Direct Displacement-Based Design:
Use of Inelastic vs. Elastic Design Spectra
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Direct displacement-based design requires a simplified procedure to estimate
the seismic deformation of an inelastic SDF system, representing the first (elastic)
mode of vibration of the structure. This step is usually accomplished by analysis
of an “equivalent” linear system using elastic design spectra. In this paper, an
equally simple procedure is developed that is based on the well-known concepts
of inelastic design spectra. We demonstrate that the procedure provides the
following: (1) accurate values of displacement and ductility demands, and (2) a
structural design that satisfies the design criteria for allowable plastic rotation. In
contrast, the existing procedure using elastic design spectra for equivalent linear
systems in shown to underestimate significantly the displacement and ductility
demands. The existing procedure is shown to be deficient in yet another sense; the
acceptable value of the plastic rotation, leaving an erroneous impression that the
allowable plastic rotation constraint has been satisfied.

INTRODUCTION

Direct displacement-based design is being advocated as a more rational and relevant
approach to seismic design of structures, compared to traditional strength-based design
(Shibata and Sozen 1976; Moehle 1992; Kowalsky, Priestley, and MacRae 1994).
Displacement-based design involves several steps (to be described later), one of which is to
estimate the seismic deformation of an inelastic SDF system representing the first (elastic)
mode of vibration of the MDF system. In some of the present procedures, this step is
accomplished by approximate methods in which the nonlinear system is replaced by an
“equivalent” linear system (Shibata and Sozen 1976; Priestley, Seible, and Calvi 1996;
Priestley and Calvi 1997). The period and damping of this linear system are determined by
the secant stiffness method (Jennings 1968, Iwan and Gates 1979) or its variants, e.g., the
substitute structure method (Shibata and Sozen 1976). While a possible approach, this
equivalent linear system is not essential to displacement-based design. However, one may be
left with a different impression on reading: “the key element of the procedure is that stiffness
and damping of the structure are characterized by secant properties at maximum response,
rather than based on inifial elastic properties” (Priestley and Calvi 1997).
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The purpose of this paper is to demonstrate application of inelastic design spectra to
direct displacement-based design of structures. The resulting design procedure is shown to
produce a structural design that satisfies the design criteria. In contrast, it is shown that the
design produced by the procedure that uses elastic design spectra and equivalent linear
systems does not necessarily satisfy the design criteria. In particular, it can leave an
erroneous impression that the allowable plastic rotation constraint has been satisfied.

To focus on this theme, this presentation is intentionally restricted to structures idealized
as SDF systems with bilinear force-deformation relations (Figure 1). The distraction of
approximations inherent in a one-mode representation of MDF systems and bilinear
idealization of a pushover curve are thus avoided.
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Figure 1. Idealized SDF system with bilinear force-deformation relation.

DISPLACEMENT-BASED DESIGN USING ELASTIC DESIGN SPECTRA

EQUIVALENT LINEAR SYSTEM

Needed in existing displacement-based design procedures, the properties of the
equivalent linear system are summarized here. Consider an inelastic SDF system with
bilinear force-deformation relationship on initial loading (Figure 1b). The stiffness of the
elastic branch is &k and that of the yielding branch is ak . The yield strength and yield

displacement are denoted by f, and u,, respectively. If the peak (maximum absolute)
deformation of the inelastic system is u,, , the ductility factor g =u,/u,.

For the bilinear system of Figure 1b, the natural vibration period of the equivalent linear
system with stiffness equal to k,__, the secant stiffness, is

sec ?

ey
I, =T, /__,ﬂ__,,._
l+ou—-o

where T, is the natural vibration period of the system vibrating within its linearly elastic

range (u<u, ).

The most common method for defining equivalent viscous damping is to equate the
energy dissipated in a vibration cycle of the inelastic system and of the equivalent linear
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system. Based on this concept, it can be shown that the equivalent viscous damping ratio is
(Chopra and Goel 1999):

£ = 2 (p-1)1-2) )
“ zull+ou-a)
The total viscous damping of the equivalent linear system is
feq = ; + ;eq (3)

where { is the viscous damping ratio of the bilinear system vibrating within its linearly
elastic range (u<u ).

Equations I and 2 are plotted in Figure 2 where the variation of T, /Tn and ¢, with p is
shown for four values of o:. For yielding systems (1 > 1), T, is longer than 7, and {_>0.
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Figure 2. Variation of period and viscous damping of the equivalent linear system with ductility.

