The system presented in Figure 13(a) is the same one-
way, unsymmetrical system subjected to a single ground motion component that was presented
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Figure 12. (a) Natural vibration periods, (b) parameters � and �, (c) critical angle, and (d) normalized
response for a one-way unsymmetrical building.

previously in Figure 12. The largest value of rcr=rsrss is 1.24 when =0 and Tx=Ty =1:15. When
=0:5 and 0.75, the largest value of rcr=rsrss is reduced to 1.15 and 1.08, respectively.
Varying Tx=T� (Figure 13(b)) leads to a decrease or increase in rcr=rsrss, depending on the period

ratio Tx=Ty; rcr=rsrss is largest for systems when Tx=T�=1 and Tx=Ty =1:15. Similarly, varying the
eccentricity ex=r (Figure 13(c)) may lead to an increase or a decrease in the values of rcr=rsrss,
depending on Tx=Ty; rcr=rsrss is largest for systems when ex=r=0 and Tx=Ty =1:15. For all sys-
tems considered herein, the largest value of rcr=rsrss is 1.24, corresponding to ex=r=0, ey=r=0:3,
Tx=T�=1, and Tx=Ty =1:15, when the excitation is a single seismic component (=0). For more
realistic values of the spectrum intensity ratio , such as 0.75, the largest value of rcr=rsrss is 1.08;

Copyright ? 2000 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2000; 29:1759–1778



CRITICAL RESPONSE OF STRUCTURES 1775

Figure 13. Ratio of critical and SRSS responses: (a) E�ect of  (ex=r=0, ey=r=0:3, Tx=T�=1), (b) e�ect of
Tx=T� (ex=r=0, ey=r=0:3, =0), (c) e�ect of ex=r (ey=r=0:3, Tx=T�=1, =0).

these values are below the upperbound values presented in Figure 3. Results not presented here
indicate that rcr=rsrss = 1:12 when =0:75 for the displacement of some resisting elements of a
building with a rectangular plan and an aspect ratio of 4.

5. CONCLUSIONS

1. An explicit formula has been derived to calculate the critical values of structural response
to two principal components of horizontal ground motion acting along any incident angle and the
vertical component of ground motion; the critical response is de�ned as the largest value of response
for all possible incident angles. Using this formula, the critical value can be computed from the
responses to single components of ground motion applied separately along the three structural
axes and the correlation between these responses. This explicit formula is convenient for design
purposes, especially code applications, because it avoids computation of the critical incident angle.
2. The ratio between the critical value of response and the SRSS response—corresponding to the

principal components of ground acceleration applied along the structural axes—depends on three
dimensionless parameters: the spectrum intensity ratio  between the two principal components
of horizontal ground motion characterized by design spectra A(Tn) and A(Tn); the correlation
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coe�cient � of responses rx and ry due to design spectrum A(Tn) applied in the x- and y-directions,
respectively; and �= ry=rx.
3. The ratio rcr=rsrss is bounded by 1 and [2=(1 + 2)]1=2, for any structure and spectral shape

under the assumption that both horizontal spectra have the same shape. Thus the largest value of
this ratio is

√
2,1.26, 1.13, and 1.08 for =0, 0.5, 0.75 and 0.85, respectively, implying that the

critical response is 1.13 times the SRSS response for typical values of the spectrum intensity ratio,
say 0.75; and never exceeds

√
2 times the SRSS response. The SRSS analysis gives the correct

critical response only if =1, i.e. the two principal components of horizontal ground motion have
the same intensity, or if responses rx and ry are uncorrelated.
4. The correlation coe�cient � depends on the structural properties, but is always bounded

between −1 and 1 for any structure and spectral shape. For example, �=1 or −1 for some
responses of one-storey symmetrical buildings with identical vibration periods along the axes of
symmetry. Or, � is close to +1 or −1 for some responses of one-storey unsymmetrical buildings
if the vibration period of the mode with the largest contribution in the response to ground motion
in the x-direction coincides with the vibration period of the mode with largest contribution in the
response to ground motion in the y-direction.
5. For a �xed value of , the ratio rcr=rsrss is largest if �=1 and �= ± 1. The parametric

variations presented for one-storey buildings indicate that this condition can be satis�ed by axial
forces in columns of symmetrical buildings or can be approximated by lateral displacements in
resisting elements of unsymmetrical buildings.
6. The incident angle of the ground motion for which a structural response quantity is largest,

may de�ne any direction in the horizontal plane, depending upon the system properties, the location
of the system natural periods on the spectrum being considered, and the shape of the spectrum;
however, rcr=rsrss is largest when the incident angle is either 45 or 135◦.

