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Abstract

This paper describes the modeling of the biaxial bending of RC frames within a new framework called lumped damage mechanics
(LDM). In this alternative approach, the models are based on the methods of fracture mechanics and the concept of plastic hinge.
LDM can be considered as a branch of fracture mechanics for framed structures. LDM integrates concepts such as plastic hinge,
damage variable, energy release rate, deformation equivalence hypothesis and RC standard theory. In order to validate the model,
some numerical simulations of tests reported in the literature are presented. A good agreement between tests and model can be
observed. 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Very often, the structures are subjected to outstanding
loads, such as earthquakes and impacts. Evaluation or
prediction of structural damage in such cases is very
important for the structural engineer.

The linear elastic fracture mechanics theory accepts
the existence of cracks that can grow even in elastic
media. In this theory, the crack propagation is described
through the Griffith criterion. The theory validity relies
on small area crack over structure size rate.

On the other hand, the damage introduced by con-
tinuum damage theory characterizes the microcracks and
microvoids surface density. However, it is not evident
how fracture mechanics or continuum damage theories
can be used in many real engineering applications. The
structure representation as a three-dimensional solid and
the estimation of the damage in it, is a very expensive
and cumbersome procedure.

This paper describes the modeling of the biaxial bend-
ing of RC frames within a new framework called lumped
damage mechanics (LDM). In this alternative approach,
the models are based on the methods of fracture and
damage mechanics and the concept of plastic hinge.
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0141-0296/02/$ - see front matter 2002 Elsevier Science Ltd. All rights reserved.
PII: S0141-0296 (02)00044-5

LDM can be considered as a branch of fracture mech-
anics for framed structures. This general approach has
been described in some previously published papers [1–
5], two of them appeared in this journal [6,7]. Other
works, using the same general framework, have also
been independently reported by researchers from two
European Universities [8,9].

The use of LDM for RC members allows for the rep-
resentation of a very complex behavior that includes
stiffness and strength degradation, variable axial loads,
crack closure effects and pinching. This framework per-
mits the analysis of complicated frames using few
elements. The structural and damage analysis are
coupled and the modeling is carried out in a more
rational and physically sound way.

However, all the aforementioned references con-
sidered only the case of planar frames. It is clear that any
realistic representation of the behavior of RC structures
should include three-dimensional aspects. This paper
deals with the modeling of RC frame members under
compression and biaxial bending. It is shown that the
same basic concepts of the planar frames can be straight-
forwardly extended to the biaxial case. The result is a
conceptually simple model and nevertheless accurate
enough for engineering purposes.

So far, it seems that the main direct approach to the
problem is the use of finite elements, specially those
models that discretize the member as set of fibers charac-
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terized by some kind of uniaxial constitutive law.
Another strategy, a simplification of the FE approach,
has been proposed by Lai and Will [10]. This approach,
called ‘ triaxial spring model’ , consists of a linear elastic
element between two inelastic connections. Each con-
nection comprises a certain number of effective concrete
and steel springs. Uniaxial constitutive laws, made of a
series of straight lines, represent the behavior of the
springs. The model is able to represent biaxial bending
with stiffness degradation and variable axial load. Takis-
awa and Aoyama [11] proposed the use of a biaxial tri-
linear model. In the biaxial moment space the model
consists of two elliptical surfaces that represent a crack-
ing surface and a yielding surface. Both surfaces can
exhibit isotropic hardening as in the conventional plas-
ticity theory. This model can also represent biaxial bend-
ing and stiffness degradation.

The model proposed in this paper is radically different
since none of the above includes concepts of fracture
mechanics. Taking into account that stiffness degra-
dation is mainly due to concrete cracking, it seems useful
to explore this alternative.

2. Variables definition

2.1. Generalized stresses and deformations

Let us consider a three-dimensional RC frame. A
member of the structure, between the nodes i and j, is
isolated. A set of coordinate axes is chosen so that the
directions Y and Z are the principal axes of the cross-
section and X coincides with the neutral line of the mem-
ber.

The matrix �T � (fiy, fjy, d, fiz, fjz, fx) contains the
generalized deformations of the member. The meaning
of the elements of � is indicated in Fig. 1.

