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An analysis of pile lateral response to transient dynamic loading and to harmonic 
loading is presented allowing for nonlinear soil behavior, discontinuity conditions 
at the pile-soil interface and energy dissipation through different types of damp- 
ing. Furthermore, the effect of neighbouring piles is taken into account for piles in 
a group. The validity of the approach was examined and a reasonable agreement 
with field tests and more rigorous solutions was found. Equivalent linear stiffness 
and damping parameters of single piles and interaction factors for approximate 
nonlinear analysis are presented. Copyright © 1996 Elsevier Science Limited. 
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INTR ODUC TI ON 

Piles are frequently subjected to lateral forces that result 
from loading on supported structures such as building, 
quay walls and offshore structures. 

Various approaches have been developed for the static 
and dynamic lateral response of  piles such as finite 
element analysis, 1'2 but this approach requires large 
computational efforts. The boundary element approach 
is also used, 3'4 but the inclusion of  the soil nonlinear 
behavior in this approach is difficult. The Winkler model, 
although approximate, seems to be a powerful technique 
to model the response of  single piles and pile groups to 
lateral dynamic loads. Matlock et al. 5 developed a unit 
load transfer curves approach, also known as p-y curves, 
for the time domain nonlinear analysis. Nogami & 
Konagai 6 have developed a time domain analysis 
method for flexural response of  single piles based on 
the frequency domain solution developed by Novak et 
ai. 7 Nogami et al.n7 accounted for the soil nonlinearity by 
introducing a multi-linear element for the inner field, and 
a gap element with a pre-estimated factor to account for 
plastic deformations and gap opening at the pile-soil 
interface. They also accounted for the group effect and 
the wave propagation away from the pile by introducing 
a far field element of  three units in series, each has a 
spring and dashpot. 

In this study, a computationaUy efficient model for 
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lateral response of  single piles and pile groups is devel- 
oped. The model developed accounts for the nonlinear 
behavior of  the soil adjacent to the pile, and slippage and 
gapping at the soil-pile interface in a rational manner. 
The energy dissipation in the soil through different types 
of  damping is also included in the analysis. For  the most 
part, the parameters of  the model are standard geotech- 
nical parameters. 

SINGLE PILE M O D E L  

The piles are assumed to be vertical with a circular cross- 
section embedded in a horizontally nonlinear layered 
soil. Based on the Winkler hypothesis, the soil is divided 
into a number of  layers. Piles are also divided into 
segments with the same number and length as the soil 
layers. The analysis is formulated in the time domain to 
facilitate the modeling of  the nonlinear behavior and 
discontinuity conditions. The elements of  this model are 
shown in Fig. 1 and are discussed in detail in the 
following sections. 

Soil reactions modeling 

In each layer the soil model is divided into two parts as 
shown in Fig. 1. The first part is an inner field model to 
which nonlinearity is confined. The second part is a far 
field model which accounts for wave propagation away 
from the pile. In this model, the soil reactions at both 
sides of  the pile are modeled separately to account for the 
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Fig. 1. Elements of the proposed model for nonlinear dynamic analysis of lateral response of single piles. 

state of  stress and discontinuity conditions at both sides 
as the load direction changes. 

Innerfield element. The soil reaction of  the inner field 
is modeled by a nonlinear spring the stiffness of  which 
is calculated with the assumption that plane stress 
conditions hold, the inner field is a homogeneous 
isotropic viscoelastic medium, the pile is rigid and 
circular, there is no separation at the soil-pile inter- 
face, and the displacements are small. The stiffness 
solution under these conditions was obtained by Noval 
& Sheta 8 as 

87rGm(1 - v)(3 - 4v)[(ro/rl) 2 + 1] 

knl = (ro/rl)2 + (3 -4v)2[ ( ro / r l )  2 + 1] ln(rl/ro) - 1' 

(1) 

where r0 and r I are the inner and outer radii of  the inner 
field, respectively, and v is the Poisson's ratio of  the soil 
stratum. Gm is the modified shear modulus calculated 
according to the strain level, assuming that Poisson's 
ratio is constant, as 

