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SUMMARY

Six approximate methods to estimate the maximum inelastic displacement demand of single-degree-of-
freedom systems are evaluated. In all methods, the maximum displacement demand of inelastic systems
is estimated from the maximum displacement demand of linear elastic systems. Of the methods evalu-
ated herein, four are based on equivalent linearization in which the maximum deformation is estimated
as the maximum deformation of a linear elastic system with lower lateral sti?ness and with higher
damping coe@cient than those of the inelastic system. In the other two methods the maximum inelastic
displacement is estimated as a product of the maximum deformation of a linear elastic system with
the same lateral sti?ness and the same damping coe@cient as those of the inelastic system for which
the maximum displacement is being estimated, times a modifying factor. Elastoplastic and sti?ness-
degrading models with periods between 0.05 and 3:0 s are considered when subjected to 264 ground
motions recorded on Brm sites in California. Mean ratios of approximate to exact maximum displace-
ments corresponding to each method are computed as a function of the period of vibration and as a
function of the displacement ductility ratio. Finally, comments on the advantages and disadvantages of
each method when applied to practical situations are given. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Practically all structural damage and a large portion of the non-structural damage sustained
in buildings as a result of earthquake ground motions is produced by lateral displacements.
Thus, the estimation of lateral displacement demands is of primary importance in performance-
based earthquake resistant design and in general when damage control is of interest.
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Furthermore, most structures will experience inelastic deformations when subjected to severe
earthquake ground motions. Thus, of special interest is an adequate estimation of lateral
displacement demands in structures that exhibit non-linear behaviour. This is particularly
true in performance-based design in which a better prediction of seismic performance is
desired.

When the full characterization of the ground motion is available maximum displacement
demands can be computed through time-history analysis. However, in most cases the de-
sign of new structures or the evaluation and upgrading of existing structures is not carried
out with time history analyses, instead seismic demands are speciBed with the maximum
response of linear elastic single-degree-of-freedom (SDOF) using design linear elastic re-
sponse spectra or uniform-hazard linear elastic response spectra. Thus, approximate methods
to estimate the maximum inelastic displacement demands from the maximum displacement
demand of linear elastic SDOF systems are particularly useful in these situations. For exam-
ple, several recently proposed displacement-based methods [1–8] use the response of linear
elastic SDOF systems to estimate the maximum inelastic displacements in bridge and building
structures. Similarly, recently published design recommendations [9–11] include analysis pro-
cedures where global lateral displacement demands on structures, usually referred to as target
displacements, are computed from maximum deformations of linear elastic SDOF systems. In
all of these approximate methods a key step is the estimation of maximum inelastic displace-
ment demand of SDOF systems from the maximum displacement demand of linear elastic
SDOF systems. Moreover, these approximate analysis methods provide useful insight to the
response of inelastic systems to earthquake ground motions that is di@cult to obtain from
the response time history computed from an individual record. Hence, the evaluation of avail-
able approximate methods to estimate maximum inelastic displacement demands of SDOF
systems from maximum displacement demands of elastic SDOF systems is specially valuable
for users of these recently proposed displacement-based procedures.

The objective of this work is to evaluate six approximate methods to estimate maximum
inelastic displacement demands of SDOF systems from maximum displacement demands of
elastic SDOF systems which form the underlying principle of most of the approximate analy-
sis procedures used in recently proposed displacement-based design methods. It is beyond the
scope of this work to evaluate the use of these methods to estimate inelastic displacement de-
mands of multi-degree-of-freedom (MDOF) systems and to evaluate the actual implementation
of the approximate SDOF methods in displacement-based design procedures.

Although there have been several studies [12–15] that have evaluated approximate meth-
ods to estimate maximum inelastic displacement demands of SDOF systems, their scope has
been very limited. For example Jennings [12] summarized and compared six early propos-
als of equivalent linearization methods but results were primarily based on harmonic loading
and provided no conclusions regarding the accuracy of any of the methods. Hadjian [15]
performed an evaluation of seven equivalent linear methods. Although his study provided in-
teresting comparisons and comments regarding various methods when used under harmonic
and earthquakes loads, the study did not provide any quantitative results regarding the ac-
curacy of the results that can be expected from the user of these methods. Perhaps the bes
evaluation conducted to date was done by Iwan [13; 14] who evaluated various approximate
methods. However, the results only considered 12 earthquake ground motions, three levels
of inelastic behaviour and were restricted to nine mid-range periods between 0.4 and 4:0 s,
hence no evaluation for short period structures was provided. Error measures provided for
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each method were averaged through various periods, thus, information regarding errors for
speciBc periods of vibration was not provided. Furthermore, the error measure used, although
provided quantitative results of the size of the averaged errors corresponding to each method,
did not provide information whether the approximate method tended to overestimate or un-
derestimate the maximum displacements. Moreover, some of the approximate methods that
are being implemented in recent displacement-based design recommendations were not avail-
able when these previous evaluation studies were made. Of particular interest to practicing
engineers is to know which approximate methods, that provide the basis in recently proposed
analysis procedures, produce better results for speciBc periods of vibration or at least for
speciBc spectral regions as well to know which methods provide better results for speciBc
levels of inelastic behaviour expected to occur in the structure. For example, some methods
may provide better results in the short period region than others. Similarly some methods may
provide better results for higher levels of inelastic behaviour than others. Equally important
to practicing engineers is to be aware of the limitations of these approximate methods to
estimate maximum inelastic displacements, and in particular to be aware of the level of errors
that can be produced while using these approximate methods.