It can be noticed that fiy and fjy are flexural rotations
of the tangents to the member with respect to the chord
i–j, in the XZ plane; while fiz and fjz are flexural
rotations in the XY plane; d represents the elongation of
the chord and fx is a torsional rotation

If � � 0, there is no change of shape of the frame
member and vice versa. In general, in a rigid body

Fig. 1. Generalized deformations in a three-dimensional frame member.

rotation or displacement of the member the generalized
deformation matrix is nil.

Another matrix, denoted by MT �
(miy, mjy, n, miz, mjz, mx), represents the generalized

stresses of the member. The meaning of the elements of
M is indicated in Fig. 2.

It can be noticed that miy and mjy are flexural moments
in the XZ plane; the moments miz and mjz act in the XY
plane; n is the axial force and mx the torsional moment.

The matrices M and � are conjugated with respect to
the mechanical work on the frame member.

2.2. Plastic rotations

The inelastic behavior of the member is described
with the help of the conventional lumped inelasticity rep-
resentation that assumes all inelastic phenomena are con-
centrated in hinges. These hinges are located at the ends
i and j of the member (Fig. 3). It is assumed in this
paper that the permanent elongation of the chord and
the plastic torsional rotation are negligible. Therefore,
a generalized plastic deformations matrix is defined as
follows: �T

p � (fp
iy, fp

jy, 0, fp
iz, fp

jz, 0), where the non-nil
terms in the matrix �p are the plastic rotations of both
inelastic hinges, in the XZ and XY planes respectively.

In this work, it is assumed that plastic rotations in RC
frame members are mainly the consequence of reinforce-
ment yielding, while the inelastic phenomena associated
with concrete cracking may be represented by the dam-
age variables that are introduced in the next section.

2.3. Damage in a member under biaxial bending

Two additional sets of internal variables, called dam-
age, are introduced. They represent a generalization to

Fig. 2. Generalized stresses in a three-dimensional frame member.
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Fig. 3. Inelastic hinges in a frame member.

the biaxial bending case of a similar concept introduced
in the case of planar frames ([2,3]): D � �
(d �

iy ,d �
jy ,d �

iz ,d �
jz ) and D� � (d�

iy , d�
jy, d�

iz , d�
jz ). All those

damage parameters can take values between zero and
one, where zero represents a non-damaged hinge and one
a totally damaged hinge with no stiffness at all, i.e. a
totally damaged hinge behaves as internal hinges in elas-
tic frames.

The damage parameters with the superscript +
(respectively �) represent damage, i.e. concrete crack-
ing, due to positive (negative) moments as indicated in
Fig. 4. The parameters with subscripts iy characterize the
damage due to the moment miy and so on.

3. Damage model

3.1. Flexibility matrix and state law

The model proposed in this paper is described using
the notation of continuum mechanics, i.e. in terms of
state laws and evolution laws. A formal thermodynamic
formulation of models of damage lumped at inelastic
hinges can be found in Cipollina et al. [3] and will not
be discussed in this paper.

Fig. 4. Damage variables.

The state law that relates generalized stresses and
deformations can be expressed in the same way as in
the case of planar frames ([2,4]):

���p � F(D+)�M�+ � F(D�)�M�� (1)

where F is the flexibility matrix of the member and the
symbols �m� � and �m�� are the positive and negative
parts of the variable m, i.e.:

�m�+ � �m if m�0

0 otherwise
�m�� � �m if m�0

0 otherwise
(2)

As shown in the case of planar frames [4], the flexibility
matrix depends on the damage variables in the follow-
ing way:

F(D) � F0 � C(D) (3)

where F0 is the conventional elastic flexibility matrix, as
it can be found in text books of structural analysis, and
C(D) represents the additional flexibility that results
from concrete cracking.

The hinge flexibility term C(D) is a diagonal matrix
that is obtained by generalization of the case of planar
frames [2,4]:



1144 M.E. Marante, J. Flórez-López / Engineering Structures 24 (2002) 1141–1152

C+
11 �

d+
iyF0

11

1�d+
iy

; C�
11 �

d�
iyF0

11

1�d�
iy

; C+
22 �

d+
jyF0

22

1�d+
jy

;

C�
22 �

d�
jyF0

22

1�d�
jy

C+
33 � C�

33 � C+
66 � C�

66 � 0

C+
44 �

d+
izF0

44

1�d+
iz

; C�
44 �

d�
iz F0

44

1�d�
iz

; C+
55 �

d+
jzF0

55

1�d+
jz

C+
55 �

d+
jzF0

55

1�d+
jz

(4)

It can be noticed that the flexibility of the hinge increases
with damage evolution. In this way, stiffness degradation
due to concrete cracking is represented.