Gm = Gmax(1 - r/) (2) 

Gmax is the initial shear modulus of  the soil layer, 77 is the 
mobilization ratio defined as ~/= P/Pu,  where P is the 
horizontal load at the spring and Pu is the ultimate 
resistance of  the spring calculated using the standard 
relations given by the API. 9 For  clay, the resistance is 
given as a strength per unit length of  the soil layer by 

Pu = 3cud + 7Xd + JcuX X <~ X R (3) 

Pu = 9cud X > XR, (4) 

where c u = undrained shear strength, hd = pile dia- 
meter, 7 is the effective unit weight of soil, 
J =  empirical coefficient ranging from 0"25 to 0.5, 
X = depth below the surface and XR = depth of the 
reduced resistance zone, which can be calculated by 
solving eqns (3) and (4) simultaneously. 

The corresponding criteria for the lateral resistance of  
sands at shallow depths Pvl or at large depth PU2 are 

( X [  KoX tan ~ sin /3 
Cut = A,t'  

tan 3 
q t a n ( 3 -  ~b) (d + X t a n 3 t a n a )  

+ KoXtan/3( tandps in3- tano  0 - Kad l}  (5) 

eu2 = ATXd[Ka (tan 8/3 - 1) + K0 tan ~b tan 4 3]. (6) 

In these equations, A is an empirical adjustment factor 
dependent on the depth from the soil surface and can be 
found in Ref. 9, K 0 is the earth pressure coefficient at rest 
(0-4), ~b is the effective friction angle of the sand, 
/3 = ~b/2 + 45 °, a = ok~2, Ka is the Rankin minimum 
active earth pressure coefficient defined as Ka = 
tan2(45 ° - q~/2). 

Far field element. Novak et al. 7 solved the problem of  
the horizontal vibration of  piles. In their solution, the 
plane strain conditions are assumed to hold. An explicit 
solution for the soil horizontal complex stiffness of  a unit 
length of  a cylinder embedded in a linear viscoelastic 
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Fig. 2. Variations of horizontal stiffness and damping parameters, Sut and Su2, with dimensionless frequency a 0 and soil Poisson's 
ratio (after Novak et aL7). 

medium is given by 

K = 7rG~T. (7) 

In this equation G = Gmax is the initial shear modulus 
of the soil layer, a0 = wro/Vs is a dimensionless fre- 
quency and T is a dimensionless factor given by 

T = - 4Kl (b~)Kl (a~) + a~K1 (b~)K0(4) + b~Ko(b~)Kl (a~) 

* * * + aoKl(bo)Ko(ao) + boaoKo(bo)Ko(ao) boKo(bo)Kl (ao) . . . . . . . .  

(8) 

where a~ and b~ are complex dimensionless frequencies 
defined as 

, i a  o , _ i a o  (9) 
ao -- +x/i--~s' bo ~x/1 + iDl 

in which ~ is the ratio between the longitudinal and shear 
wave velocities of the soil layer, Ds and D1 are the 
material damping constants, usually assumed to be 
both equal to D, associated with shear and longitudinal 
waves, respectively, and finally, K0 and K1 are the 
modified Bessel functions of the second kind of orders 
0 and 1, respectively. This solution is not suitable for the 
time domain analysis because it is frequency dependent. 
However, the real and imaginary parts may be separated 
and eqn (7) can be rewritten as 

K + G[Sul (a0, u, D) + iSu2(ao, v, D)] (10) 

in which Sul and Su2 are real. Figure 2 shows the 
variations of Sul and Su2 with the dimensionless fre- 
quency a0 and v. It may be observed from the figure that 
for the frequency range between 0.05 and 0-5, typical of 
offshore loading and many other applications, Sul may 
be considered constant, while Sta increases monotoni- 

cally with a0. The effect of Poisson's ratio is that as it 
increases, both of Sul and SuE increase in the specified 
range of frequency. These observations suggest that the 
outer field element can be modeled by a spring and 
dashpot whose constants depend on Poisson's ratio, 
but they are frequency independent and defined as 

KI : GSu l  (p)  

(11) cGro . 
C ---- -77--. Su2(a0 = 0"5, v ) ,  

V s  

where Sul and Su2 are frequency independent with their 
values chosen according to Poisson's ratio of the soil 
layer and the dominant dimensionless frequency a0. 
These frequency independent stiffness and damping 
parameters are used in the dynamic analysis in the time 
domain. 

