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SUMMARY

Performance-based seismic design requires reliable methods to predict earthquake demands on structures,
and particularly inelastic deformations, to ensure that speci<c damage-based criteria are met. Several
methods based on the response of equivalent linear single-degree-of-freedom (SDOF) systems have
been proposed to estimate the response of multi-degree-of-freedom structures. These methods do not
o>er advantages over the traditional Veletsos–Newmark–Hall (VNH) procedure, indeed, they have been
shown to be inaccurate. In this study, the VNH method is revised, considering the inelastic response
of elastoplastic, bilinear, and sti>ness-degrading systems with 5% damping subjected to two sets of
earthquake ground motions. One is an ensemble of 51 earthquake records in the Circumpaci<c Belt,
and the other is a group of 44 records in California. A statistical analysis of the response data provides
factors for constructing VNH inelastic spectra. Such factors show that the ‘equal-displacement’ and
‘equal-energy’ rules to relate elastic and inelastic responses are unconservative for high ductilities in
the acceleration- and velocity-sensitive regions of the spectrum. It is also shown that, on average,
the e>ect of the type of force–deformation relationship of non-linear systems is not signi<cant, and
responses can be conservatively predicted using the simple elastoplastic model. Copyright ? 2001 John
Wiley & Sons, Ltd.
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INTRODUCTION

After the great deal of damage caused by earthquakes in the last 10 or 15 years, there seems to
be agreement that changes in the seismic design process are necessary to permit the construc-
tion of structures with predictable seismic performance. A performance objective represents
a speci<c risk, stated in terms of the desired structural behavior (damage state) associated
with a speci<c level ofearthquake demand (seismic hazard). Performance-based seismic design
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requires reliable methods to analyze, design, and verify structures to ensure that selected per-
formance goals are met. For this purpose, advanced techniques will have to be incorporated in
future design procedures. Veri<cation of the seismic performance of a structure by means of
non-linear 3-D response–history analysis is possible today, however, signi<cant improvement
and standardization of this procedure, and the software required, are necessary to allow general
use by the profession. A great diLculty for non-linear analysis is the limited understanding of
the inelastic properties of structures, so that there are no generally accepted mathematical mod-
els for structural members, specially for reinforced concrete members in their various forms
(walls, columns, joints) and predominant types of behaviour (shear, Mexure–compression inter-
action). Besides modelling the hysteretic load–deformation behaviour, limit or collapse states
need to be identi<ed and de<ned, including disruption of concrete members due to crushing,
punching shear, bond or anchorage failure, and fracture of welds and local buckling of steel
members. Furthermore, a realistic non-linear building model should include the foundations
and surrounding soil. Extensive discussion of these topics can be found elsewhere [1–3].
Until more sophisticated analysis procedures become generally available, simpler approaches

are necessary. A simpli<ed non-linear analysis procedure is the push-over method, in which
the structure is subjected to a monotonically increasing lateral load of prescribed pattern; the
structure progressively degrades, as structural members sequentially plastify, until it reaches
a limit state or collapse condition. The incremental static analysis permits to determine the
global force–displacement relationship of the building, or capacity curve [4], in terms of the
total lateral force (base shear) and the lateral deMection of the roof. The strengths of this
method are its simplicity and its potential to expose weak links in the structure; its weakness
is the questionable validity of a <xed lateral load pattern associated to only one mode of
vibration of the structure.
The capacity curve is then converted to a capacity diagram or force–deformation relation-

ship of a simpli<ed SDOF representation of the multi-degree building. In order to determine
compliance with a given performance level, the displacement response of the building due
to a given earthquake demand must be determined. The ATC-40 document [4] proposes ap-
proximate methods to estimate the non-linear response of SDOF systems on the basis of the
response of equivalently damped linear systems. Chopra and Goel [5] have pointed out sev-
eral de<ciencies of the ATC-40 procedures, including non-convergence, and have shown that
deformations can be signi<cantly underestimated over a wide range of system periods.
In the traditional VNH inelastic spectrum [6–13], the response of a non-linear SDOF system

is directly read without iterations; in turn, the spectral ordinates are associated to known
degrees of uncertainty, depending on the probability of exceedance of the factors selected to
construct the spectrum. The earthquake demand (seismic hazard) is simply represented by
the peak ground motion parameters: acceleration A, velocity V , and displacement D. Inelastic
spectra can be constructed for a variety of situations and conditions, the only limitation
being the quality and quantity of the ground motion data available to derive the factors for
constructing the spectrum. The statistical procedure [12] used to obtain such factors is brieMy
summarized herein.

STRUCTURAL MODELS AND GROUND MOTIONS CONSIDERED

A simple SDOF system was used in this study, with force–deformation relationship given
by three non-linear models: elastoplastic, bilinear, and sti>ness degrading (Figure 1). These
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Figure 1. Single-degree-of-freedom system and non-linear load–deformation models used.

models cover a broad range of structural behaviour; they are intended to represent over all
generic behavior, rather than speci<c characteristics of individual systems [12; 14]. Strength
deterioration was not considered, mainly because in a well-detailed structure it should only
occur at extreme deformations near the failure state. A damping factor �=0:05, i.e. <ve per
cent of critical, was used.
The Circumpaci<c Belt group of earthquake records used as input motions is presented

in Table I. These records represent moderate to large intensities of motion. Most of the
records listed in Table I meet at least two of the following conditions: structural damage
was observed near the recording site, peak ground acceleration larger than 0:25g, and peak
ground velocity larger than 25 cm=s. It was not attempted to group the records according to
similar characteristic regarding soil conditions, tectonic setting, Mercalli Intensity, distance to
fault, or others; the reason was in part the lack of reliable data, on geotechnical information
for example, and the diLculty to form groups of statistical signi<cance. Naturally, owing
to the heterogeneity of the group the results present larger scatter and the factors derived,
a higher degree of uncertainty. Indeed, if families of records of similar characteristics were
arranged, the underlying uncertainty should decrease and response estimates could be made
more accurately. It must be pointed out however that the factors derived for this group of
records are not intended to be directly extrapolated to very soft soils, since most of the ground
motion data considered are on <rm ground.
To form a group of records representative of California three types of earthquake events

were analysed. The <rst type corresponds to large strike-slip earthquakes (Mw¿7) typically
associated with major faults rupture, several meters of slip along the fault, and strong motion
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Table I. Earthquake records in the Circumpaci<c Belt group.