2. APPROXIMATE METHODS TO ESTIMATE MAXIMUM INELASTIC
DISPLACEMENT DEMANDS

Many approximate methods to estimate maximum inelastic displacement demands from max-
imum elastic displacement in SDOF systems have been proposed. In general, approximate
methods commonly used can be classiBed into two main groups. The Brst group comprises
methods based on equivalent linearization in which the maximum deformation is estimated
as the maximum deformation of an equivalent linear elastic system with lower lateral sti?ness
(higher period of vibration) and with higher damping coe@cient than those of the system
for which the maximum inelastic displacement is being estimated. The second group includes
methods in which the maximum inelastic displacement is estimated as a product of the maxi-
mum deformation of a linear elastic system with the same lateral sti?ness and same damping
coe@cient than that of the inelastic system for which the maximum displacement is being
estimated times a displacement modiBcation factor.

2.1. Methods based on equivalent linearization

The concept of equivalent viscous damping was Brst proposed by Jacobsen [16] to obtain
approximate solutions of the steady forced vibration of damped SDOF systems with linear
force–displacement relationships but with damping forces proportional to the nth power of the
velocity of motion when subjected to sinusoidal forces. In this pioneering study, the sti?ness
of the equivalent system was set equal to the sti?ness of the real system and the equivalent
viscous damping ratio was based on equating the dissipated energy per cycle of the real
damping force to that of the equivalent damping force. Years later, the same author extended
the concept of equivalent viscous damping to yielding SDOF systems [17] by considering
simultaneously an equivalent viscous damping ratio and a period shift. When a period shift is
used many di?erent values of equivalent viscous damping can be obtained depending on the
selection of the period shift. As noted by Jennings [12] and Hadjian [15] if the equal energy
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dissipation principle is employed, di?erent methods of treating the period shift are the reasons
for the di?erent equivalent viscous damping ratios given in the literature. Additionally, for a
given period shift, variations in the hysteretic model considered will also yield variations in
the equivalent damping ratio.

The equation of motion of a SDOF with inelastic hysteretic behaviour under earthquake
excitation is given by

Ox + 2�0!0 ẋ +
F(x)
m

=− Oxg (1)

where x is the lateral displacement of the mass relative to the ground; Oxg is the ground
acceleration; and m; �0; and F(x) are the mass, damping ratio and the restoring force of the
system. The circular frequency of vibration, !0, is given by

!2
0 =

√
k0
m

=
2�
T

(2)

where k0 and T are the initial sti?ness and period of vibration of the system.
In equivalent linearization methods the maximum response of the system (whose exact

solution is computed with Equation (1)) is approximated with the maximum response of an
equivalent linear system whose response xeq is computed with the following equation

Oxeq + 2�eq!eq ẋeq +!2
eq xeq =− Oxg (3)

where �eq and !eq are the viscous damping ratio and circular frequency of vibration of
the equivalent linear system, which are higher and lower than those of the original system,
respectively.

Of the many methods based on harmonic loading available in the literature only the method
proposed by Rosenblueth and Herrera [18] will be evaluated here. The method is considered
here only for historic reasons because it was the Brst equivalent linear method to propose
the secant sti?ness at maximum deformation as the basis for selecting the period shift. The
selection of the secant sti?ness is considered on many of the approximate analysis methods
based on equivalent linearization that are implemented in recently proposed displacement-
based design procedures. In Rosenblueth and Herrera’s equivalent linearization method, also
referred to as geometric sti?ness method, the circular frequency of vibration is given by

!eq =

√
ks
m

=
2�
Teq

(4)

where ks is the secant sti?ness at maximum deformation, and Teq is the period of vibration of
the equivalent system. For a bilinear system with a post yield sti?ness of � times the initial
sti?ness, the relationship between the period of vibration of the equivalent system to that of
the original system is given by

Teq
T

=

√
k0
ks

=
√

�
1− �+ �� (5)

where � is the displacement ductility ratio deBned as the ratio of the maximum absolute
value of the response to the yield displacement. Similarly, the viscous damping ratio in the
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equivalent linear elastic system is given by

�eq= �0 +
2
�

[
(1− �) (� − 1)
� − ��+ ��2

]
(6)

For elastoplastic systems (�=0) Equations (5) and (6) reduce to

Teq
T

=

√
k0
ks

=
√
� (7)