APPENDIX A: BOUNDS FOR THE RESPONSE CORRELATION COEFFICIENT �

The cross term rxy and the response correlation coe�cient � are de�ned by Equations (3) and (7),
respectively. First we recognize that any set of peak modal responses to seismic motion in a given
direction, satisfy the following inequality:∑

i

∑
j
�ijrirj ¿ 0 (A1)

From Equation (2), specialized for k = x and y, we can write

r2x =
∑
i

∑
j
�ijrxirxj; r2y =

∑
i

∑
j
�ijryiryj (A2)

De�ning Rxi= rxi=rx and Ryi= ryi=ry and using Equation (A2), we note that∑
i

∑
j
�ijRxiRxj =

∑
i

∑
j
�ijRyiRyj =1 (A3)

Let ui and vi be two modal responses de�ned as

ui=Rxi + Ryi; vi=Rxi − Ryi (A4)

Then, according to Equation (A1) we can write∑
i

∑
j
�ijuiuj ¿ 0 and

∑
i

∑
j
�ijvivj ¿ 0 (A5)
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By substituting Equations (A4) into Equations (A5), and using Equations (A3), (3) and (7), it can
be shown that

∑
i

∑
j
�ijuiuj =2 + 2

∑
i

∑
j �ijrxiryj
rxry

=2 + 2� (A6)

∑
i

∑
j
�ijvivj =2− 2

∑
i

∑
j �ijrxiryj
rxry

=2− 2� (A7)

From Equations (A5), (A6) and (A7), we can write

2 + 2�¿ 0; 2− 2�¿ 0 (A8)

Finally, from Equations (A8) we conclude that

−16 �6 1 (A9)

Hence the correlation coe�cient is bounded between −1 and +1. This result is valid for any struc-
ture and any spectral shape, under the assumption that both horizontal spectra have the same shape.

APPENDIX B: BOUNDS FOR THE CRITICAL RESPONSE

Consider structural response to two principal components of horizontal ground motion acting along
any incident angle �, relative to the structural axes. The critical response rcr, de�ned as the max-
imum response considering all possible incident angles �, is given by Equation (14). Also, the
SRSS response rsrss was de�ned as the larger of the two responses for �=0 and 90◦. Obviously,

rcr ¿ rsrss (B1)

From Equation (14) we note that rcr = rsrss only if rxy =0 (i.e. the correlation coe�cient �=0).
Now, from Equation (1), we can write

r(�; =1)= (r2x + r
2
y )
1=2 (B2)

Note that the right-hand term is independent of � and hence equal to the critical response. For any
other value of , the critical response will be smaller. Thus,

r2cr 6 r2x + r
2
y (B3)

Furthermore, from Equation (14) it can be noted that r2cr = r
2
x +r

2
y only when rxy = rxry (i.e. |�|=1).

Let’s assume that rsrss is de�ned by the response r(�=0◦)= (r2x + 
2r2y )

1=2 (Equation (5)). Then,
Equation (B3) can be written as

r2cr 6 (r2x + 
2r2y )

(r2x + r
2
y )

(r2x + 2r2y )
(B4)

or

r2cr 6 rsrss
(r2x + r

2
y )

(r2x + 2r2y )
(B5)
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which, by using the de�nitions of � and � (Equations (7) and (11)), becomes

r2cr 6 r2srss
(1 + �2)
(1 + �22)

(B6)

The function (1+�2)=(1+�22) in Equation (B6) is an increasing function of � with a maximum
at �=1. Hence, Equation (B6) can be rewritten as

r2cr 6 r2srss
2

(1 + 2)
(B7)

If we had assumed that rsrss was de�ned by the response r(�=90◦)= (2r2x + r
2
y )
1=2 (Equation (5)),

following a similar procedure it is easy to show that the same Equation (B7) is obtained.
Finally, using Equations (B1) and (B7), the lower and upper bounds of the critical response are

rsrss 6 rcr 6 rsrss

√
2

1 + 2
(B8)

where the lower bound is reached if the correlation coe�cient �=0 and the upperbound if
|�|= �=1.
It should be noted that these results are valid for any structure and any spectral shape, under

the assumption that both horizontal spectra have the same shape.
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