Station, component, date Maximum Maximum Maximum
acceleration velocity displacement

(g) (cm=s) (cm)

CMD Vernon, U.S.A., S08W (03=10=1933) −0:133 −29:03 −19:50
El Centro, U.S.A., S00E (05=18=1940) −0:348 −33:45 −12:36
Olympia, U.S.A., N86E (04=13=1949) 0.280 17.09 −9:38
Eureka, U.S.A., N79E (12=212=1954) 0.258 −29:38 −12:55
Ferndale, U.S.A., N44E (12=21=1954) −0:159 −35:65 14.72
Kushiro Kisyo-Dai, Japan, N90E (04=23=1962) 0.478 −20:01 5.22
Ochiai Bridge, Japan, N00E (04=05=1966) −0:276 23.66 8.36
Temblor, U.S.A., S25W (06=27=1966) 0.348 −22:52 −5:55
Cholame 2, U.S.A., N65E (06=27=1966) 0.489 78.08 −26:27
Cholame 5, U.S.A., N85E (06=27=1966) 0.434 25.44 −6:89
Lima, Peru, N08E (10=17=1966) 0.409 −15:20 −11:67
El Centro, U.S.A., S00W (04=08=1968) 0.130 −25:81 12.96
Hachinohe, Japan, N00E (05=16=1968) 0.269 −35:43 −9:68
Aomori, Japan, N00E (05=16=1968) −0:257 −39:12 −19:97
Muroran, Japan, N00E (05=16=1968) −0:220 30.28 7.90
Itajima Bridge, Japan, Long. (08=06=1968) 0.612 −22:56 −4:59
Itajima Bridge, Japan, Long. (09=21=1968) −0:261 −12:93 −2:80
Toyohama Bridge, Japan, Long. (01=05=1971) 0.450 15.90 3.38
Pacoima, U.S.A., S16E (02=09=1971) 1.171 113.23 −41:92
Orion LA, U.S.A., N00W (02=09=1971) 0.255 30.00 16.53
Castaic, U.S.A., N21E (02=09=1971) 0.316 17.16 −5:05
San Juan, Argentina, S90E (11=23=1977) 0.193 −20:60 6.33
Ventanas, Chile, Trans. (11=07=1981) 0.268 −17:87 −8:04
Papudo, Chile, Long. (11=07=1981) −0:603 −18:93 −7:43
La Ligua, Chile, Long. (11=07=1981) −0:469 −18:83 4.49
Rapel, Chile, N00E (03=03=1985) 0.467 −21:64 −6:54
Zapallar, Chile, N90E (03=03=1985) 0.304 13.46 −1:69
Llo-Lleo, Chile, N10E (03=03=1985) −0:712 −40:29 −10:49
Viña del Mar, Chile, S20W (03=03=1985) 0.363 30.74 −5:42
UTFSM, Chile, N70E (03=03=1985) 0.176 14.60 3.11
Papudo, Chile, S40E (03=03=1985) 0.231 12.41 1.60
Llay Llay, Chile, S10W (03=03=1985) −0:352 −41:79 8.43
San Felipe, Chile, N80E (03=03=1985) 0.434 −17:77 −3:50
El Almendral, Chile, N50E (03=03=1985) 0.297 −28:58 −5:78
Melipilla, Chile, N00E (03=03=1985) −0:686 34.25 12.02
Pichilemu, Chile, N00E (03=03=1985) 0.259 −11:68 3.73
Iloca, Chile, N90E (03=03=1985) 0.278 15.09 1.39
SCT, Mexico, N90E (09=19=1985) −0:171 −60:61 21.16
Corralitos, U.S.A., N00E (10=18=1985) 0.630 −55:20 12.03
KSR Kushiro, Japan, N63E (01=15=1993) 0.725 33.59 4.73
Pacoima DAM, U.S.A., S05E (01=17=1994) −0:415 44.68 4.65
Newhall, U.S.A., N00E (01=17=1994) 0.591 −94:73 28.81
Pacoima-Kagel, U.S.A., N00E (01=17=1994) 0.433 −50:88 −6:64
Sylmar, U.S.A., N00E (01=17=1994) 0.843 −128:88 −30:67
Santa Monica, U.S.A., N90E (01=17=1994) −0:883 41.75 −15:09
Moorpark, U.S.A., S00E (01=17=1994) 0.292 20.28 4.67
Castaic, U.S.A., N90E (01=17=1994) 0.568 −51:51 −9:19
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Table I. (Continued).

Station, component, date Maximum Maximum Maximum
acceleration velocity displacement

(g) (cm=s) (cm)

Arleta, U.S.A., N90E (01=17=1994) 0.344 −40:37 8.36
Century City-LA, U.S.A., N90E (01=17=1994) 0.256 21.36 −6:51
Obregon Park-LA, U.S.A., N00E (01=17=1994) −0:408 −30:86 −2:65
Hollywood-LA, U.S.A., N00E (01=17=1994) −0:389 22.26 4.27

Figure 2. Average of spectra normalized to peak ground acceleration for four California earthquakes.
Elastic systems with 5 per cent damping.