�eq = �0 +
2
�

(
1− 1

�

)
(8)

GOulkan and Sozen [19] noted that under earthquake loading most of the time the displace-
ment would be signiBcantly smaller than the maximum response, thus the equivalent damping
ratio computed with Equations (6) or (8), which are based on harmonic loading, would result
in an overestimation of the equivalent viscous damping and hence would lead to an underesti-
mation of the response. Using the Takeda hysteretic model [20] and experimental shake table
results of small-scale reinforced concrete frames GOulkan and Sozen developed the following
empirical equation to compute the equivalent damping ratio:

�eq = �0 + 0:2
(
1− 1√

�

)
(9)

The empirical method proposed by GOulkan and Sozen [19] was later on extended to MDOF
in the well-known substitute structure method [21]. Equations (5) or (7) and Equation (9)
are also used in the substitute structure method except that in Equation (9) the displacement
ductility ratio is replaced by a damage ratio. For elastoplastic systems these parameters are
equal to each other. Here only the method of GOulkan and Sozen is evaluated.

Using a hysteretic model derived from a combination of elastic and Coulomb slip elements
together with results from time history analyses using 12 recorded earthquake ground motions,
Iwan [14] derived empirical equations to estimate the period shift and equivalent damping ratio
as follows:

Teq
T

=1+ 0:121(� − 1)0:939 (10)

�eq = �0 + 0:0587(� − 1)0:371 (11)

More recently, Kowalsky [22] used the secant sti?ness at maximum deformation for deBning
the period shift together with the Takeda hysteretic model [20] to derive an equation for the
equivalent viscous damping ratio. For an unloading sti?ness factor of 0.5 and a post yield to
initial sti?ness ratio, �, the equivalent damping ratio is given by

�eq = �0 +
1
�

(
1− 1− �√

�
− �√�

)
(12)
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Figure 1. Comparison of periods shifts in equivalent linearization methods.

For systems with post yield sti?ness equal to zero Equation (12) reduces to

�eq = �0 +
1
�

(
1− 1√

�

)
(13)

Figure 1 shows a comparison of the period shift based on the secant sti?ness at maximum
deformation as used in Rosenblueth and Herrera, GOulkan and Sozen and Kowalsky’s methods
compared to that used in Iwan’s equivalent linearization method with �=0. It can be seen
that the period shift based on secant sti?ness is larger than that used in Iwan’s method and
that the di?erence increases with increasing level of non-linearity. For a displacement duc-
tility ratio equal to four the period shift based on secant sti?ness is approximately 50 per
cent larger than that used in Iwan’s method. A comparison of equivalent damping ratio of
the various methods, with �0 and � set to zero, is shown in Figure 2. It can be seen that the
equivalent damping ratio in the Rosenblueth and Herrera method, which is based on equating
the energy dissipated per cycle of steady response to harmonic excitation in the non-linear
and equivalent linear SDOF systems (Equation (8)), leads to the highest value of the equiv-
alent damping ratio. Equivalent damping ratios in GOulkan and Sozen, Iwan’s and Kowalsky’s
methods, Equations (9), (11) and (13) yield signiBcantly lower values. Furthermore, from
Equations (9) and (13) it can be seen that when �0 is equal to zero the equivalent damping
ratio used in the Kowalsky’s method is approximately 1.6 times larger than that in the GOulkan
and Sozen method which is very similar to that in the Iwan’s method for all ductility levels.

The period shift in Rosenblueth and Herrera, GOulkan and Sozen and Kowalsky’s methods
is based on secant sti?ness so Figure 2 provides enough information to conclude that for a
given earthquake ground motion and given level of inelastic behaviour the highest response
will be predicted by the GOulkan and Sozen method which uses the smallest equivalent damping
ratio of the three methods, followed by Kowalsky’s method and then the Rosenblueth and
Herrera which uses much higher values of equivalent damping ratio. However, the ratio of
energy dissipated per cycle in the non-linear system and energy dissipated per cycle in the
equivalent linear system depends on the product of the equivalent damping ratio and the
equivalent sti?ness, thus for methods that use di?erent period shifts, information provided by
Figure 2 is insu@cient to provide a comparison of the equivalent damping ratio. In order
to provide a better comparison, Hadjian [15] proposed normalizing the equivalent damping
ratio by the ratio of initial to equivalent sti?ness. Normalized equivalent damping ratios for
all four methods are shown in Figure 3. It can be seen that normalized equivalent damping
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Figure 3. Comparison of normalized equivalent viscous damping ratios in four approximate methods.

ratios in Rosenblueth and Herrera method, which is based on steady-state harmonic response,
are signiBcantly higher than those of the other three methods which have been developed
speciBcally for seismic loading. The smallest normalized equivalent damping ratios are those
corresponding to the GOulkan and Sozen method while the normalized equivalent damping
ratios in Kowalsky’s and Iwan’s methods are relatively close to each other for displacement
ductility ratios smaller than 6. For this level of inelastic deformations, normalized equivalent
damping ratios in the Rosenblueth and Herrera method are at least 4.5 times higher than those
in the GOulkan and Sozen method.