ELASTIC DESIGN SPECTRA

To implement the existing displacement-based design procedure, an elastic design
spectrum is needed. We have chosen to construct this spectrum by the procedures of
Newmark and Hall (1982). This procedure is illustrated in Figure 3, where ji,, , 1., and u,,

are the peak values of the ground acceleration, velocity, and displacement, respectively, and
a,, &, and ¢, are the amplification factors that depend on the damping ratio and the
probability of exceedance. For median-plus-one-standard-deviation spectrum with 15.9%

probability of exceedance, these factors for the acceleration-, velocity-, and displacement-
sensitive regions of the spectrum are:

o, =438-1.04In¢, o, =3.38-0.67In¢, andar, =2.73-045Ing 4

in which { is the damping ratio in percent. Observe that the period values associated with
points a, b, e, and f on the spectrum are fixed; the values shown in Figure 3 are for firm
ground. Points ¢ and d are located at the intersection of the constant-A, constant-V, and
constant-D branches of the spectrum. The locations of these intersection points vary with
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damping ratio because they depend on the amplification factors «,, ¢,, and «,. Further
details of this procedure are available in Chopra (1995: Chapter 6).

The design spectrum can also be plotted as a pseudo-acceleration design spectrum. Figure
4 presents such a spectrum, which is a 5% damped, median-plus-one-standard-deviation
spectrum constructed for i, =1g, 4, = 122 cr/s (48 in/s), and u,,= 91.4 cm (36 in). The

acceleration-sensitive, velocity-sensitive, and displacement-sensitive regions of the spectrum
have been identified for later reference.

Elastic design
spectrum

Peak ground acceleration,
velocity, and displacement

Pseudo-velocity (log scale)

/33 sec 1/8 sec 10 sec 33 sec
33 Hz 8 Hz 110Hz 1/33 Hz

Natural vibration period (log scale)

Figure 3. Construction of elastic design spectrum by Newmark-Hall procedure.
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Figure 4. Elastic pseudo-acceleration design spectrum.
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Needed in displacement-based design is the displacement (or deformation) design
spectrum which can be determined from Figure 4, using the well-known relationship between
pseudo-acceleration A and deformation D:

2 5
u =D=(I;'JA ©)

" 2z
Figure 5 shows such spectra for several values of the damping ratio.
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Figure 5. Elastic deformation design spectrum.

STEP-BY-STEP PROCEDURE

Adapted from Priestley and Calvi (1997), a direct displacement-based design procedure
for bilinear SDF systems (Figures la and 1b) using elastic design spectra is outlined as a
sequence of steps:

1. Estimate the yield deformation u, for the system.
2. Determine acceptable plastic rotation 8, of the hinge at the base.

3. Determine design displacement u,,
u,=u, +hé, (6)

and design ductility factor y=u, /u,.

4. Estimate the total equivalent viscous damping, f .5 for the design ductility factor from
Equations 2 and 3 or Figure 2b.
5. Enter the deformation design spectrum for elastic systems with known u,, and {A ., toread

T,, (Figure 5). Determine the secant stiffness
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4’ 7

TC!]

sec

where m is the mass of the system.
6. Determine the required yield strength f from Figure 1b:

kg, (8)
I+ou—o

¥y

7. Estimate member sizes and detailing (reinforcement in R/C structures, connections in
steel structures) to provide f,. Calculate initial elastic stiffness k and u, = f, /k .

8. Repeat steps 3 to 7 until a satisfactory solution is obtained.

EXAMPLES

The displacement-based design procedure using elastic design spectra and equivalent
linear systems will be implemented for two example systems. The elastic vibration period of
the first example system falls in the velocity-sensitive region of the design spectrum, and of
the second system in the acceleration-sensitive region.

Example 1

Consider a portion of a long reinforced-concrete viaduct that is a part of a freeway. The
total weight of the superstructure, 190 kN/m, is supported on identical bents 9 m high,
uniformly spaced at 39.6 m. Each bent consists of a single circular column 1.5 m in diameter
(Figure 6a). Using the design procedure described earlier, we will design the longitudinal
reinforcement of the column for the design earthquake defined by Figure 4 scaled to
i,, =05g.

For the transverse ground motion, the viaduct can be idealized as an SDF system (Figure
6b) with its lateral stiffness computed from

3E ©)
=W

where E is the elastic modulus of concrete, I is the effective moment of inertia of the
reinforced-concrete cross section, and h is the column height. Based on the American

Concrete Institute design provisions ACI 318-95, the effective EI for circular columns
subjected to lateral load (MacGregor 1997) is given by

k

E, (10
EI=EI,02+2py Tz

c

where I, is the second moment of inertia of the gross section, E and E_ are the elastic

moduli of concrete and reinforcing steel, p, is the longitudinal reinforcement ratio, and ¥ is
the ratio of the distances from the center of the column to the center of the outermost
reinforcing bars and to the column edge.