duration from 20 to 30 s. Representative of this type, although not the greatest that can be
expected, is the 1992 Landers earthquake: Mw =7:2 (Ms = 7:5), rupture length of about 70km,
and largest surface o>set of about 6:4 m [15]. Figure 2 shows the average elastic response
spectrum—normalized to peak ground acceleration—for four records of the Landers earthquake
(stations at Coolwater and Lucern with both components of each). These records were baseline
adjusted with a procedure specially devised to recover long period information [16]. The
spectrum shape reveals an important content of long period waves, which are of course related
to large ground displacements. Although there is an abundant set of strong motion recordings
of the Landers earthquake, no data are available on similar or stronger events of this kind
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to permit to form a statistically signi<cant group. The second type of California earthquakes
corresponds to moderate magnitude events, like the 1989 Loma Prieta (Mw =6:9, Ms = 7:1, no
evidence of surface rupture but signi<cant ground cracking, strong motion lasting less than
10 s), and the 1994 Northridge (Mw =6:7, Ms = 6:8, no surface faulting, about 10 s of strong
motion duration). Average normalized spectra for Loma Prieta (24 records, see Table II) and
Northridge (20 records) are shown in Figure 2. The spectra are quite similar, except perhaps
for the more important long period content of the Loma Prieta spectrum. These earthquakes
should not be considered rare events in California; indeed, the intensity of the Northridge
motions corresponds to a probability of exceedance larger than the design (code) motions [17],
i.e. they are adequate to check structural performance of code designed structures. For this
reason, and due to the similarity of their average spectra, the Loma Prieta and Northridge
records (44 total) were combined in the California group (Table II) considered in this study.
The third type of earthquakes in California is represented by the 1987 Whittier Narrows
event, Mw =6. The average spectrum for 10 records obtained during this earthquake (stations
at Alhambra, Altadena, LA-116th St., LA-Obregon Park, and Tarzana, with two components
each) clearly presents narrower frequency content and lower ampli<cation—except in the
acceleration region—than the previously discussed types of earthquakes (Figure 2). Thus,
these weaker records were discarded for this study.

RESPONSE CALCULATIONS AND STATISTICAL ANALYSIS OF THE DATA

The equation of motion of the system shown in Figure 1 can be written as

Vu(t) + 2�!u̇(t) +
R(u)
m

=− Vy(t) (1)

where u is the relative displacement of the mass m with respect to its base, !=
√

k=m is
the undamped elastic circular frequency, R(u) is the hysteretic restoring force with sti>ness
parameter k (Figure 1), �= c=2!m is the damping factor as a fraction of the critical value, and
Vy(t) is the base acceleration. Of course the use of the elastic frequency and elastic sti>ness is
only a conventional manner of identifying the various systems; certainly, the eventual period
change or softening due to inelastic behaviour is accounted for in the response calculations.
The resistance function is de<ned by the yield strength Ry and the yield deformation uy,
such that Ry = kuy =m!2uy. The response ductility � is de<ned as the ratio of the maximum
displacement, umax, without taking into account the sign, over the yield displacement, i.e.
�= umax=uy. One important property of Equation (1) is that R(u) and Vy(t) can be scaled by a
constant and the response ductility does not change. In fact, if � is the response ductility of
a system with resistance function de<ned by Ry and uy when subjected to the ground motion
Vy(t), the response of a new system with R′

y = �Ry and u′y = �uy subjected to a ground motion
Vy′(t)= � Vy(t), with �=constant, is such that �′=�. The importance of this property is that it
permits to scale or normalize the ground motions and the inelastic response spectra for the
purpose of calculating the average ampli<cations for a family of records.
Responses were calculated for 250 di>erent frequencies for each record, following an itera-

tive procedure to obtain inelastic responses associated with the desired target ductility values
of 1 (elastic), 1.5, 2, 3, 5 and 10. The results were presented in the form of tripartite log-
arithmic plots, as the spectra shown in Figure 3. In this case the abscissa is the frequency
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Table II. Earthquake records in the California group.

Station, date Comp Maximum Maximum Maximum
acceleration velocity displacement

(g) (cm=s) (cm)

Arleta, Nordho> Ave. Fire Station (01=17=1994) N00E 0.308 −23:29 8.48
N90E 0.344 −40:37 8.36

Castaic, Old Ridge Route (01=17=1994) N00E 0.514 −52:56 −15:32
N90E 0.568 −51:51 −9:19

Century City, L.A. (01=17=1994) N00E 0.222 −25:07 6.25
N90E 0.256 21.36 −6:51

Los Angeles, Hollywood Storage Gr. (01=17=1994) N00E −0:389 22.26 4.27
N90E 0.232 −18:15 4.70

Los Angeles, Obregon Park (01=17=1994) N00E −0:408 −30:86 −2:64
N90E 0.355 14.47 −4:16

Moorpark (01=17=1994) N00E 0.292 20.28 4.67
N90E 0.193 −20:37 4.11

Newhall, L.A. County Fire Station (01=17=1994) N00E 0.591 −94:73 28.81
N90E −0:583 −74:84 16.75

Pacoima, Kagel Canyon (01=17=1994) N00E 0.433 −50:88 −6:64
N90E 0.301 −30:94 −10:96

Santa Monica, City Hall Gr. (01=17=1994) N00E −0:370 24.91 7.05
N90E −0:883 41.75 −15:09

Sylmar, County Hosp. Parking Lot (01=17=1994) N00E 0.843 −128:89 −35:96
N90E 0.604 −76:94 −15:99

Capitola, Fire Station (10=18=1989) N00E −0:472 36.15 12.07
N90E −0:399 30.71 −9:46

Corralitos, Eureka Canyon Rd. (10=18=1989) N00E 0.630 −55:20 −11:85
N90E 0.479 −47:50 −16:36

Gilroy #1, Gavilan College (10=18=1989) N00E 0.435 31.92 7.34
N90E 0.443 −33:84 7.88

Gilroy #2, Hwy 101=Bolsa Rd. Motel (10=18=1989) N00E −0:351 33.34 8.15
N90E 0.323 −39:23 12.03

Gilroy #3, Gilroy Sewage Plant (10=18=1989) N00E −0:542 34.48 −7:31
N90E 0.369 43.77 16.31

Gilroy #4, San Isidro School (10=18=1989) N00E −0:416 39.08 −7:72
N90E −0:214 38.18 9.42

Gilroy #7, Mantelli Ranch (10=18=1989) N00E 0.210 16.58 2.71
N90E 0.320 −16:31 3.58

Gilroy, Gavilan College. (10=18=1989) N67E 0.356 28.92 6.86
N23W −0:316 22.96 5.81

Hollister, South St. and Pine Dr. (10=18=1989) N00E 0.369 62.78 33.37
N90E −0:178 −30:89 −19:28