2.2. Methods based on a displacement modi*cation factor

In this second group of methods the maximum response of the inelastic SDOF system, Ti, is
estimated as a product of the maximum deformation of a linear elastic system, Te, with the
same lateral sti?ness and same damping coe@cient as that of the inelastic system (i.e. k0 and
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�0) times a displacement modiBcation factor, C, as follows:

Ti =CTe (14)

This type of methods have their origin in the study by Veletsos and Newmark [23] who
Brst studied the ratio of the maximum deformation of elastoplastic systems to the maximum
deformation of elastic systems having the same initial sti?ness and same damping ratio. This
and other studies [24] provided the basis for the well-known Newmark and Hall [25] method
for estimating inelastic response spectra from elastic response spectra. In this method the
displacement modiBcation factor varies depending on the spectral region in which the initial
period of vibration of the SDOF system is located in the following manner:

C = �; T¡Ta = 1=33 s (15a)

C =
�

(2� − 1)�
; Ta6T¡Tb = 0:125 s (15b)

C =
�√

2� − 1
; Tb6T¡Tc′ (15c)

C =
Tc
T
; T ′

c6T¡Tc (15d)

C =1; T¿Tc (15e)

where

�=
log(T=Ta)

2 log(Tb=Ta)
(16)

Tc′ =

√
2� − 1
�

Tc (17)

For an elastic response spectrum based on peak ground acceleration, peak ground velocity
and peak ground displacement of 1 g, 121:92 cm=s (48 in=s) and 91:44 cm (36 in), respec-
tively, together with spectral ampliBcation factors corresponding to a 50th percentile and
�0=5 per cent, the corner period Tc is equal to 0:57 s. The displacement modiBcation factors
computed with Equations (15a)–(15e) are shown in Figure 4 for six di?erent levels of in-
elastic displacement demands. In the Newmark and Hall method Equation (15c) corresponds
to the equal energy concept (the absorbed energy is the same in linear and elastoplastic sys-
tems at maximum deformation) while Equation (15e) corresponds to the equal displacement
approximation, which sometimes is also referred to as the ‘equal displacement rule’.

More recently, Miranda [26] conducted a statistical study of ratios of maximum inelastic
to maximum elastic displacements computed from ground motions recorded on Brm soils.
In that study Miranda concluded that, with the exception of ground motions inWuenced by
forward directivity, the ratio of maximum inelastic to maximum elastic displacement demands
was not signiBcantly a?ected by earthquake magnitude nor by the distance to the source.
Similarly, the study concluded that for sites with average shear wave velocities higher than

Copyright ? 2001 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2002; 31:539–560



ESTIMATION OF MAXIMUM INELASTIC DISPLACEMENT DEMANDS 547

0

1

2

3

4

5

6

7

0.0 0.5 1.0 1.5 2.0 2.5 3.0

PERIOD  [s]

C N&H

 µ = 6.0
 µ = 5.0
 µ = 4.0
 µ = 3.0
 µ = 2.0
 µ=  1.5
 µ = 1.0

Figure 4. Displacement modiBcation factors in the Newmark and Hall method.
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Figure 5. Displacement modiBcation factors in the Miranda method.

180m=s in the upper 30m of the site proBle inelastic displacement ratios were not signiBcantly
a?ected by local site conditions and proposed the following simpliBed expression to compute
the displacement modiBcation factor:

C=
[
1 +

(
1
�
− 1

)
exp(−12T �−0:8)

]−1

(18)

Displacement modiBcation factors computed with Equation (18) are shown in Figure 5.
It can be seen that the general trend of the displacement modiBcation factors in Miranda’s
equation is similar to that in the Newmark and Hall method. Both methods lead to inelastic
displacements larger than elastic displacements for short periods, and inelastic displacements
equal to elastic displacement in the intermediate and long period spectral regions. Furthermore,
both Newmark and Hall and Miranda’s methods have adequate limiting values of the displace-
ment modiBcation factors, namely C=� as T→ 0 and C=1 as T→∞. However, in contrast
with the Newmark and Hall method in which the period limiting the equal displacement ap-
proximation Tc is constant regardless of the level of inelastic deformation, in the Miranda’s
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method this period increases with increasing displacement ductility ratio. Moreover, in the
short period region the Newmark and Hall has a spectral region (for periods between Tb and
T ′
c ) where the displacement modiBcation factor remains constant with changes in the period of

vibration while in the Miranda’s method in the short period spectral region the displacement
ampliBcation increases monotonically with decreasing periods of vibration.

It is important to notice that approximate methods included in the large majority of cur-
rent building codes usually belong to this second group of methods based on displacement
modiBcation factors. However, the displacement modiBcation factors currently speciBed in US
codes [27; 28] are, unfortunately, period independent.