The system properties selected are: concrete strength = 27.6 MPa (4 ksi), steel strength =
413 MPa (60 ksi) and ¥ = 0.9. The mass of the idealized SDF system is the tributary mass
for one bent, i.e., the mass of 39.6 m length of the superstructure, m=w/g=
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(7517 x1000 N)/9.8 m/s* = 767041kg . The initial elastic vibration period of this system is
1.82 s, which falls in the velocity-sensitive region of the design spectrum.

|\ /]
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@ &
Figure 6. Example single-column bent and idealized SDF system.

The step-by-step procedure described earlier in this section is now implemented as

follows:

1.
2.
3.

An initial estimate of ©, =4.5 cm.

The plastic rotation acceptable at the base of the column is &, = 0.02 radians.

The design displacement given by Equation 6 is u, =u, +h6, = 4.5 + 900x0.02 = 22.5
cm and the design ductility factor is 4 = um/u_v =225/45=35.

For or=5% and u =5, Equations 2 and 3 give feq =45%.

The deformation design spectrum for elastic systems is shown in Figure 7 for f oy = 45%.
Corresponding to u, =22.5 cm this spectrum gives 7, =2.81 s and k, is computed by
Equation 7, k. = (27/2.81)> x767041 =3.835 x 10° N/m = 38.35 kN/cm.

The yield strength is given by Equation 8, f, =(38.35%22.5)/(1+0.05x5-0.05)=
719.1 kN.

. The circular column is then designed using ACI318-95 for axial load due to

superstructure weight of 7517 kN plus column self weight of 375 kN and the bending
moment due to lateral force = fy: M = hf, = 6472 kN-m. For the resulting column design,

p,=1.19%, flexural strength = 7395 kN-m, and lateral strength = 821.7 kN. For
p, =1.19% , Equation 10 gives EI =2.22x10°kN~m’; using this EI value Equation 9
gives k = 91.3 kN/cm. The yield deformation is u, = f, /k =821.7/91.3 =9 cm.

Since the yield deformation computed in Step 7 differs significantly from the initial
estimate of u, =4.5 cm, iterations are necessary. The results of such iterations are

summarized in Table 1.

The procedure converged after three iterations giving a column design with p, =1.3%.

This column has an initial stiffness, £ = 95.17 kN/cm and lateral yield strength, f, = 839.7 kN.
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Table 1. Results of iterative displacement-based design procedure

using elastic design spectrum for Example 1

No. |, u, Y2 feq T, k. £ p, | Design k u,
£
(cm) | (cm) () | () |KNfem) | kN) | (%) | (kN) | (KNfem) | (cr)
| 450 | 225 | 500 | 45 | 281 | 3835 |719.1| 1.19 821.7 91.34 9.00
2 9.00 | 270 | 3.00 | 42 |316| 3041 | 7464 | 1.30 839.7 95.17 8.82
3 8.82 | 26.8 | 3.04 | 42 |3.14 | 30.62 | 7452 | 1.30 839.7 95.17 8.82
Example 2

The system of this example is identical to Example 1 (Figure 6) except that the bents are
4 m high. The initial elastic vibration period of this system is 0.56 s, which falls in the
acceleration-sensitive region of the design spectrum. For this system, the procedure
converged after just two iterations, giving a column design with p; = 1%. This column has an
initial stiffness, & = 967.2 kN/cm and lateral yield strength, f, — 1715 kN. The results for this
system are summarized in Table 2.

Table 2. Results of iterative displacement-based design procedure
using elastic design spectrum for Example 2

Noolwuy 1wy | f | | Ty | ke | fy | o | Design| &k u,
- €q / . )
£y
(cm) | (cm) (B | (8) | Nfem) | (kN) | (%) | (kN) | (kNiem) | (cm)
1 2.00 | 100 | 500 | 45 | 140 1555 1296 | 1.00 1715 967.2 1.77
2 1.77 | 977 | 551 | 45 | 1.38 | 158.5 1264 | 1.00 1715 967.2 1.77
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Figure 7. Calculation of Teq for first iteration of the displacement-based design procedure using

elastic design spectra for Example 1.
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DISPLACEMENT-BASED DESIGN USING INELASTIC DESIGN SPECTRA

Presented next is a direct displacement-based design procedure that uses the well-known
constant-ductility design spectra instead of the elastic design spectra for equivalent linear
systems.