Santa Cruz, UCSC. (10=18=1989) N00E −0:442 21.23 −5:91
N90E 0.409 21.23 −8:64

Saratoga, Aloha Ave. (10=18=1989) N00E −0:504 −41:35 16.21
N90E 0.322 −43:61 27.95

San Francisco Int. Airport (10=18=1989) N00E −0:235 26.46 4.87
N90E −0:332 29.26 −5:81

(f=!=2�), but the period (T =1=f) may be simultaneously read as well since a plot with T
as abscissa is a mirror image of the former. This type of plot, named inelastic yield spectrum
(IYS) [12], or constant ductility spectrum [18], features in the displacement axis the yield
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Figure 3. Inelastic yield spectra for sti>ness degrading systems with 5 per cent damping subjected to
the Sylmar record, N00E, 01=17=94.

deformation uy necessary to limit the maximum deformation umax of the system so that the
target ductility � is not exceeded. The acceleration axis, at 90◦ clockwise from the displace-
ment axis, features the quantity !2uy, which multiplied by the mass of the system gives the
yield strength Ry. In the tripartite logarithmic plot the spectral quantities in the displacement,
velocity, and acceleration axes are interrelated; indeed, denoting them by Sd, Sv and Sa, re-
spectively, the relationship Sa =!Sv =!2Sd holds. By virtue of the aforementioned property
of Equation (1), and the manner in which the IYS is constructed, the IYS can be directly
scaled or normalized by a constant factor �, which is equivalent to a parallel shift of the
spectral ordinates in the vertical direction.
The purpose of the statistical analysis is to determine factors for constructing design spectra

when estimates can be made of the possible peak ground motion parameters for future earth-
quakes a>ecting a site. The parameters A, V and D control the response over three regions of
the spectrum and provide a better basis for characterizing design spectra than using only one.
Figure 4(a) shows the elastic pseudo-acceleration response Sa of a rigid system (f=5 cps)
versus peak ground acceleration A for the 51 Circumpaci<c records. It is apparent that such
variables are linearly correlated, therefore rational estimates of the response to a speci<ed
earthquake demand can be made if statistics of the random variable Sa=A (acceleration re-
sponse ampli<cation) are known. Similarly, Figure 4(c) shows that the displacement response
Sd of a rather Mexible system (f=0:33 cps) and peak ground displacement D are correlated,
thus, response estimates can be made if the random variable Sd=D is studied. The same can
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Figure 4. Correlation between responses and peak ground motion parameters. Data for the
Circumpaci<c Belt group of records.

be said for the variable Sv=V in the intermediate frequency region (Figure 4(b)). The previous
observations are well known and perhaps widely accepted. But, what may not be so clearly
understood is that displacement responses (Sd) of Mexible systems are not correlated with peak
ground acceleration (A) as shown in Figure 4(d), therefore, Sd for such systems cannot be
estimated from average spectra normalized to peak ground acceleration.
In summary, the statistical analysis consists in determining factors  � which, applied to the

ground motion estimates pg, give the spectral ordinates S� for each of the three characteristic
regions of the spectrum:

S� =  �pg (2)

where pg represents A, V or D depending on the spectral region under consideration. Alter-
natively, the inelastic spectrum S� can be obtained by de-amplifying the elastic spectrum Se,
so that

S� =��Se (3)

Copyright ? 2001 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2002; 31:515–538
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Figure 5. Average of spectra normalized to peak ground acceleration, displacement and
velocity. Elastic systems with 5 per cent damping.

where the de-ampli<cation factor �� obviously corresponds to the ratio  �= �=1 and Se corre-
sponds to the particular case of S�=1. It is worth commenting here that Equation (3) is often
misunderstood as equivalent to ‘derive inelastic spectra from elastic response analyses’; this
is certainly not the case because actual inelastic responses directly lead to the  � factors from
which the �� factors are obtained.

The methodology, presented in detail by Riddell and Newmark [12], is brieMy described
herein:

(a) As a <rst step in the analysis the spectra for each record is independently normalized
with respect to its three peak ground motion parameters, so that the ith record is nor-
malized to peak ground acceleration Ai =1, to peak ground velocity Vi =1, and to peak
ground displacement Di =1. Then, responses are computed for a number of records
and statistics of the normalized responses are evaluated at each frequency. Figure 5
shows the average spectra normalized to peak ground acceleration, displacement and
velocity, from top to bottom, respectively, for the two groups of records considered in
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Figure 6. Mean and mean plus one standard deviation of normalized spectra for the California group
of records. Elastic systems with 5 per cent damping.

this study. The average spectra feature segments that present approximately constant
response ampli<cation with respect to the corresponding peak ground motion parame-
ters, thus making it possible to identify a region of spectral acceleration ampli<cation,
a region of spectral velocity ampli<cation, and a region of displacement ampli<cation.
Henceforth these spectral regions will be simply referred to as acceleration, velocity
and displacement regions. Incidentally, in Figure 5, the similarity of the average spec-
tra for both groups of records is apparent (note that this comparison is to be made
in the spectral region associated with the normalization parameter of the spectra). In
turn, as illustrated by Figure 6, the standard deviation at each frequency increases from
high to low frequencies when the spectra are normalized to peak ground acceleration,
whereas the opposite occurs for normalization to ground displacement. Normalization
to ground velocity results in a more uniform standard deviation over the entire fre-
quency range. The previous observations justify the procedure based in normalizing to
three parameters independently in order to minimize the uncertainty in each spectral
region.
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(b) To eliminate arbitrariness in the determination of the spectral regions, a procedure [12]
consisting in <tting trapezoidal lines to the mean spectra between <xed lower and upper
frequency limits is used; these limits correspond to the beginning of the displacement
region and the end of the acceleration region. In this study the lower frequency limit
was chosen as 0:15 cps, and the upper frequency was <xed at 10 cps. The selection of
these limits requires observation of the average elastic and inelastic spectra. However,
it is worth pointing out that minor changes in these limits have a negligible e>ect on
the <nal ampli<cation factors.

(c) Finally, frequency-band statistics are computed within the determined spectral regions
for the ensemble of normalized spectra, in such a way that statistics for the accelera-
tion region are computed for the data normalized to peak ground acceleration, statistics
in the velocity region are computed for data normalized to peak ground velocity, and
correspondingly for the displacement region. The mean values correspond to the afore-
mentioned  � factors, the standard deviation is designated by ��, and the coeLcient of
variation by Z� =��= �.