3. EVALUATION OF APPROXIMATE METHODS

3.1. Systems and ground motions considered

Evaluation of the approximate methods previously described requires the comparison between
‘exact’ results computed with non-linear time history analyses with those computed with the
approximate methods. However, it is well-known that the maximum response of an inelastic
SDOF system is inWuenced by the hysteretic load–deformation behaviour. Thus consideration
on various hysteretic models similar to those used in the development of these approximate
methods is necessary. Approximate methods by GOulkan and Sozen and Kowalsky’s were de-
veloped based on results of inelastic SDOF models with the Takeda hysteretic model [20]
while Newmark and Hall and Miranda’s methods were developed based on results from the
seismic response of elastoplastic SDOF systems. On the other hand, empirical equations in
Iwan’s method were developed by Btting the results of the seismic response of a model
consisting of a combination of a linear and an elastoplastic elements which was used to pro-
duce six types of bilinear SDOF systems with various degrees of pinching. In this evaluation
three types of hysteretic load–deformation behaviour are considered: the elastoplastic model
(EP), the modiBed Clough sti?ness-degrading model [29; 30] (MC) and the Takeda hysteretic
model [20] (TA). In all cases the post elastic sti?ness was set equal to zero (�=0) and
the damping ratio to 5 per cent. This damping ratio, although di?erent to that considered in
the original studies by GOulkan and Sozen and by Iwan’s, is selected here because that is the
damping ratio used in the other studies and is equal to the one assumed in most building
codes for specifying seismic demands on structures. A set of 50 periods of vibration between
0.05 and 3:0s were considered with period increments equal to 0:05s for periods smaller than
2:0 s and equal to 0:1 s for periods between 2.0 and 3:0 s.

A total of 264 earthquake acceleration time histories recorded in the state of California in
12 di?erent earthquakes with surface wave magnitudes ranging from 5.8 to 7.7 were used in
this evaluation. All the ground motions selected were recorded on sites with average shear
wave velocities higher than 180 m=s (600 ft=s) in the upper 30 m (100 ft) of the site proBle
which correspond to site classes A, B, C and D according to current U.S. codes [27; 28]. The
ensemble of ground motions used in this study is the same previously used by Miranda [26].
For a complete list of all ground motions including peak ground accelerations, earthquake
magnitude, site class at the recording station, epicentral distance and distance to the horizontal
projection of the fault rupture, the reader is referred to that study.
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Figure 6. Approximate inelastic displacement computed with equivalent linearization.

3.2. Evaluation procedure and results

The approximate methods were evaluated using the following steps:
STEP 1: Estimation of the maximum inelastic displacement using approximate methods.

1A. For equivalent linearization methods the maximum inelastic displacement is estimated
with the following steps:

Step a. Using the displacement ductility ratio and the period of vibration of the system
for which the inelastic displacement want to be estimated calculate the period of
vibration of the equivalent system using Equation (7) for Rosenblueth and Her-
rera, GOulkan and Sozen or Kowalsky’s methods or with Equation (10) for Iwan’s
method.

Step b. Using the displacement ductility ratio compute the damping ratio of the equivalent
linear system using the following equations: for Rosenblueth and Herrera method
with Equation (8); for GOulkan and Sozen method with Equation (9): for Iwan’s
method with Equation (11); and for Kowalsky’s method with Equation (13).

Step c. Compute the displacement time history of the equivalent system with a linear time
history analysis using Equation (3) using the equivalent period of vibration and
equivalent damping ratios computed in steps a and b.

Step d. Calculate the approximate maximum inelastic displacement as the maximum abso-
lute value of the time history displacements computed in step c.

An example using the GOulkan and Sozen equivalent linear method for a system with period
of vibration of 1:15 s, a damping ratio 5 per cent when undergoing a displacement ductility
demand of 4 when subjected to the north–south component of the Corralitos ground motion
recorded during the 1989 Loma Prieta, California earthquake is shown in Figure 6. In this case
Equation (7) leads to an equivalent period of vibration of 2:3 s which is twice of the original
system and Equation (9) leads to an equivalent damping ratio of 15 per cent. As shown in
this Bgure, the GOulkan and Sozen equivalent linear method estimates the maximum inelastic
displacement demand on the original system as 12:75 cm. The same example in spectral form
is shown in Figure 7.
1B. For methods based on displacement modiBcation factors the maximum inelastic dis-

placement is estimated with the following steps:

Step a. Compute the linear elastic displacement time history of the original system (T=
1:15 s and �0 = 5 per cent) using Equation (1) by setting the lateral strength equal
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Figure 8. Approximate inelastic displacement computed with a displacement modiBcation factor.

to a very large value to guarantee that the system remains elastic during the total
duration of the ground motion.

Step b. Calculate the maximum elastic displacement demand of the SDOF system, Te, (i.e.
the elastic spectral ordinate) as the maximum absolute value of the displacement
time history.

Step c. Compute the displacement modiBcation factor, C, using Equations (15) for the
Newmark and Hall method or using Equation (18) for the Miranda method.