INELASTIC DESIGN SPECTRUM

A constant-ductility spectrum for an elastoplastic hysteretic system is a plot of A, versus

the initial elastic period T, for selected values of p. The pseudo-acceleration A, is related to
the yield strength f, by

A,
fo=rw (1)
where w is the weight of the system: The yield strength reduction factor is given by
f, A
Rv =20 =
T A (12)
where
A
g (13)

is the minimum yield strength required for the structure to remain elastic during the
earthquake; A is the pseudo-acceleration ordinate of the elastic design spectrum at (1,,0).

!

Elastic design V=t
spectrum < vie d

Inelastic
» design spectrum

Pseudo-velocity V or V), (log scale)

1/33 sec 1/8 sec 10 sec 33 sec
33 Hz 8 Hz 1/10Hz 1/33Hz

Natural vibration period T, (log scale)

Figure 8. Construction of inelastic design spectrum by Newmark-Hall procedure.

A constant-ductility design spectrum is established by dividing the elastic design
spectrum by appropriate ductility-dependent factors that depend on 7, (Figure 8). The

earliest recommendation for the reduction factor, R,, goes back to the work of Veletsos and

Newmark (1960), which is the basis for the inelastic design spectra developed by Newmark
and Hall (1982):
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r

1 T.<T.
(2M-_1)ﬁl2 Ta < Tn < Tb

R.= ,/2;1—1 To<T.<T.
inu T(:'<Tn<Tc
Lu Tn > Tc

This equation is plotted in Figure 9 for = 4.

Starting with the elastic design spectrum of Figure 4 and these R

(14)

— 4 relations for

acceleration-, velocity-, and displacement-sensitive spectral regions, the inelastic design
spectrum constructed by the procedure described in Chopra (1995, Chapter 7) is shown in
Figure 8 and the corresponding pseudo-acceleration design spectrum in Figure 10a.

In recent years, several recommendations for the reduction factor have been developed
(Krawinkler and Nassar 1992; Vidic, Fajfar, and Fischinger 1994; Riddell, Hidalgo, and Cruz
1989; Tso and Naumoski 1991; Miranda and Bertero 1994). Equations for the first two of
these recommendations are available in Chopra and Goel (1999) and plotted in Figure 9. The

corresponding inelastic design spectra are shown in Figures 10b and 10c.

The three sets of

inelastic spectra in Figure 10 are similar in the velocity-sensitive region of the spectrum, but

differ in the acceleration-sensitive region.

10 , : -
NH
----- KN
wmm VFF
8_ .|
6_ 4
| e mm w=4 . -
% 05 1 15 5 25
. Tt .

Figure 9. Variation of R, with T, for p = 4 based on three different sources:

(NH), Krawinkler and Nassar (KN), and Vidic, Fajfar, and Fischinger (VFF).

The peak deformation u,, of the inelastic system is given by:

T,Y 1(T,Y
“n = H 2 Ay:ﬂ? 27 4

Newmark and Hall

(15)
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Computed by using Equation 15 and the pseudo-acceleration design spectrum of Figure 10a
(or R, — u relations of Equation 14), the deformation design spectrum is shown in Figure 11.

3

VEF

(©)

Figure 10. Inelastic design spectra: (a) Newmark and Hall (1982), (b) Krawinkler and Nassar (1992),
and (c¢) Vidic, Fajfar and Fischinger (1994).

STEP-BY-STEP PROCEDURE

The first three steps of this procedure are identical to those in the previously-described
displacement-based design procedure, and steps 4 to 8 are replaced by the following steps
based on the deformation design spectra for inelastic systems (Figure 11).

4. Enter Figure 11 with known «,, and # to read T, . Determine the initial elastic stiffness:
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s (16)
= TZ m

5. Determine the required yield strength
fy=ku, (17

6. Estimate member sizes and detailing (reinforcement in R/C structures, connections in
steel structures, etc.) to provide the strength determined from Equation 17. For the
resulting design of the structure, calculate the initial elastic stiffness k and yield
deformation y, = f /k.

7. Repeat steps 3 to 6 until a satisfactory solution is obtained.

500 T T T T T T T T

200+ 1
100~ 3
50t .
20r .
£ 1ot —
DE 5— 1
2r p=1
1t
0.5
0.2¢

1 1 L n 1 X 1 1
00.05 0.1 0.2 05 1.|_ 2 5 10 20 50
. Sec

Figure 11. Inelastic deformation design spectra.