DISCUSSION OF RESULTS OF THE STATISTICAL ANALYSIS

The calculated frequency-band statistics are summarized in Tables III–V for the Circumpaci<c
Belt group and in Table VI for the California group. It can be seen that the factors for elasto-
plastic systems are very similar to those of bilinear and sti>ness-degrading systems. In this
regard, it is instructive to compare the average spectra for the three types of load-deformation

Table III. Factors for constructing elastic and inelastic demand spectra for elastoplastic systems
with 5 per cent damping. Circumpaci<c Belt records.

Spectral region Ductility
�  � �� COV ��

1.0 1.742 0.776 0.446 1.000
1.5 1.058 0.452 0.427 0.608

Displacement 2.0 0.756 0.326 0.431 0.434
3.0 0.499 0.228 0.457 0.286
5.0 0.301 0.142 0.472 0.173

10.0 0.148 0.072 0.488 0.085

1.0 1.695 0.773 0.456 1.000
1.5 1.058 0.417 0.394 0.624

Velocity 2.0 0.794 0.310 0.390 0.468
3.0 0.547 0.211 0.386 0.322
5.0 0.365 0.134 0.367 0.216

10.0 0.224 0.080 0.356 0.132

1.0 2.100 0.701 0.334 1.000
1.5 1.469 0.379 0.258 0.699

Acceleration 2.0 1.238 0.287 0.232 0.589
3.0 1.020 0.221 0.217 0.486
5.0 0.841 0.181 0.215 0.400

10.0 0.671 0.159 0.236 0.319
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Table IV. Factors for constructing elastic and inelastic demand spectra for bilinear systems
with 5 per cent damping. Circumpaci<c Belt records.

Spectral region Ductility
�  � �� COV ��

1.0 1.742 0.776 0.446 1.000
1.5 1.056 0.446 0.423 0.606

Displacement 2.0 0.745 0.312 0.420 0.427
3.0 0.474 0.205 0.432 0.272
5.0 0.271 0.111 0.411 0.156

10.0 0.120 0.044 0.367 0.069

1.0 1.695 0.773 0.456 1.000
1.5 1.043 0.397 0.381 0.615

Velocity 2.0 0.764 0.282 0.369 0.451
3.0 0.503 0.174 0.347 0.296
5.0 0.317 0.102 0.322 0.187

10.0 0.182 0.053 0.293 0.107

1.0 2.100 0.701 0.334 1.000
1.5 1.442 0.366 0.253 0.687

Acceleration 2.0 1.195 0.262 0.220 0.570
3.0 0.958 0.198 0.206 0.456
5.0 0.759 0.154 0.203 0.361

10.0 0.568 0.125 0.220 0.271

Table V. Factors for constructing elastic and inelastic demand spectra for sti>ness degrading
systems with 5 per cent damping. Circumpaci<c Belt records.

Spectral region Ductility
�  � �� COV ��

1.0 1.742 0.776 0.446 1.000
1.5 1.031 0.420 0.408 0.592

Displacement 2.0 0.707 0.271 0.384 0.406
3.0 0.431 0.157 0.364 0.248
5.0 0.243 0.085 0.349 0.139

10.0 0.113 0.037 0.332 0.065

1.0 1.695 0.773 0.456 1.000
1.5 1.006 0.395 0.393 0.594

Velocity 2.0 0.727 0.266 0.366 0.429
3.0 0.492 0.171 0.347 0.290
5.0 0.327 0.103 0.316 0.193

10.0 0.196 0.056 0.286 0.115

1.0 2.100 0.701 0.334 1.000
1.5 1.424 0.347 0.244 0.678

Acceleration 2.0 1.188 0.239 0.201 0.566
3.0 0.994 0.172 0.173 0.473
5.0 0.830 0.139 0.168 0.395

10.0 0.654 0.127 0.194 0.311
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Table VI. Factors for constructing elastic and inelastic demand spectra for elastoplastic systems
with 5 per cent damping. Californian records.

Spectral region Ductility
�  � �� COV ��

1.0 1.705 0.647 0.380 1.000
1.5 1.051 0.387 0.368 0.617

Displacement 2.0 0.753 0.268 0.356 0.441
3.0 0.490 0.188 0.383 0.288
5.0 0.293 0.120 0.407 0.172

10.0 0.142 0.060 0.421 0.084

1.0 1.738 0.650 0.374 1.000
1.5 1.078 0.341 0.317 0.620

Velocity 2.0 0.803 0.247 0.307 0.462
3.0 0.551 0.170 0.308 0.317
5.0 0.368 0.113 0.306 0.212

10.0 0.222 0.066 0.295 0.128

1.0 2.159 0.682 0.316 1.000
1.5 1.490 0.394 0.265 0.690

Acceleration 2.0 1.227 0.279 0.227 0.568
3.0 0.997 0.191 0.191 0.462
5.0 0.813 0.139 0.171 0.377

10.0 0.643 0.119 0.185 0.298

relationships, as shown in Figures 7 and 8. Di>erences occur mainly for intermediate frequen-
cies and large ductilities, and, most importantly, use of the elastoplastic idealization provides
essentially always a conservative estimate of the average response.
The COV values in Table VI are similar to those found in previous studies. Riddell and

Newmark [12] found COVs in the range 0.18–0.22 in the acceleration region of the spectrum,
0.31–0.39 in the velocity region, and 0.41–0.49 in the displacement region, for � between 1
and 10. For Chilean earthquake data, Riddell [19] obtained COVs between 0.19–0.31, 0.25–
0.4, and 0.33–0.44 in the mentioned regions, respectively, for the same damping and range of
�. Newmark and Hall [13] and Mohraz et al. [20] presented ampli<cation factors for elastic
systems with 5 per cent damping associated with basically the same COVs of about 0.26, 0.4
and 0.45 in the acceleration, velocity, and displacement regions respectively. The COV values
in Tables III–V are in general larger than those in Table VI, as can be expected due to the
heterogeneity of the Circumpaci<c Belt family.
Simple approximations for the �� factors have been widely used after <rst introduced by