Step d. Calculate the maximum inelastic displacement using Equation (14).

An example using the Miranda method for the same system with period of vibration of
1:15s, a damping ratio 5 per cent when undergoing a displacement ductility demand of 4 when
subjected to the north–south component of the Corralitos ground motion recorded during the
1989 Loma Prieta, California earthquake is shown in Figure 8. It can be seen that maximum
elastic displacement in this case is 10:47 cm. For T=1:15 s and �=4, the displacement mod-
iBcation factor computed with Equation (18) is 1.13. The approximate maximum inelastic
displacement is computed as the maximum elastic displacement times the displacement mod-
iBcation factor, which in this case leads to an approximate maximum inelastic displacement
of 11:8 cm. Figure 9 shows the same example in spectral form.
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Figure 10. Exact maximum inelastic displacement computed with non-linear time history analysis.

STEP 2: Estimation of the exact maximum inelastic displacement. Exact maximum inelas-
tic displacement demands Ti corresponding to speciBc values of � were computed through
nonlinear time history analyses by iteration on the lateral strength of the system using Equa-
tion (1) until the displacement ductility demand was, within a tolerance, equal to the desired
displacement ductility ratio. The tolerance was chosen such that Ti was considered satisfac-
tory if the computed ductility demand was within 1 per cent of the speciBed displacement
ductility. For each earthquake record, each hysteretic models and each period of vibration,
‘exact’ maximum inelastic displacements were computed for six levels of inelastic deforma-
tion, corresponding to the following displacement ductility ratios: 1.5, 2, 3, 4, 5 and 6. A
total of 237 600 ‘exact’ inelastic displacement demands were computed by iteration as part
of this investigation.

Figure 10 shows the displacement time history for the system with elastoplastic behaviour
computed with nonlinear time history analysis. It can be seen that the maximum inelastic
displacement demand is equal to 11:4cm. Thus, in this example the GOulkan and Sozen equiv-
alent linear method estimates a maximum displacement that it is 12 per cent larger than the
exact value and the Miranda method produces an estimate that is 3.5 per cent larger than the
exact maximum inelastic displacement.
STEP 3: Compute ratio of approximate to exact maximum displacement. These ratios

were computed for all combinations of ground motion, period of vibration, level of inelastic
behaviour, hysteretic behaviour.
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STEP 4: Compute mean and standard deviation of the ratios. For each hysteretic model,
each period and each level of inelastic deformation, mean and standard deviation of approxi-
mate to exact displacement ratios corresponding to each method were averaged over the 264
ground motions.

Figure 11 shows mean approximate to exact displacement ratios corresponding to each ap-
proximate method with exact values computed with the elastoplastic hysteretic model. In these
plots, values smaller than one indicate that the approximate method underestimates on average
the ‘exact’ maximum displacement in the inelastic system and values larger than one mean
that the approximate method overestimates on average the ‘exact’ maximum inelastic displace-
ment. It can be seen that, as expected, the largest errors are produced by the Rosenblueth
and Herrera method which on average produces important underestimations of the maximum
inelastic displacement, particularly for periods of vibration larger than about 0:3 s where the
Rosenblueth and Herrera method estimates maximum displacements that on average around
half of ‘exact’ values.

The GOulkan and Sozen method tends to produce conservative estimates of the maximum
inelastic displacement, that is, it produces estimates of the maximum inelastic displacement that
on average are larger than the ‘exact’ values. In general, the level of overestimation increases
as the level of inelastic deformation increases. This is particularly true for periods smaller than
0:6s where mean overestimations larger than 40 per cent are produced for ductility ratios larger
than two. For periods larger than 1:5s this method produces overestimations that on average are
between 10 and 20 per cent. The mean approximate to exact displacement ratios corresponding
to the Kowalsky’s method follow the same trend than the GOulkan and Sozen method, however
the overestimations in the short period spectral region are smaller than those of the GOulkan
and Sozen method. This is to be expected because in both methods the period shift is based
on the secant sti?ness and because of the similarities in Equations (9) and (13) for computing
the equivalent damping ratio. Furthermore, since the equivalent damping ratio of the GOulkan
and Sozen method is smaller than that of the Kowalsky’s method (see Figures 2 and 3), then
the displacement estimates of the Kowalsky’s method are smaller those of the GOulkan and
Sozen method. For periods longer than 1:0 s the estimations are in general very good for all
levels of inelastic deformation, with average errors smaller than 10 per cent.

With the exception of periods smaller than 0:2 s, the Iwan’s method produces very good
estimations of the maximum displacement of elastoplastic systems. In general, this method
tends to underestimate the maximum displacement. However, for periods longer than 0:2 s
underestimations are on average smaller than 15 per cent. Underestimations increase with
increasing displacement ductility ratios.