The graphical implementation of Step 4 in the modified design procedure may be
attractive for its similarity to the previous procedure. However, the graphical feature is not
essential and the Step 4 can be implemented numerically; from Equation 15

(18)
T,.=27x 5’—’1-&-

AU

where R, and y are related by Equation 14, for example. Because this relation depends on
T. . iteration may be necessary to determine 7, from Equation 18.

EXAMPLES

The step-by-step procedure described in this section is now implemented for the two
systems designed previously by the displacement-based design procedure using the clastic
design spectra.
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Example 1

l.
2.
3.

An initial estimate of u, =4.5 cm.
The plastic rotation acceptable at the base of the column is &, = 0.02 radians.

The design displacement given by Equation 6 is u, =u, +h6,= 4.5 + 900x0.02 = 22.5
cm and the design ductility factor is £ =u, fu, =22.5/45=5.

The deformation design spectrum for inelastic systems is shown in Figure 12 for & = 5.
Corresponding to u, =22.5 cm, this spectrum gives 7, =1.01 s and k is computed by
Equation 16, k = (277/1.01)* x 767041 = 29.9 x 10° N/m = 298.7 kN/cm.

The yield strength is given by Equation 17, f, =ku, = 298.7x4.5= 1344 kN.

The circular column is then designed using ACI318-95 for axial load due to
superstructure weight of 7517 kN plus column self weight of 375 kN and the bending
moment due to lateral force = f;: M =hfy= 12096 kN-m. For the resulting column

design, p, =3.62%, flexural strength = 12976 kN-m, and lateral strength = 1441 kN. For
p, =3.62% , Equation 10 gives EI =4.24x10°kN —m?; using this EI value Equation 9
gives k = 174.4 kN/cm. The yield deformation is u, = f, /k =1441/174.4 =8.27 cm.

Since the yield deformation computed in Step 6 differs significantly from the initial
estimate of u, =4.5 cm, iterations are necessary. The results of such iterations are

summarized in Table 3.

The procedure converged after five iterations giving a column design with p, =5.5%.

This column has an initial stiffness, k = 238.6 kN/cm and lateral yield strength, f, = 1907 kN.

200 - - ' - r . -
1001 3
501 3

O.ST

1.01s

0.2;, ~

01— e
00501 02 05 1 2 5 10 20 50

Figure 12. Calculation of 7, for first iteration of the displacement-based design using inelastic
design spectra for Example 1.
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Table 3. Results of iterative displacement-based design procedure
using inelastic design spectra for Example 1

No. | u, u, M T, k 5 p, | Design f, | Design k u,

(cm) | (cm) () | (KN/em) | (kN) | (%) (kN) (kKN/em) | (cm)
1 145012251500 101 298.7 1344 | 3.62 1441 174.4 8.27
2 | 827 1263|318 ]| L.18 219.1 1812 | 5.55 1912 240.3 7.96
3 1796260326 1.16 2244 1786 | 5.43 1899 236.2 8.04
4 1804260324 117 223.0 1793 1 5.50 1907 238.6 7.99
5 1799260325 1.16 223.8 1789 | 5.50 1907 238.6 7.99

Example 2

For this system, the procedure converged after four iterations giving a column design
with p, =3.1%. This column has an initial stiffness, k = 1784 kN/cm and lateral yield

strength, f, = 2965 kN. The results for this system are summarized in Table 4.

Table 4. Results of iterative displacement-based design procedure
using inelastic design spectra for Example 2

No. | u, u, Y7, T, k 1, p, | Design f, | Design k u,
(cm) | (cm) (8) | (kNfem) | (kN) | (%) (kN) (kNfem) | (cm)
1 12001 10.0]5.00]| 045 1512 3024 | 3.60 3226 1979 1.63
2 11.63]1963]591] 043 1630 2658 | 3.00 2907 1745 1.67
3 1.67 | 9.67 | 580 | 0.43 1618 2696 | 3.10 | 2965 1784 1.66
4 1.66 | 9.66 | 5.81 | 0.43 1620 2692 | 3.10 2965 1784 1.66

EVALUATION OF EXAMPLE DESIGNS

The column design resulting from both procedures is evaluated in this section. Whether a
design is satisfactory will be judged by calculating the deformation demand, plastic rotation
demand, and ductility demand imposed by the design earthquake. These demands can be
computed for a system with known properties (initial elastic stiffness, k, mass, m, and yield-
strength f, ) by the following procedure:

1. Calculate the initial elastic period, T,, from the known mass, m, and the initial elastic
stiffness, k.

2. Determine the pseudo-acceleration A from the elastic design spectrum; the elastic design
force, f, =(A/g)w.

3. Calculate the yield-strength reduction factor, R, = f,/f,, in which f, is computed in
Step 2 and f, is known yield-strength of the designed system.