Veletsos and Newmark [6; 7]. They are based on the well-known ‘equal-displacement’ and
‘equal-energy’ rules to relate elastic and inelastic responses, which lead to the ratios 1=�
for the displacement and velocity regions, and 1=

√
2� − 1 for the acceleration region. In

Figure 9 the actual �� factors for elastoplastic systems for both groups of records are com-
pared with the previously mentioned ‘old rules’ in the three spectral regions of interest. It
is concluded that the old rules are unconservative (underestimate inelastic displacements) in
the velocity region for systems with response ductility larger than 3, and in the acceleration
region for �¿2. The following new rules, that present better <t to the computed �� factors
are recommended: �� =�−1:08 in the displacement region, �� =(1:9�−0:9)−0:7 in the velocity
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Figure 7. Average of IYS normalized to peak ground acceleration for the Circumpaci<c Belt group of
records. Elastoplastic and bilinear systems with 5 per cent damping.

region and �� =(4:2�− 3:2)−1=3 in the acceleration region. Nevertheless, in the displacement
region, the 1=� ratio can still be used since it is conservative, approximate enough, and at-
tractive for its simplicity. It is worth pointing out that the previous exponential relationships
have been derived for �� factors that correspond to average conditions; factors associated to
smaller probabilities of exceedance are not exactly the same, however, it was found that the
di>erences are not large and the former can be used conservatively. Also worth noting is the
similarity of the �� factors for the Circumpaci<c Belt and California groups (Figure 9), sug-
gesting that these factors have certain degree of generality that possibly makes them applicable
regardless of the tectonic environment.

CONSTRUCTION OF DEMAND SPECTRA AND ESTIMATION
OF INELASTIC DEFORMATIONS

The earthquake demand, or intensity of the ground shaking for the site under consideration,
needs to be speci<ed in terms of A, V , and D, the peak ground motion parameters. These
parameters may have been determined by a speci<c seismic hazard analysis, or may be con-
sistent with a code design spectrum, or may have been speci<ed for a particular facility with
special design requirements. The parameters must take into account speci<c conditions such
as near-<eld e>ects, nearness to active faults, and site geology. The parameters may also
be associated with various levels of the earthquake hazard: serviceability earthquake, design
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Figure 8. Average of IYS normalized to peak ground acceleration for the Circumpaci<c Belt group of
records. Elastoplastic and sti>ness degrading systems with 5 per cent damping.

earthquake, and maximum earthquake [4]. Discussion of the criteria for speci<cation of the
seismic hazard is beyond the scope of this paper.
The construction of demand spectra is illustrated in Figure 10, using the factors given in

Tables III–VI. A, V , and D are drawn in a tripartite logarithmic plot, and the segments JK, KL
and LM of the elastic spectrum are determined by amplifying the ground motion parameters
by the  �=1 factors corresponding to the three spectral regions. The limiting frequencies fI,
fJ, fM, and fN need to be set for each case. In this study, the following values were found
appropriate for the data considered: fI = 0:05, fJ = 0:15, fM =10, and fN =30. The elastic
design spectrum is completed with the transition lines IJ and MN. To construct inelastic
spectra, factors  � for the desired ductility factor � are applied to the ground motion maxima
to determine segments J′K′, K′L′, and L′M′ (conversely, the elastic design spectrum may be
deampli<ed by the given factors ��). Point I′ is determined by dividing the elastic ordinate
at I by �. Point N′ may be conservatively taken coincident with point N; however, based
on actual response spectra, the factor �−� may be used to pass from N to N′, with �=0:11,
0.13, and 0.15 for elastoplastic, sti>ness degrading, and bilinear systems, respectively. When
the ordinate of point L′ results lower than the design ground acceleration A, L′ may be joined
directly to N′.

If a greater degree of conservatism is desired, factors associated with smaller probabilities
of exceedance can be used. In other words, one is interested in p-percentile  p� factors, so
that the probability that the response ampli<cation will not exceed  p� is p. Assuming normal
distribution, the percentile ampli<cation factors are computed as  p� =  � + �p��, where the
coeLcient �p, which indicates the deviation from the mean, can be obtained from tables of
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Figure 9. Deampli<cation factor versus ductility relationships in the three spectral
regions. Elastoplastic systems with 5 per cent damping.
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Figure 10. Construction of demand spectra.

standard normal probability. For instance, �p is equal to 0, 1, and 2 for p equal to 0.5, 0.841,
and 0.977, respectively, and the associated  p� factors correspond to the 50-percentile, 84.1-
percentile and 97.7-percentile values. Use of 84.1-percentile factors, i.e. 0.159 probability of
exceedance are recommended.

CALIFORNIA GROUP: NEAR-FIELD AND SOIL EFFECTS

A study of near-<eld e>ects and the inMuence of geotechnical conditions on the factors to
derive demand spectra was carried out. A summary of the observations made in the study is
presented here, since space limitations do not permit detailed elaboration.
To analyse near-<eld e>ects, the California group was divided in two sets: one set containing

records on sites within 15km from the fault or rupture plane, and the other containing records
on sites farther than 15 km. Owing to the number of records in the aggregated group, a <ner
segregation was not feasible.
In terms of average peak ground motion parameters, the intensity of motion of the nearer

subgroup was larger than that of the other subgroup. The average V=A ratio was 96cm=s=g for
the California group, 102 for the near group and 90 for the distant group. The behaviour of
the average V=A ratio with distance was not consistent. A value of 123 cm=s=g was obtained
for the near-<eld records of the Northridge earthquake, and a value of 78 for the far group
of Northrigde records; the opposite occurred for the Loma Prieta records, with averages of
90 and 107 for the near and far groups, respectively. The average AD=V 2 ratio was 3.2 for
the aggregated California group, with values of 3 and 3.4 for the near and far subgroups
respectively. The average AD=V 2 ratio for Northrigde records was 3, with values of 2.2 and
3.5 for the near-<eld and distant groups, respectively. Average AD=V 2 ratios for the Loma
Prieta records separated in near and far subgroups presented almost no di>erence; the average
ratio for the complete group was 3.4.
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Average elastic spectra normalized to peak ground acceleration and velocity for the near and
distant subgroups of the Californian group showed insigni<cant di>erences. Average spectra
normalized to peak ground displacement did not present signi<cant di>erences, but the average
spectrum for the distant subgroup was larger than average spectrum for the near subgroup for
all periods.
The  � factors given in Table VI can be conservatively used to construct demand spectra