The state law (1) and the flexibility matrices are not
enough to analyze a frame or define a constitutive model
since additional sets of variables (plastic deformations
and damage) have been introduced. Equations that
describe the evolution of these internal variables must
be added and are introduced in the next sections.

3.2. The generalized Griffith criterion

In the case of planar frames [2], a generalized form
of the Griffith criterion was used to describe damage
evolution in a hinge. It is proposed in this paper to fol-
low the same approach in the biaxial case.

It is perhaps useful to recall that the classic Griffith
criterion, used in fracture mechanics, states that crack
propagation can occur only if the energy released upon
crack growth is high enough to provide the energy
required for that propagation. The Griffith criterion is
usually written in the following way:

G � R (5)

Where G is the energy release rate that is computed in
a continuum in the following way:

G � �
∂U∗

∂a
(6)

The symbol U∗ represents the complementary elastic
strain energy and a is the crack length (Fig. 5). The term

Fig. 5. Crack in a continuum.

R is called crack resistance and it is assumed to be a
material property, although it can depend on the crack
extension ([12]). If the energy release rate G is lower
than the crack resistance R, there is no crack propa-
gation.

In the case of a frame member, the complementary
strain energy can be determined from the state law (1)
giving:

U∗ �
1
2

�M�T
+F(D+)�M�+ �

1
2

�M�T
�F(D�)�M�� (7)

In the case of frames with lumped inelasticity, the dam-
age parameters represent, in a global way, the extension
of the member cracks. Therefore, four different energy
release rates can be obtained for each hinge of the frame
member. For instance, for the hinge i, the expressions
of the energy release rates are:

G+
iy � �

∂U∗

∂d+
iy

�
F0

11

2 ��miy�+

1�d+
iy
�2

;

G�
iy � �

∂U∗

∂d�
iy

�
F0

11

2 ��miy��

1�d�
iy
�2

G+
iz � �

∂U∗

∂d+
iz

�
F0

44

2 ��miz�+

1�d+
iz
�2

G�
iz � �

∂U∗

∂d�
iz

�
F0

44

2 ��miz��

1�d�
iz
�2

(8)

The explicit form of the crack resistance of an inelas-
tic hinge has been obtained on the basis of experimental
results [3]. It has been found [5], that the crack resistance
depends on the cross-member properties of the frame
member, the value of the damage variable and the axial
force. The procedure for the computation of the crack
resistance R is described in detail in Perdomo et al. [5]
and will not be discussed in this paper. Then, the gen-
eralized Griffith criterion for hinge i can be written as:

G+
iy � R(d+

iy;n); G�
iy � R(d�

iy;n);

G+
iz � R(d+

iz;n); G�
iz � R(d�

iz ;n)
(9)

As in the continuum mechanics case, the generalized
Griffith criterion states that there may be crack propa-
gation in a plane only if the corresponding energy release
rate keeps the value of the crack resistance term:

�ḋ+
iy � 0 if G+

iy � R(d+
iy) or Ġ+

iy � Ṙ(d+
iy)

ḋ+
iy � 0 if G+

iy � R(d+
iy) and Ġ+

iy � Ṙ(d+
iy)

(10)

where the dot over the damage, energy release rate and
crack resistance terms represents time derivatives.

It can be noticed that the value of damage variables
can only increase or be constant. The last condition in
the first line of (10) characterizes an elastic unloading.
It is therefore stated that there is no damage evolution
during elastic unloading whatever the value of the
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energy release rate. The last condition in the second line
of (10) asserts that the energy release rate can never be
greater than the crack resistance.

It can be noticed by inspection of (9) that the uncoup-
ling of the damage processes has been assumed, i.e. it
is assumed that the extension of the cracks due to
moments in the XY plane have no influence in the dam-
age evolution due to moments in the XZ plane and vice
versa. Probably, this assumption is only acceptable up
to some limited degree of cracking. However, this is the
simplest approach to biaxial damage and the numerical
examples carried out so far show that the uncoupling
hypothesis leads to reasonably good results, even in
cases with relatively high levels of damage. So far, the
necessity of a more sophisticated approach including
damage coupling has not been found.