Discontinuity conditions. Discontinuity conditions of 
the motion between pile and soil are caused by the 
slippage and gapping at the soil-pile interface. To 
model these conditions logically the soil reactions to 
the pile motion at both sides are modeled separately as 
shown in Fig. 1. The load-deflection curve for a pile 
node at the topmost part of the pile, where soil-pile 
separation takes place, is shown in Fig. 3 as well as the 
corresponding horizontal displacements of the soil nodes 
on both sides of the pile. For the pile initially loaded 
rightward, the soil node at the left is separated from the 
pile as the force in the near field element reaches zero, 
assuming that soil does not resist tension. The soil node 
on the right is pushed with the pile to the right and Knl 
decreases as the load increases. In the unloading phase 
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Fig. 3. Pile and soil displacements for a case with pile-soil 
separation. 

the pile separates from the soil on its right also. When the 
pile is loaded more leftward, it comes into contact again 
with the soil node on its left and pushes it until unloading 
occurs again, separation takes place and the pile returns 
to its original position. The result of this is that the soil 
nodes are left in a displaced position and a permanent 
gap develops. The development of such gaps is a 
phenomenon observed in offshore piles especially after 
storm conditions, however, afterward healing occurs and 
the gaps are closed. Development of these gaps greatly 
affects the pile response to any subsequent loading as will 
be discussed later. 

Pile modeling 

The pile shaft is assumed to be elastic, vertical and has a 
circular cross-section. It is subdivided into a number of 
elements and every element is assumed to have a constant 
cross-reaction. The structural stiffness matrix of each 
individual element is defined by the standard four by four 
bending stiffness matrix relating the translation u and 
rotation 0 to load P and moment M and is given as 

12/l - 1 2 / l  3 6/12 6/12 

Eplp -12/13 12/13 -6/12 -6/12 

6/12 -6/l  2 4/l 2/l 

6/12 -6/12 2/l 4/l 

Pz 
Ml 

M2 

{Ul} 
U2 

01 

02 

(12) 

Fig. 4. Assumed apparent velocities of waves emanating from a 
laterally oscillating pile (after Gazetas & Dobryl3). 

where Ep and Ip are Young's modulus and second 
moment of area of the pile, respectively, and l is the 
element length. The pile structural stiffness matrix may 
then be constructed by superposition of the sub-matrices 
of the individual elements. 

The number of elements has a great effect on the 
accuracy of the results. Poulos 1° found that the greater 
the number of the elements the greater the accuracy of 
the results. E1 Sharnouby & Novak 11 found that using 12 
pile elements increasing in length with depth, with the 
top elements 1/4 of the average element length gave 
accurate results with a minimum of computational 
efforts. However, for dynamic analysis it is somewhat 
different. A sensitivity study was done and 20 elements 
increasing in length with depth were found to give 
accurate results. 

To reduce the computational efforts, only degrees of 
freedom of interest are maintained and the rest are 
eliminated through a static condensation process. Thus, 
only the transitional degrees of freedom along the pile 
and the rotational degree of freedom at the pile head are 
maintained. 