for near-<eld conditions, with errors that do not exceed 2.5 per cent in the displacement
region, 3.5 per cent in the velocity region, and 1.7 per cent in the acceleration region. On the
contrary, if the mentioned  � factors are used to construct demand spectra for sites farther
than 15 km, errors of the same order will be made but on the unconservative side.
According to the soil conditions at the sites, the California group was divided into three

subgroups, corresponding to the A, B and C USGS soil types. There are no records on very
soft soils, thus the <ndings of this study cannot be extended to such type of soil. Factors
for constructing demand spectra were obtained for the three subgroups and compared with
the factors for the aggregated group given in Table VI. It was found that the latter are in
general conservative, except for: soil type A in the acceleration region with di>erences less
than 5 per cent, soil type B in the displacement region with di>erences up to 8 per cent, and
soil type C in the velocity region with di>erences less than 6.4 per cent in the worst case.
According to the previous information, it is concluded that the factors in Table VI can be
used in general, making the indicated corrections if deemed necessary.

EXAMPLES

The examples presented in Section 8:3 of the ATC-40 report [4] are solved next using the
method and data presented herein. The example building is a seven-storey reinforced concrete
frame located in seismic zone 4 in California. Its fundamental period of vibration is 0:88s. The
capacity curve obtained from a push-over analysis of the building is shown in Figure 11(a).
The corresponding capacity diagram—representing the <rst mode response of the building—
is the curve ABCD shown in Figure 11(b) (the term ‘capacity diagram’ is used here instead of
‘capacity spectrum’ employed in ATC-40 since the latter is considered inappropriate). Figures
11(a) and 11(b) are adapted from the ATC-40 report. The conversion from one curve to
the other is done by means of the following formula [4; 18]: R=m=V=( 1W ),  1 =L2

1=M1,
L1 =�T

1mr, M1 =�T
1m�1, F1 =L1=M1, u=\r=(F1�1;roof ), where R is the resistance function

of the equivalent SDOF system, V is the base shear of the building, W is the total weight
of the building,  1 is the e>ective modal mass associated with the fundamental mode shape
�1 (which can be interpreted as the part of the total mass responding to the earthquake in
the <rst mode), M1 is the generalized mass corresponding to �1, m is the mass matrix, r
is the displacement transformation vector, F1 is the modal amplitude or participation factor
associated with �1, �1;roof is the component of �1 corresponding to the top storey, \r is the
roof displacement, and u is the displacement of the equivalent SDOF system.
The demand earthquake considered in the ATC-40 example is represented by the elastic

design spectrum shown in Figure 11(c). Two sets of seismic coeLcients [21] were used
to illustrate the e>ect of di>erent soil pro<les: CA =0:4 and CV =0:4, and CA =0:44 and
CV =0:64, the latter is the softer. These two cases will be dealt with in Examples 1 and 2,
respectively. CA represents the e>ective peak acceleration or design ground acceleration, i.e.

Copyright ? 2001 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2002; 31:515–538



534 R. RIDDELL, J. E. GARCIA AND E. GARCES

Figure 11. Example 1: (a) Push-over curve, (b) capacity diagram,
(c) demand earthquake, (d) demand spectra.

is equivalent to A in this paper. CV is the ordinate of the 5 per cent damped elastic design
spectrum at T =1 s. If the ampli<cation factor  � =1:74 for �=1 for the velocity region
(Table VI) is assumed, the relation !sCV =!s �V =2:5CA holds at T =Ts (Figure 11(c)),
with Ts =CV=2:5CA. For the <rst soil type A = CA =0:4g, Ts = 0:4 s and !s = 2�=Ts =
15:7 rad=s, then V = 1g=(15:7× 1:74)=35:9 cm=s. For the softer soil pro<le A=CA =0:44g,
Ts = 0:582 s, !s = 10:8 rad=s, and V =1:1g=(10:8× 1:74)=57:4 cm=s.

Example 1

(a) First, the same elastic spectrum considered in ATC-40 will be used. The corresponding
ground motion, A=0:4g and V =35:9 cm=s, is plotted in Figure 11(d). The spectral
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regions of acceleration ampli<cation (LM in Figure 10) and velocity ampli<cation (KL
in Figure 10) correspond in this case to 2:5A=1g and  �V =1:74× 35:9=62:4 cm=s
as shown in Figure 11(d).

(b) A bilinear model will be used. The model parameters must be selected to <t the capacity
diagram (Figure 11(b)) up to the expected maximum response umax, so that the total
area under the bilinear representation is equal to the area under the capacity diagram,
i.e. equal energy is associated with both. In this case, a bilinear model with yield point
Y with co-ordinates (0.342, 2.75) is chosen (Figure 11(b)). It must be pointed out that
a precise <t to the capacity diagram is not compulsory. Indeed, a few tentative yield
points and model shapes may be tried; since each system represents a single point in
the tripartite spectrum, the sensitivity of the response to the model selection can be
easily assessed.

(c) The chosen model has an elastic frequency !=
√

k=m =
√

Ry=uym=
√
0:342g=2:75=

6:93 rad=s, or T =2�=!=0:907 s (very close to the actual fundamental period of the
building), or f=1:1 cps. The model is represented in Figure 11(d) by point Y with
tripartite co-ordinates: (f=1:1, uy = 2:75′′=6:98 cm, !uy = 6:93× 6:98=48:3 cm=s).

(d) The system is in the velocity region, and its ordinate features a reduction �� =48:3=
62:4=0:774 with respect to the elastic spectrum. Using the relationship �� = (1:9� −
0:9)−0:7 a ductility response �=1:23 is obtained (see Figure 9(b)).