Mean approximate to exact displacement ratios for the Newmark and Hall and Miranda’s
methods have a similar trend. For periods longer than 1:0 s both methods produce very good
results with estimations that on average are only slightly conservative (overestimations smaller
than 10 per cent). In particular, for periods longer than 1:5 s both methods produce the same
results since both procedures use the equal displacement approximation in this spectral region.
For periods smaller than 1:0s the Miranda’s methods produces better estimations than those of
the Newmark and Hall method. The largest errors in the Miranda’s method are produced for
periods around 0:2s where the method produces overestimations that increase from 8 per cent
for displacement ductility ratio of 1.5 to 26 per cent for a displacement ductility ratio of 6.

Figure 12 presents mean approximate to exact displacement ratios produced by the 6 meth-
ods while estimating the maximum displacement of SDOF systems with the modiBed Clough
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Figure 11. Mean approximate to exact displacement ratios for systems with
elastoplastic hysteretic model.

hysteretic model. Again the largest errors are produced by the Rosenblueth and Herrera method
whose equivalent damping ratio was derived based on equating the energy dissipated per cy-
cle in the nonlinear system to that of the equivalent linear system using the steady state
response to harmonic loads. For systems with periods larger than 0:5 s the best estimations
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Figure 12. Mean approximate to exact displacement ratios for systems with
modiBed Clough hysteretic model.

are produced by the Iwan’s method, that in this spectral region on average tends to overes-
timate the maximum displacements by about 10 per cent. Errors for the GOulkan and Sozen
and Kowalsky’s methods decrease with increasing periods and with decreasing displacement
ductility ratio. Again, on average Kowalsky’s method produces better results than the GOulkan
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and Sozen method. For periods larger than 1:0 s Kowalsky’s method produces errors that on
average are smaller than 15 per cent. In this spectral region both the Newmark and Hall and
Miranda’s method tend to overestimate the maximum inelastic displacement of systems with
the modiBed Clough model from about 9 per cent for displacement ductility ratios of 1.5 to
about 25 per cent for a displacement ductility ratio of 6. For periods between 0.1 and 0:5s the
GOulkan and Sozen, Kowalsky’s, Newmark and Hall and Miranda’s methods overestimate on
average the maximum displacement while the Rosenblueth and Herrera and Iwan’s methods
underestimate the maximum displacement.

Mean values of approximate to exact displacement ratios produced by the six methods
while estimating the maximum displacement in SDOF systems with the Takeda hysteretic
model are presented in Figure 13. For periods smaller than 0:7 s the smallest errors are
those of the Miranda’s method that tends to overestimate the maximum displacement. For
periods larger than 0:7s the smallest errors are those of the Iwan’s method, which on average
overestimates the maximum displacements by less than 8 per cent. In the short period region
the underestimations are more important and increase with decreasing periods and as the
level of inelastic deformation increases. In the GOulkan and Sozen and Kowalsky’s methods
mean errors increase as the period of vibration decreases. Errors produced while estimating
maximum displacements of systems with the Takeda model are in general very similar to
errors produced while estimating the maximum response of systems with the modiBed Clough
hysteretic model.

The standard deviation of the relative error for the di?erent methods when estimating the
maximum response of SDOF systems with elastoplastic behaviour are shown in Figure 14.
It can be seen that with the exception of the Rosenblueth and Herrera method, the standard
deviation of the error increases as the level of deformation increases. The smallest standard
deviations of relative errors are those of the Rosenblueth and Herrera method, however, it
is the method with the largest errors. For periods longer than 1:0 s the standard deviation of
the relative error is approximately period independent. The Newmark and Hall and Miranda’s
methods have an increase in standard deviation of the relative error for periods smaller than
0:5 s.

In general all methods produce better results in the intermediate and long period regions than
in the short period region. For periods longer than 1:0s the Iwan’s, Kowalsky’s, Newmark and
Hall, and Miranda’s methods produce estimations of the maximum displacement of inelastic
SDOF systems that on average are relatively good, however, the latter two methods are
much easier to use in practical situations since they are based on the equal displacement
approximation, thus elastic results can be directly used as a relatively good estimation of the
maximum inelastic displacement. This should not be interpreted as the Newmark and Hall,
and Miranda methods are preferred methods or that will produce better results, simply that
in these spectral regions are easier to use. Furthermore, standard deviations of relative errors
of these four methods are signiBcant indicating that when applied to individual records any
of these methods could produce signiBcant errors, particularly for large levels of inelastic
behaviour. For periods of vibration smaller than 1:0 s both the Miranda’s and Iwan’s methods
produce relatively good results with errors that on average are smaller than 20 per cent.

Results shown in Figures 11–14 correspond to systems where the post yield to initial
sti?ness ratio, �, is equal to zero. The e?ect of � on the equivalent damping ratio and on
the estimation of displacement demands using equivalent linearization methods was recently
studied by Borzi et al. [31]. Similarly, a limited number of results of the inWuence of � on
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Figure 13. Mean approximate to exact displacement ratios for systems with Takeda hysteretic model.

the estimation of displacement demands using methods on displacement modiBcation factors
was studied by Rahnama et al. [32]. In general both studies conclude that hardening (�¿0)
tend to produce small decreases in displacement demands and that softening (�¡0) produces
increases in displacement demands.
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Figure 14. Standard deviation of relative errors for systems with elastoplastic hysteretic model.