GROUP EFFECT 

Since each pile is affected not only by its own load, but 
also by the load and deflection of other piles in the group, 
the dynamic stiffness of a group of piles is greatly affected 
by the interaction between piles. This effect is incorpo- 
rated in the analysis as follows. For the lateral vibration, 
interaction between piles depends on the angle, 0, 
between the lines of the two piles and the direction of 
the horizontal applied force, as well as the spacing 
between them. Gazetas & Dobry 13 found that the 900- 
passive pile m (Fig. 4) is affected essentially only by 
S-waves which emanate from active pile 1 and which 
have a phase velocity V s. They also found that the 0 °- 
passive pile is affected by compression-extension waves 
coming from the active pile and propagating with an 
apparent phase velocity which is equal to the so-called 
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Lysmer's analog velocity Vta given by 

3"4Vs 
VLa -- 7r(1 - v - - - - - -  3 (13) 

Assuming that waves propagate in the horizontal 
direction only and also assuming a Winkler soil model, 
the displacement at any point in the elastic soil domain 
may be given (Makris & Gazetasl4), in general, as 

u(a0, r, 0) = Uo~bu(ao, r, 0) (14) 

In eqn (I 4) u o is the amplitude of the disturbance at the 
source, and Cu is an attenuation function accounting for 
the wave propagation away from the source and the 
radiation damping. It is sufficient to compute Cu only for 
0 = 0 ° and 0 = 900 and the approximation by Dobry & 
Gazetas 18 may be used to evaluate Cu at any angle 0 as 

Cu(a0, r, 0) = Cu(a0, r, 0 °) cos 2 0 + Cu(a0, r, 90 °) sin 2 0 

(15) 

in which 

r~n • ~(t-v)(r-ro) 
~bu(a0, r, 0 °) = ~ / r  e - ' a ° ~  

(16) 

a0, r, 900 W~Ore_iao(r r 9). ) =  o 

Using this approximation for the attenuation func- 
tion, eqn (14) may be rewritten as 

__ "u e - l a o ~ p  h ao u( ao, r, 00) K 1 + icao ~/ ~ ( ) v ' 
(17) 

1 r~o -ia (r-ro) 
u(a0, r, 90 °) Kl + icao V~_ e o ro Ph(ao), 

where K1 and c are the frequency independent spring and 
dashpot constants defined in eqn (11). Subjecting eqn 
(17) to an inverse Fourier transform, the unit impulse 
response function required for time domain analysis is 
obtained as 

u(t,r) = : A e -B(t-t°) t > to (18) 

where A = 1/c, B = Kl/C and to is given by 

to = 7r(l -- v)(r -- ro) 0 = 00 
3"4Vs (19) 

to _ (r - r 0  ) 0 = 90 °. 
vs 

The interaction effect is assumed to vary linearly 
through each time step At. The soil displacement at the 
axis of  the mth pile due to a disturbance at the lth pile is 
given by 

Um( ti,  rml)  = P l (  ti --  trnl-  1)H1 ( ti ,  rml)  + P t (  t i ) H 2 (  ti, rml) ,  

(20) 

where i is the number of the time step, rml is the distance 

Pile 1 Inner Field Pile m 
17nr IIT;M A 

No Tension Connection 

DETAIL 

Fig. 5. Elements of the model implemented in the nonlinear 
analysis of lateral response of pile group. 

between the piles m and l, tml- 1 is the travel time between 
them minus one time step; HI and/-/2 are convolution 
integrals over the period At given as 

HI = t u ( t - r , r ) ( 1 -  ~--~)d'r 

[1:/_ 
t/> to + At (21) 

H2 u(t = - T, r) - - ~  dT 

A 
= ~ ° r  ~ [ ( 1 - - B ~ t ] e B A t + B ~ t ] e - B ( t - t ° )  

t >/ to + At. (22) 

Equation (20) implies that H2 is the inverse of the time 
domain stiffness of the medium if r equals to r0, yielding 
the interaction force as 

P = -[H2(r = ro)]-lUm 1 # m 

= -Kuu m. (23) 

For 0 = 0 ° or 900 relevant values of to from eqn (19) 
are to be substituted in eqns (21) and (22). For  any value 
of 0 eqn (15) can be used to obtain the interaction force, 
P. This force is to be considered in the analysis as 
discussed in the subsequent section. 