3.3. Yield function

In the case of planar frames ([2,5]), the yield function
of a damaged hinge was obtained from the perfectly
plastic one by the consideration of two concepts: the
kinematic hardening idea and the deformation equival-
ence hypothesis. The same procedure can be followed
in the biaxial case. The function proposed by Bresler
[13] can be used as a starting point:

fi(M) � �max� �miy�+

M+
0y(n)

;
��miy�+

M�
0y(n) ��n (11)

� �max� �miz�+

M+
0z(n)

;
��miz�+

M�
0z(n) ��n�1

where M �
0y (n), M�

0y(n), M �
0z (n) and M�

0z(n) are the yield-
ing moments under loadings in the XZ and XY planes,
positive and negative. The parameter n depends on the
properties of the member cross-section.The surface
defined as fi � 0 represents, in the moments and axial
force space, the conventional interaction surface of the
classic RC theory [14] (Fig. 6).

The idea of kinematic hardening comes from the
theory of plasticity in continuum media and is used to
represent the Baushinger effect. This concept states that
during plastic evolution, the yield function does not
remain motionless in the stress space, as the perfectly
plastic one, but experiences a movement. Specifically, it
is assumed that the center of the interaction surface dis-
places following some evolution law. Therefore, the
yield function of a hinge with kinematic hardening is
obtained by substitution of the generalized stresses M
with the term M�X, where the matrix X represents the
position of the interaction surface center. The simplest
option is to assume that the position of the center is pro-
portional to the plastic rotations, then the matrix X is
given by:

X � (cyfp
iy,cyfp

jy,0,czfp
iz,czfp

jz,) (12)

Fig. 6. Interaction surface.

Where the terms ciy, cjy and so on are the proportionality
parameters that depend on the cross-member properties,
the sign of the moment and the axial force. Therefore
the yield function of a hinge with kinematic hardening,
but still without damage, becomes:

fi � [max� 1
M+

0y(n)
�miy�c+

y(n)fp
iy�+;

1
M�

0y(n)
��miy � c�

y (n)fp
iy�+�]v �

[max� 1
M+

0z

�miz�c+
z (n)fp

iz�+;

1
M�

0z

��miz � c�
z (n)fp

iz�+�]n�1

(13)

The hypothesis of deformation equivalence states that
the behavior of a damaged hinge can be described by
the same yield function of the intact one, if the moment
on the hinge is substituted by another variable called
effective moment. The effective moments on a biaxial
hinge can be obtained by the generalization of the planar
frames case ([2,5]):

m̄+
iy �

miy

1�d+
iy

; m̄�
iy �

miy

1�d�
iy

;

m̄+
iz �

miz

1�d+
iz

; m̄+
iz �

miz

1�d�
iz

(14)

After substitution of (14) into (13), the yield function of
a damaged hinge is finally obtained:
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fi � �max� 1
M+

0y(n)� miy

1�d+
iy

�c+
y(n)fp

iy	
+

;

1
M�

0y(n)��miy

1�d�
iy

� c�
y (n)fp

iy	
+
��n �

�max� 1
M+

0z
� miz

1�d+
iz

�c+
z (n)fp

iz	
+

;

1
M�

0z
��miz

1�d�
iz

� c�
z (n)fp

iz	
+
��n�1

(15)

There is no plastic rotation evolution in the hinge, if the
yield function fi takes negative values. It can be noticed
that the use of the deformation equivalence hypothesis
allows for the consideration of the strength degradation
effect, i.e. for higher values of damage, lower flexural
moments are needed to start the yielding of the hinge.

In the particular case of a monotonic loading with
moments in only one plane, for instance, positive
moments in the XZ plane, the yield function (15) can be
written as:

fi � � miy

1�d+
iy

�c+
y(n)fp

iy	
+

�M+
0y(n) (16)

It can be noticed that in such a case, the yield function
takes the form described in Perdomo et al. [5]. The
interpretation of the terms c �

y (n) and M �
0y (n) is, there-

fore, the same as indicated in that reference and, more
important, the procedure for the computation of those
parameters is also similar. The only difference is that
now, the procedure must be used four times for the deter-
mination of the constants c �

y (n), M �
0y (n), c�

y (n),
M�

0y(n), c �
z (n), M �

0z (n), c�
z (n) and M�

0z(n).