Besides the various factors evaluated in this study there are other factors that may inWuence
the estimation of inelastic displacements and that need to be considered in the implementation
of any of the methods evaluated herein. Others factors to consider include, but are not limited
to, the uncertainty on the estimation of the elastic displacement demand, the uncertainty on
the estimation of the yield displacement and initial sti?ness, the uncertainty on the estima-
tion of the lateral strength and the displacement ductility ratio, the convergence of iterative
methods, etc.

Copyright ? 2001 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2002; 31:539–560



558 E. MIRANDA AND J. RUIZ-GARC9IA

4. CONCLUSIONS

Evaluation of six approximate methods that are used to estimate the maximum inelastic dis-
placement demand of single-degree-of-freedom systems when subjected to earthquake ground
motions has been presented. In all six methods, the maximum displacement demand of inelas-
tic systems is estimated from the maximum displacement demand of linear elastic systems.
Four methods evaluated in this study, Rosenblueth and Herrera, GOulkan and Sozen, Iwan’s
and Kowalsky’s are based on equivalent linearization in which the maximum deformation is
estimated as the maximum deformation of a linear elastic system with lower lateral sti?ness
and with higher damping coe@cient than those of the inelastic system. In the other two meth-
ods, Newmark and Hall and Miranda’s, the maximum inelastic displacement is estimated as
a product of the maximum deformation of a linear elastic system with the same lateral sti?-
ness and same damping coe@cient than those of the inelastic system for which the maximum
displacement is being estimated times a displacement modiBcation factor. The approximate
methods were used to estimate the maximum response of SDOF systems with elastoplastic,
modiBed Clough and Takeda and sti?ness-degrading hysteretic load–deformation models with
periods between 0.05 and 3:0 s undergoing six di?erent levels of maximum displacement duc-
tility demands when subjected to 264 ground motions recorded on Brm sites in 12 California
earthquakes. For each method mean ratios of approximate to exact maximum displacement
and dispersion of relative errors were computed as a function of the period of vibration and
as function of the displacement ductility ratio. The following conclusions can be drawn from
the results of this study:

The use of period shifts based on the secant sti?ness at maximum deformation together with
equivalent ductility ratios based on equating the energy dissipated per cycle in non-linear and
equivalent linear SDOF systems subjected to harmonic loads as done in the Rosenblueth and
Herrera method produce signiBcant underestimations of the maximum inelastic displacement
for all three types of hysteretic models considered in this study. Maximum displacements
predicted by this method are on average about half of the maximum displacements computed
through time history analyses.

The GOulkan and Sozen, Iwan’s and Kowalsky’s methods are also based on equivalent
linearization but consider equivalent damping ratios signiBcantly smaller than those of the
R&M method, thus produce much better results. Mean relative errors in these methods, in
general, increase with increasing displacement ductility ratios and with decreasing periods of
vibration. In general these methods produce more accurate in the intermediate and long period
regions than in the short period region. In the short period spectral region the GOulkan and
Sozen and Kowalsky’s methods tend to signiBcantly overestimate the maximum displacement
while the Iwan’s methods underestimates the maximum displacement, particularly for periods
smaller than 0:4 s.

Both methods based on displacement modiBcation factors, the Newmark and Hall and Mi-
randa’s methods, tend on average to produce small overestimations of the maximum dis-
placements. For periods longer than 0:5 s overestimations are slightly larger when estimating
the maximum response of sti?ness degrading systems than when estimating the maximum
response of elastoplastic systems.

In the intermediate and long period spectral regions (periods of vibrations longer than
about 1:2 s) the Iwan’s, Kowalsky’s, Newmark and Hall and Miranda’s methods produce
estimations of the maximum displacement of inelastic SDOF systems that, on average, are
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relatively good for sites on rock or Brm soil deposits. However, in these spectral regions the
Newmark and Hall and Miranda’s methods are much easier to use in practical situations since
they are based on the equal displacement approximation, thus elastic results can be directly
used as a good average estimation of the maximum inelastic displacement. This should not
be interpreted as the Newmark and Hall and Miranda methods are preferred methods or that
will produce better results, simply that in these spectral regions are easier to use. In the
short period region the Miranda’s and Iwan’s methods yield the best estimations of maximum
displacements. Nevertheless, for users of any of these approximate methods, or for users of
analyses procedures based on theses methods, it is important to realize that despite having
relatively small mean errors, dispersion of the results in some cases is substantial, particularly
for large levels of inelastic behaviour. Hence, when applied to individual earthquake ground
motion records, any of these deterministic methods could lead to signiBcant errors in the
estimation of the maximum displacement.
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