Figure 5 shows a slice of the soil-pile system contain- 
ing the elements of the model implemented in the group 
analysis. The visco-elastic spring, Ku, connects the two 
piles through the far field. 
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EQUATIONS OF M O T I O N  

The mass of  the inner field, ms, is lumped at two nodes: 
one half, ml, at the node adjacent to the pile, node 1, and 
the other one, m2, at the node adjacent to the outer field, 
node 2 as shown in Fig. 1. If  the material damping is to 
be added, a parallel dashpot may be considered with a 
constant Cm to be suitably chosen. 

The equations of motion for the inner field expressing 
the equilibrium of masses m l and m2 are 

mlUl  + Cm(/~l --/~2) + Knl(Ul -- u2) = P1 
(24) 

m2/t2 --  Cm(/Jl -- U2) -- Knl(Ul -- u2) = P2,  

where ul and u2 are displacements of nodes 1 and 2, and 
Pl is the force in the nonlinear spring which includes the 
confining pressure also, P2 is the soil resistance at node 2; 
finally, Cm is the material damping in the inner field. 

The equation of  motion for the outer field may be 
written as 

¢~12 "-~ Klu = - P2  + P, (25) 

where P is the interactive force transmitted through the 
soil from pile to pile. Introducing compatibility and 
equilibrium between the inner field and the outer field 
results in 

{ e l  } = [ Amml + Accm + gnl -gnl - hcCm ] 

0 L -Knl -- Accm Knl + Amm2 + Acct + KI {u) {,1} 
x + , (26) 

u2 62 - P 

where c t = C -'1- C m is the total damping. From eqn (26) it 
can be deduced that 

Knl + hccm 
U 2 = (Knl + KI + Amm2 -}- Acct)  Ul 

P -  6 2 
-t (27) 

(Knl -t- KI -t- Amm2 q- Acct)  

P1 = [Knl + Amml +Accm 

(K,a + Accm) 2 ] 

- (Knt + Kt + Amm2 + Acct) J Wl 

K.~( P - 62) 
t- 6,, (28) 

(Knl + g l  + Amm2 + Acct)  

where A m and Ac are constants of  numerical integration 
for inertia and damping, respectively. Finally 

61 = g,~- I(U 1 --  U2) i -  1 + Cm(/~l --  /~2)i- 1 + m l / / ~ -  1 

(29) 

i - I  1 " 62 = - Knl (Ul --  u2) i-  -- Cm(/~l - u2) "Jr m2/i~- 1 

+ Ktuig-1 _+_ Ctt~-l .  (30)  

Equations (24)-(30) are valid for soil nodes on both 
sides of  the pile. 

When the pile is moving away from the soil node, P1 
decreases until it reaches zero. If  loading continues in the 
same direction, the resistance offered by that element will 
stay at zero (no tension is allowed) and the soil node on 
this side is disconnected from the pile node accommo- 
dating for the gap opening. On the other hand, when the 
pile is moving towards the soil node, P1 increases until it 
reaches the maximum soil resistance and Knt decreases 
until it reaches the value of  zero; the near field spring on 
this side offers constant resistance to the pile motion. At 
this point, for some soil types, the ultimate static resis- 
tance of  the soil may be reduced to display a post peak 
resistance as it has been observed for some soils such as 
dense sand and stiff clay. Reconnection of  the soil-pile 
nodes occurs again when the pile returns to the displaced 
position of the soil node and continues to move in the 
direction of  the soil node. The stiffness of  the spring K,,t is 
assumed to be linear in the unloading phase. 

Solution of equations of motion 

For  single piles and pile groups, the pile and soil dis- 
placements are evaluated in the time domain using the 
linear acceleration assumption and the Newmark /3 
method for direct time integration of the equations of  
motion. The modified Newton-Raphson  iteration 
scheme is used to derive and solve the governing equi- 
librium equations. 

VALIDATION OF T H E  M O D E L  

The validity of  the proposed nonlinear dynamic analysis 
is assessed through comparison with the results of some 
actual field tests as well as other analytical solutions in 
the literature. 