3.4. Plastic rotations evolution law

The yield function (15) determines when the plasticity
in a hinge becomes active. However, it does not indicate
how this plasticity takes place, specifically it does not
indicate the ratio between the plastic rotations
fp

iy and fp
iz. The plastic rotation evolution laws can be

obtained via the normality rule ([15]). This assumption
comes also from the theory of plasticity and states that
the rate of plastic deformations forms a vector normal
to the interaction function in the moment space (Fig. 7).

Therefore, the plastic rotations evolution law for hinge
i is:

ḟp
iy � l̇i

∂fi
∂miy

; ḟp
iz � l̇i

∂fi
∂miz

;

�l̇i � 0 if fi � 0 or ḟi � 0

l̇i � 0 if fi � 0 and ḟi � 0

(17)

Where the term li is called in the plasticity literature,
the plastic multiplier.

Fig. 7. Normality rule in plasticity.

The state law (1), the generalized Griffith criteria (10)
and the plastic rotation evolution law (17) for hinges i
and j, constitute a damage model for RC frame members
under biaxial bending.

4. Numerical examples

4.1. Biaxial tests by Bousias et al. [16]

Bousias et al. [16] carried out a complex experimental
program on the behavior of RC frame members under
biaxial bending. The specimens consisted of reinforced
concrete columns built as a cantilever into a heavily
reinforced foundation. The columns were subjected to
axial load and two lateral actions, in some cases in a
force-controlled mode, in the other cases in a stroke-
controlled way. The results of twelve of these tests are
reported in [16]. The results of the numerical simulation
of five of these tests are shown in the next sections.
Other simulations can be found in Marante [17].

4.2. Simulation of test S0

This is a conventional cyclic uniaxial test under con-
stant axial load. The loading path is shown in Fig. 8a.
It can be noticed that the test consisted of three
sequences of deflection cycles in only one lateral direc-
tion. Each sequence consists of 13 cycles, the first seven
have increasing amplitude and the next ones are decay-
ing cycles. The experimental results registered during
each sequence can be seen in Fig. 8b, d and f. The corre-
sponding numerical simulation is presented in Fig. 8c, e
and g. The good agreement between model and test can
be noticed. The simulation could have been improved
by the consideration of the low cycle fatigue effects as
indicated in Thomson et al. [18] and Picón [19].
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Fig. 8. Experimental results on a RC column after Bousias et al. [16] and numerical simulation: test S0.

The quality of the simulation always depends, as in
any model, on the parameters chosen for the particular
test under consideration. As indicated in the previous
sections, in this model, the parameters needed to com-
pute the crack resistance of the hinge are the cracking,
plastic and ultimate moment. All these values can be
computed using standard RC theory. However, errors of
10–15 % can be expected in such a case. In the simula-
tions presented in Fig. 8, the computed values of these
parameters were adjusted taking into account the experi-
mental results. That is the reason why the simulation is
so good. The results would not have been so good if the
computed parameters had been used without correction.

4.3. Simulation of test S1

In this test, uniaxial displacement cycles in pairs of
linearly increasing amplitude are alternately applied in
the two transverse directions (Fig. 9a). Fig. 9b shows the
hysteresis loops in both directions corresponding to the
experimental test.

As it can be observed, the hysteresis curves obtained
through experimental tests in both orthogonal directions
are almost identical. In Boussias et al. [16], it is indicated
that only a very slight stiffness degradation in the direc-
tion of subsequent loading due to the damage caused by
preceding cycle in the orthogonal direction was
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Fig. 9. Experimental results on a RC column after Bousias et al. [16] and numerical simulation: test S1.

observed. This observation appears to justify the hypoth-
esis of the uncoupling of the cracking processes in the
present model.

4.4. Simulation of test S3

This third simulation corresponds to a mixed con-
trolled test: displacement controlled in the Y-direction
and force controlled in the Z-direction. The constant
level of Z-force is gradually increased, while in the
orthogonal direction the same set of three deflection
cycles with linearly increasing amplitude is applied for
each level of the Y-force. The loading path is indicated
in Fig. 10a, experimental results in Fig. 10b and d, and
simulation in Fig. 10c and e.

4.5. Simulation of test S4

This test is similar to S3 except that the imposed force
in Z-direction changes sign at each sequence with the
repetition of three cycles of Y-displacement. The loading

path is indicated in Fig. 11a, experimental results in Fig.
11b and d and simulation in Fig. 11c and e.