(e) The maximum displacement of the equivalent system is umax =�uy = 1:23× 2:75=
3:38′′=8:6 cm. This result is in very good agreement with the maximum displacement
of 3.4′′ calculated in the ATC-40 report. The observation can be made however that
the inelastic spectrum procedure is considerably simpler than the ATC-40 method.

(f) The last step of the solution is to go back to estimate the displacement of the roof of
the building. This is done using the above relation between u and \r. According to the
ATC-40 report calculations F1�1;roof = 1:31, therefore \r =1:31umax =4:43′′=11:3 cm.

(g) In order to have an indication of the uncertainty underlying the estimated deforma-
tions and structural performance, it is recommended to consider a demand spectrum
associated to a 0.159 probability of exceedance (response ampli<cation associated to
mean plus one standard deviation probability level). It is worth noting that for this ver-
i<cation the ground motion parameters that de<ne the seismic hazard do not change,
but the earthquake demand does change as a result of the other factors that inMu-
ence the response, like the power, frequency content, and the duration of motion.
Then, ampli<cation factors  �+�� shall be used. In this case, factors of 2.84 and
2.39 are obtained from Table VI for the acceleration and velocity regions, respec-
tively. The ordinates of the demand spectrum become 2:84A=2:84× 0:4g=1:136g
and 2:39V =2:39× 35:9=85:8 cm=s, as shown by the dashed line K′′L′′M′′ in Fig-
ure 11(d). (Note that the acceleration plateau of the initially given spectrum—Figure
11(c)—represented by line LM in Figure 11(d), actually corresponds to a response
ampli<cation level that exceeds the mean value, because it is quite close to the mean
plus one standard deviation ordinate L′′M′′).

(h) The system is in the velocity region and features a reduction �� =48:3=85:8=0:563
from the elastic ordinate K′′L′′. Using the relationship �� =(1:9�− 0:9)−0:7 a ductility
response �=1:67 is obtained. The maximum displacement of the system, for a prob-
ability of exceedance of 0.16, is umax =�uy = 1:67× 2:75=4:6′′=11:67 cm. Note that
this displacement is 36 per cent larger than that obtained in item (e) above.
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(i) Similar to item (f) above, the roof displacement is \r =1:31× 11:67=15:3cm. Finally
it is of interest to note that the example building is rather robust (3000 kips capacity
for a total weight of 10540 kips); therefore, it experiences a mild inelastic response
(low ductility) for the earthquake demands considered.

Example 2

(a) This example will be solved analytically without the aid of a <gure. The ground motion
in this case is A=0:44g and V =57:4 cm=s, as calculated above. The elastic spectrum
ordinates are 2:5A=1:1g in the acceleration region and  �V =1:74× 57:4=99:9 cm=s
in the velocity region.

(b) The system is represented by the same point determined above for Example 1 (point
Y), with tripartite co-ordinates: (f=1:1, uy = 2:75′′=6:98cm, !uy = 6:93× 6:98=48:3
cm=s).

(c) The system is in the velocity region and presents a reduction �� =48:3× 99:9=0:484
with respect to the elastic spectrum. Then, the corresponding ductility is �=1:96.

(d) The maximum displacement of the equivalent system is umax =�uy = 1:96× 2:75=5:4′′

=13:7 cm. In this case, the various ATC-40 procedures give maximum displacements
from 5.5′′ to 6′′.

(e) The ordinates of the mean plus one standard deviation spectrum are in this case 2:84A=
1:25g in the acceleration region and 2:39V =2:39× 57:4=137 cm=s in the velocity re-
gion. The system is in the velocity region and presents a reduction factor �� =48:3=
137=0:3526. The corresponding ductility response is �=2:81, and the maximum
displacement of the equivalent system is umax =�uy = 2:81× 2:75=7:72′′=19:6 cm,
i.e. 43 per cent larger than the displacement obtained for the spectrum shown in
Figure 11(c).

CONCLUDING REMARKS

Performance-based seismic design requires explicit assessment of earthquake demands on
structures, particularly inelastic deformations, to ensure they are within acceptable limits. Since
methods for non-linear response history analysis of multi-degree-of-freedom buildings have
not reached yet a stage of development to permit generalized use, simple approaches based on
the response of single-degree-of-freedom (SDOF) systems have been proposed. The inelastic
response of SDOF systems subjected to earthquakes can be directly and reliably estimated by
means of the traditional Veletsos–Newmark–Hall procedure. This method may be considered
to have at least the following advantages: (a) the earthquake demand is simply represented by
the peak ground motion parameters—acceleration, velocity, and displacement—associated to
probabilistically de<ned hazard levels, (b) responses correlate well with the peak ground mo-
tion parameters in each of the three characteristic spectral regions, providing better estimates
than methods based on a single parameter, (c) the spectral ordinates are associated to known
degrees of uncertainty, depending on the probability of exceedance of the factors selected to
construct the demand spectrum, (d) no iterations or approximations are involved since spectral
ordinates are based on actual inelastic responses, (e) inelastic design spectra can be derived
for a variety of situations and conditions (tectonic environment, geotechnical setting, nearness
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to source, etc.), the only limitation being the quality and quantity of the ground motion data
available, and (f) the inelastic spectrum can be combined with the energy-dissipation spectrum
[22] to account for damage related to the hysteretic behaviour, and estimates can be made of
the ultimate deformation capacity of the structure required to meet a given performance level
when subjected to a given design earthquake.
New factors for constructing demand spectra in the Veletsos–Newmark–Hall format were

obtained for two large ensembles of earthquake records: Circumpaci<c Belt and California.
With regard to the speci<c issues addressed in this study, the following conclusions were
drawn: (a) the e>ect of the type of force–deformation relationship on the average response
of non-linear systems is not signi<cant, and responses can be conservatively predicted using
the simple elastoplastic model, (b) the well known ‘equal-displacement’ and ‘equal-energy’
rules to relate elastic and inelastic responses are, on the average, unconservative for systems
with moderate to large ductility. Improved rules that present better <t to the data considered
are recommended. An example shows that inelastic deformations of SDOF systems can be
directly obtained from a demand spectrum without considering the sequence of equivalent
linear systems required by the ATC-40 procedures.
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