4. Determine the ductility demand p using the R —u-T, relations (Equation 14 and
Figure 9).

5. Calculate u, from Equation 15, and Bp from Equation 6, where u = f,/k and f, is
known yield-strength of the system.

The deformation and plastic rotation are computed by this procedure next for the two
example systems and compared with those estimated by the two afore-mentioned design
procedures.
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STRUCTURAL DESIGN USING ELASTIC DESIGN SPECTRA

Example 1

Recall that the initial elastic vibration period 7, = 1.82 s for this example falls in the
velocity-sensitive region of the design spectrum. For the final design, k = 95.17 kN/cm and
f, =839.7 kN (Table 1), and T, = 1.78 s. From the elastic design spectrum, A = 0.505g for
T, = 1.78 s and {'= 5%, which gives f, =7517x0.505=3799kN . Then R, =3799/839.7 =
4.52. Since T, = 1.78 s > T, Equation 14 gives 4= R, = 4.52. Calculated from Equation 15,
u, = (4.52/4.52)x(1.78/2%%0.505x980 = 39.7 cm. The yield displacement u,=839.7/95.17
= 8.82 cm, and Equation 6 gives the plastic rotation &, = (39.7-8.82)/900 = 0.0343 radians.

In designing the structure by using the elastic design spectra for equivalent linear
systems, the deformation of the designed structure was estimated to be 26.8 cm (Table 1).
However, when the designed structure is analyzed using Equation 15, the deformation
demand is 39.7 cm. Which of the two values is more accurate? Clearly it is the latter value
because it comes from inelastic design spectra which are based on nonlinear response history
analyses of inelastic systems considering a wide range of system parameters and many
ground motions (Krawinkler and Nassar 1992; Vidic, Fajfar, and Fischinger 1994). In
contrast, the former value comes from an approximate procedure based on equivalent linear
systems, a procedure that is known to be inaccurate (Chopra and Goel 2000). Thus the design
procedure has underestimated the deformation demand by 100x(26.8-39.7)/39.7 = -32.6%.

The displacement-based design procedure based on elastic design spectra for equivalent
linear systems has additional deficiencies. Although the structure was designed for an

acceptable value of the plastic rotation &, = 0.02 radians, the plastic rotation demand =

0.0343 radians, 72% more than the acceptable value. Thus the design procedure leaves an
erroneous impression that the allowable plastic rotation constraint has been satisfied.
Furthermore, the ductility factor of 3.04 computed in the design procedure (Table 1) is much
lower than the ductility demand of 4.52; the difference is —32.6%. Underestimating the
ductility demand may lead to unconservatively less-ductile detailing. Clearly the procedure
has led to an unsatisfactory design.

Example 2

Recall that the initial elastic vibration period 7, = 0.56 s for this example falls in the

acceleration-sensitive region of the design spectrum. For the final design, & = 967.2 kN/cm
and f, = 1715 kN (Table 2), and T, = 0.56 s. From the elastic design spectrum, A = 1.355¢

for T, = 0.56 s and { = 5%, which gives f, =7517x1.355=10185kN. Then R =
10185/1715 = 5.94. T, =0.67 s for the selected design spectrum. Assuming, 7. <7, <T,,
Equation 14 gives = (T /T )xR, = (0.67/0.56) X 5.94 =7.11. Knowing ¢ =7.11, T, can
now be calculated as T,=(y24 -1/ @)xT, = (§2x7.11-1/7.11)x0.67 = 0.34 s. Therefore
our initial assumption of T, <7, <T, is correct and no iteration is required. Calculated from
Equation 15, u, = (7.11/5.94)x (0.56/27r)2><1.355><980 = 12.6 cm. The yield displacement

u,=1715/967.2 = 1.77 cm, and Equation 6 gives the plastic rotation 8, = (12.6-1.77)/400 =
0.0271 radians.
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The displacement-based design procedure using elastic design spectra predicted the
maximum deformation of 9.77 cm (Table 2) which differs by —22.5% compared to the
deformation demand of 12.6 cm from the inelastic design spectrum. The plastic rotation
demand = 0.0271 radians is 30% more than the acceptable value of 0.02 radians.
Furthermore, the ductility factor of 5.51 computed in the design procedure is much lower
than the ductility demand of 7.11; the difference is —22.5%. Just as in Example 1, the
procedure has led to an unsatisfactory design without any warning to the designer.