4.6. Simulation of test S6

In this last example, nested butterfly shaped deflection
paths are imposed. In Bousias et al. [16], the loading of
the test is described in the following terms: the right-
hand half of the displacement path is a mirror image of
the left-hand half with respect to the origin, but is traced
in the opposite sense. More specifically, the Y-deflec-
tions increase uniaxially from zero up to point 1 (Fig.
12a), and are held constant while the Z-deflections
increase from zero up to a maximum value, equal to the
half of the currently applied Y-direction (point 2). Then,
the Y- and Z-deflections are simultaneously returned to
zero, and reversed up to the mirror image of point 2,
keeping their ratio constant (2:1). The deflections go
back to zero independently, first in the Z-direction (while
holding the Y-deflection constant up to the point 4) and
then uniaxially in the Y-direction to zero and beyond,
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Fig. 10. Experimental results on a RC column after Bousias et al. [16] and numerical simulation: test S3.

repeating the path at a larger size 1�2�3�4� and so on.
As can be observed, during some stages of the loading,
both displacements change simultaneously. Again, the
loading is indicated in Fig. 12a, experimental results in
Fig. 12b and d and simulation in Fig. 12c and e.

4.7. Influence of variable axial forces

As mentioned in previous sections, the crack resist-
ance and the yield functions depend on the level of the
axial force n. The influence of variations of the axial
force on the flexural damage evolution and the general
behavior of the frame member was discussed in Perdomo
et al. [5]. Although this analysis was carried out for the
planar frame case, the conclusions of that study are also
applicable in the present context. Fig. 13 was taken from

that paper and shows the numerical simulation results of
a rectangular column subjected to cyclic lateral loading
and constant axial force (Fig. 13b) and variable axial
force (Fig. 13c). In the latter case, the axial force was
increased for negative lateral displacements and
decreased for positive ones, as in the case of real col-
umns subjected to seismic loadings. It can be noticed
that the maximum lateral force of both signs differs sig-
nificantly. This is due exclusively to the variation of the
axial force since the cross-section of the column has a
symmetric reinforcement. This effect has been observed
experimentally as reported in Abrams [20].

In all the numerical simulations of biaxial behavior,
the axial load was assumed as constant since there is no
specific information on this matter in Bousias et al [16].
However, most probably the axial force fluctuated during
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Fig. 11. Experimental results on a RC column after Bousias et al. [16] and numerical simulation: test S4.

the test. This can be observed in Fig. 12d where for posi-
tive lateral displacements higher forces are observed
than for negative ones. In the simulation (Fig. 12e), this
effect could not be reproduced due to the lack of infor-
mation on the axial force fluctuation.

5. Final remarks and conclusions

It has been shown that LDM can be used to describe
the behavior of frame members under biaxial flexure and
axial load. LDM can be considered as a branch of frac-

ture mechanics, and integrates concepts such as plastic
hinge, damage variable (that is not the same thing as a
damage index), energy release rate, deformation equival-
ence hypothesis and RC standard theory.

In the proposed model, it is assumed that the damage
processes are uncoupled in both orthogonal directions.
This hypothesis seems to be justified though experi-
mental results. The damage-uncoupling hypothesis
allows the computation of the model parameters and the
crack resistance terms in a very simple way by consider-
ing four monotonic loadings. This is very important in
the case of real engineering applications.
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Fig. 12. Experimental results on a RC column after Bousias et al. [16] and numerical simulation: test S6.

Fig. 13. (a) Column under axial force and lateral displacements. (b) Response under constant axial force. (c) Response under variable axial force.

The resulting model is conceptually as simple as the
two-dimensional one and nevertheless gives good
enough results for engineering purposes.

The main purpose of the model is to describe in a

simple and effective way the behavior of RC frame
members. As concrete cracking is one of the main
phenomena that take place in the frame member during
flexure, the use of fracture mechanics concepts as well
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as those of standard RC theory has been adopted. As a
result a damage variable is needed and has been intro-
duced. However, the damage variable can also been used
as a damage index and a relationship with other currently
used indices can be established. This aspect of the dam-
age variable has not been discussed in the present paper
but some ideas can be found in Alarcón et al. [7].
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del colapso de pórticos planos. Rev Int Mét Numér Cálc Dis Ing
1993;9(9):143–59 [in Spanish].
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