Comparison with field tests 

Full-scale field tests on single piles were conducted at the 
University of Houston. Piles were loaded with a static 
cyclic load (O'Niel & Dunnavant  14) and a dynamic load 
(Blaney & O'Nei115). The soil profile at the site is shown 
in Fig. 6. Piles used in the tests are steel pipe piles with an 
outside diameter of 0.274m and a wall thickness of  
0-009 m. Figure 7 shows the piles and settings for both 
cyclic and dynamic tests. The proposed model was used 
to compute the response for both cases. The results from 
the analytical model and the field measurements are 
plotted in Fig. 8 for the cyclic load test and in Fig. 9 
for the dynamic load test. The cyclic pile response was 
computed for a monotonically increasing load. The cor- 
relation between the computed and measured responses 
for both the cyclic and dynamic load test is very good 
and may be observed in Figs 8 and 9. 
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Fig. 6. Soil profile for University of Houston site. 

Comparison with outer analytical approaches 

To further examine the proposed model, the results 
obtained using the model are compared with those 
obtained using a more rigorous frequency domain solu- 
tion due to Nogami. 16 The stiffness and damping para- 
meters for a single pile and a group of two piles 
embedded in a homogeneous soil stratum underlain by 
a bed rock (Fig. 10) are computed using both approaches 
and plotted in Fig. 11 for the single pile case and Fig. 12 
for the two-pile group. A very good agreement between 
the two results may be observed from the figures, espe- 
cially for the single pile case. 

15 
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Fig. g. Computed and measured cyclic pile response. 

APPROXIMATE NONLINEAR ANALYSIS FOR 
PILE GROUP RESPONSE 

The proposed analytical model may be applied to ana- 
lyze the response of the entire pile group, accounting 
directly for the non-linearity and the interaction between 
all piles simultaneously. Alternatively, the superposition 
approach may be used to approximate the group 
response. To approximately account for group non- 
linearity in the analysis, the equivalent linear single pile 
parameters, as well as interaction factors, have to be 
established depending on the P/Pu ratio, where Pu is the 
ultimate bearing capacity of the pile as defined by eqns 
(3)-(6) and P is the amplitude of the applied harmonic 
load at the pile head. Definitions for the single pile 
flexibilities, to be used to get the relevant stiffnesses, 
and interaction factors for the lateral response case are 
shown in Fig. 13. 

Single piles 
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Fig. 7. Pile properties and test settings for (a) cyclic pile load test 
and (b) dynamic pile load test. 

The stiffness and damping parameters of a single pile are 
computed for a steel pipe pile having an outer diameter 
of 1"45 m, a wall thickness of 0.05 m and a penetration 
depth of 50 m. 
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Fig. 9. Computed and measured dynamic pile response. 
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Fig. 12. Complex stiffness for two-pile group (0 -- 0°). 

horizontal translation due to horizontal load, the rota- 
tional flexibility is the rotation due to moment, and the 
coupling flexibility is the rotation due to a horizontal 
load or a horizontal translation due to moment. To 
compute these flexibilities approximately accounting 
for the nonlinearity, a harmonic load, or moment, with 
amplitude P, or M starting from zero is applied at the 
pile head and the response is then computed for a 
number of  cycles until it stabilizes. The amplitude of  
the flexibility term, I J~ i, is approximated by the peak 

Fig. 10. Soil profile for the example used in the comparison with 
more rigorous frequency domain solution (a) single pile and (b) 

group of two identical piles. 

Because of  the coupling effect between the horizontal 
and rotational stiffnesses of  the pile, the complex flexi- 
bilities for the horizontal, coupling, and rotational cases 
are calculated first and then the two by two complex 
flexibility matrix is inverted to obtain the complex stiff- 
ness matrix of  the pile. The real part of the complex 
stiffness matrix represents the stiffness and the imaginary 
part represents the damping. 