STRUCTURAL DESIGN USING INELASTIC DESIGN SPECTRA

Example 1

For the final design, k = 238.6 kN/cm and f, =1907kN (Table 3), and T, = 1.16 s. From
the elastic design spectrum, A = 0.775g for 7, = 1.16 s and { = 5%, which gives
f,=7517x0.775=5826 KN . Then R, = 5826/1907 = 3.06. Since T, = 1.16 s > T,
Equation 14 gives 4 = R, = 3.06. Calculated from Equation 15, u, A6 =

ki m

(3.06/3.06)x(1.16/2m°x0.775%980 = 25.9 cm. The yield displacement u,= 1907/238.6 = 8.0
cm, and Equation 6 gives the plastic rotation &, = (25.9-8.0)/900 = 0.0199 radians.

In designing the structure by the procedure based on inelastic design spectra, the
deformation demand for the designed structure was estimated to be 26.0 cm and its ductility
demand as 3.25 (Table 3). When the designed structure is analyzed using Equations 11 to 15,
the deformation demand is 25.9 cm and the ductility demand is 3.06. Clearly the design
procedure has estimated the demands consistent with those predicted by well-established
concepts of inelastic design spectra. Furthermore, the plastic rotation demand of 0.0199
radians is essentially identical to the acceptable value of 0.02 radians that was imposed on the
design. Clearly the proposed procedure has produced a satisfactory design.

Example 2

For the final design, k = 1784 kN/cm and f, = 2965 kN (Table 4), and 7, = 0.43 5. From
the elastic design spectrum, A = 1.355g for T, = 0.43 s and { = 5%, which gives
f, =T517Tx1.355=10185kN. Then R = 10185/2965 = 3.43. T, =0.67s for the selected
design spectrum. Assuming, T,. <T, <T,_, Equation 14 gives 4= (T, /T )xR, = (0.67/0.43)
x 3.43 = 5.35. Knowing ¢ = 5.35, T, can now be calculated as TC.=(W,L£)><TC =

(v2x%5.35-1/5.35)x0.67= 0.39 s. Therefore our initial assumption of T.<7, <T, is
correct and no iteration is required. Calculated from Equation 15, u, =

m

(5.35/3.43)x(0.43/21)*x1.355x980 = 9.70 cm. The yield displacement u, = 2965/1784 = 1.66
cm, and Equation 6 gives the plastic rotation 8, = (9.70-1.66)/400 = 0.0201 radians.

The displacement-based design procedure using inelastic design spectra predicted the
deformation demand of 9.66 cm and ductility demand of 5.81 (Table 4), which are essentially
identical to the values of 9.70 cm and 5.35, respectively, determined by analyzing the
designed structure using Equations 11 to 15. Furthermore, the plastic rotation demand of
0.0201 radians is essentially identical to the acceptable value of 0.02 radians imposed on the
design. Just as in Example 1, the procedure has led to a satisfactory design.
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Note that for the examples considered, the displacement-based design procedure using
inelastic design spectra leads to a structure with more longitudinal reinforcement and thus
higher strength compared to the design based on elastic design spectra for equivalent linear
systems. A stronger column is necessary to satisfy the selected design criteria.

CONCLUSIONS

Direct displacement-based design requires a simplified procedure to estimate the seismic
deformation of an inelastic SDF system, representing the first (elastic) mode of vibration of
the structure, an MDF system. A simplified procedure that uses the well-known inelastic
design spectra has been presented in this paper. With the aid of examples, it has been
demonstrated that the procedure (1) provides displacement estimates consistent with those
predicted by the well-established concepts of inelastic design spectra, and (2) produces a
structural design that satisfies the design criteria for acceptable plastic rotation.

The displacement-based design procedure proposed by several researchers in recent years
uses elastic design spectra for equivalent linear systems based on the secant stiffness method
or its variations like the substitute structure method. In this paper, we have demonstrated that
the deformation and ductility factor that are estimated in designing the structure by this
procedure are much smaller than the deformation and ductility demands determined by
nonlinear analysis of the system using inelastic design spectra. Furthermore, it has been
shown that the plastic rotation demand on structures designed by this procedure may exceed
the acceptable value of the plastic rotation. Thus, the design procedure leaves an erroneous
impression that the allowable plastic rotation constraint has been satisfied.

While equivalent linear systems may have been appealing in the 1960s and 1970s, their
limitations have been recognized for a long time. Jennings (1968) discussed the wide
differences among six different equivalent linear systems, and for general use recommended
a system that gives much smaller damping than in the secant stiffness method. Iwan and
Gates (1979) demonstrated by matching the response of the equivalent linear system to
inelastic response spectra that the system damping never exceeded 14%, much less than the
secant stiffness method. Chopra and Goel (2000) concluded that the commonly used
equivalent linear systems are unacceptably inaccurate in estimating the seismic deformation
of inelastic structures. Therefore, they are inappropriate for performance-based design that
aims to produce reliable structural designs that satisfy the selected performance criteria.

ACKNOWLEDGMENTS

This research investigation is supported by the National Science Foundation under Grant
CMS-9812531. The authors are grateful for this support.

REFERENCES CITED

American Concrete Institute (ACL), 1995, Building Code Requirements for Structural Concrete (ACI
318-95) and commentary (ACI 318R-95), Farmington Hills, ML

Chopra, A. X., 1995, Dynamics of Structures: Theory and Applications to Earthquake Engineering,
Prentice Hall, Upper Saddle River, NJ.

Chopra, A. K. and Goel, R. K., 1999, Capacity-demand-diagram methods for estimating seismic
deformation of inelastic structures: SDF systems, Report No. PEER-1999/02, Pacific Earthquake
Engineering Research Center, University of California, Berkeley, April.

Chopra, A. K. and Goel, R. K., 2000, Evaluation of a NSP to estimate seismic deformation: SDF
systems, Journal of Structural Engineering, ASCE, 126 (4), 482-490.



64 A.K.CHOPRA AND R.K.GOEL

Iwan, W. D. and Gates, N. C., 1979, The effective period and damping of a class of hysteretic
structures, Earthquake Engineering and Structural Dynamics, 7(3), 199-212.

Jennings, P. C., 1968, Equivalent viscous damping for yielding structures, Journal of the Engineering
Mechanics Division, ASCE, 94 (EM1), 103-116.

Kowalsky, M., Priestley, M.J.N., and MacRae, G. A., 1994, Displacement-based design of RC bridge
columns, Proceedings, 2™ International Workshop on the Seismic Design of Bridges,
Queenstown, New Zealand, 1, 138-163.

Krawinkler, H., and Nassar, A. A., 1992, Seismic design based on ductility and cumulative damage
demands and capacities, Nonlinear Seismic Analysis and Design of Reinforced Concrete
Buildings, P. Fajfar and H. Krawinkler, Eds., Elsevier Applied Science, New York.

MacGregor, J. G, 1997, Reinforced Concrete: Mechanics and Design, Third Edition, Prentice Hall,
Upper Saddle River NJ, 485-486.

Miranda, E. and Bertero, V. V., 1994, Evaluation of strength reduction factors for earthquake-resistant
design, Earthquake Spectra, 10(2), 357-379.

Moehle, J. P, 1992, Displacement-based design of R/C structures subjected to earthquakes,
Earthquake Spectra, 8(3), 403-427.

Newmark, N. M. and Hall, W. J., 1982, Earthquake Spectra and Design, Earthquake Engineering
Research Institute, Berkeley, CA.

Priestley, MJJ.N., Seible, F, and Calvi, G. M., 1996, Seismic Design and Retrofit of Bridges, John
Wiley & Sons, New York, NY.

Priestley, M.J.N. and Calvi, G M., 1997, Concepts and procedures for direct displacement-based

design, Seismic Design Methodologies for the Next Generation of Codes, Fajfar and Krawinkler
(eds.), Balkema, Rotterdam, 171-181.

Riddell, R., Hidalgo, P, Cruz, E., 1989, Response modification factors for earthquake resistant design
of short period buildings, Earthquake Spectra, 5(3), 571-590.

Shibata, A. and Sozen, M. A., 1976, Substitute structure method for seismic design in R/C, Journal of
the Structural Division, ASCE, 102(ST1), 1-18.

Tso, W. K. and Naumoski, N., 1991, Period-dependent seismic force reduction factors for short-period
structures, Canadian Journal of Civil Engineering, 18(4), 568-574.

Veletsos, A. S. and Newmark, N. M., 1960, Effects of inelastic behavior on the response of simple
system to earthquake motions, Proceedings of the 2™ World Conference on Earthquake
Engineering, Japan, 2, 895-912.

Vidic, T., Fajfar, P,, and Fischinger, M., 1994, Consistent inelastic design spectra: strength and
displacement, Earthquake Engineering and Structural Dynamics, 23(5), 507-521.