The flexibility terms are defined, as depicted in Fig. 13, 
using a unit horizontal load or a unit moment at the 
pile head and then calculating the corresponding deflec- 
tions at the pile head. The horizontal flexibility is the 
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displacement divided by the amplitude of the applied 
load. The phase shift, ~bl, is approximated by the time lag 
between the peaks of both the displacement and load. 
The subscript 1 assumes different values for different 
flexibilities, i.e. h for horizontal, c for coupling and r for 
rotational. The figures displayed below show the varia- 
tions of the equivalent linear stiffness and damping 
parameters for the horizontal, coupling and rotational 
cases with the loading ratio P/Pu. 

Figure 14 shows the stiffness and damping constants 
for the pile embedded in a homogeneous soil medium 
whose Vs = 100ms -n and excited with two different 

frequencies. The figure shows that as the loading ratio 
P/Pu increases, the horizontal and coupling stiffness 
constants decrease with mild slope until P/Pu = 0-6; at 
this loading ratio the stiffness constants decrease drama- 
tically until they reach one third of the linear case 
(P/Pu = 0-05). The damping constants also display the 
same behavior, but they start decreasing at lower loading 
ratios. The decrease in the rotational stiffness is negli- 
gible up to P/Pu = 0.8, but the decrease in the damping 
is significant even at lower P/Pu ratios, especially for the 
higher frequency. Stronger nonlinear effects are observed 
for nonhomogeneous soil profiles and stiffer soils. 
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I n t e r a c t i o n  f a c t o r s  

The interaction coefficients are needed to perform the 
group analysis using the superposition approach. To 
account approximately for the nonlinear effects in the 
lateral group analysis, the interaction factors should be 
established taking the load level and nonlinear con- 
ditions into consideration. 

The equivalent linear interaction factor is defined as 
the displacement of a load-free pile normalized by the 
displacement of the loaded contiguous pile when no 

other piles are present (Fig. 13). To establish the equiva- 
lent linear interaction factors, two loading cases are 
considered separately: a pile loaded individually and a 
group of two identical piles with only one of them 
loaded. The resulting deflection at the pile head is 

Ulm(t) = lUlml e ion. (31) 

In eqn (31), [UI[  is the amplitude, either in horizontal 
translation or rotation, approximated by the peak deflec- 
tion, and 4~ is the phase shift, approximated by the time 
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lag between the peaks of both the deflection and force. 
The subscript m takes the values 0 for the case of single 
pile loading and 1 for the load-free pile in the second case 
of loading. The loading starts from zero and the ampli- 
tude and phase shift are established after five loading 
cycles. The response was found to stabilize almost com- 
pletely after this number of cycles. The interaction factor 
is defined as 

Ull(t) (32) 
al -- Ul0(t) " 

The dynamic interaction factor is a complex quantity 
which can be described either by its real and imaginary 
parts, al  and a2, or in terms of its absolute value, I,~1, and 
phase shift 4. Thus the interaction factor, a,  may be 
written as 

ot = oq q- io~ 2 = Io~[ e i~. (33) 

The amplitude, [al l, and the phase shift, ~ ,  of the 
interaction factor resulting from eqn (32) may be 
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approximated by 

lu. ) 
I ll = lul01 (34) 

= - 

Figures 15 and 16 show the interaction factors for a 
pile embedded in homogeneous soil with shear wave 
velocity V s = 100 m s -1, for two pile to pile spacing to 
diameter ratios, s / d  = 5 and 10, and two different fre- 
quencies for the angles 0 = 0 ° and 90 °, respectively. It 
may be observed from the figures that a dramatic 
decrease occurs in the amplitude as P / P u  starts increas- 
ing, for the horizontal, coupling and rotational cases. 
The phase shift oscillates, yet still could be considered 
constant. 

Similar nonlinearity effects were found to take place in 
parabolic and linear soil media with different shear wave 
velocities. 

CONCLUSIONS 

(1) The lateral dynamic response computed using 
the proposed model compares favourably with field- 
measured data as well as the more rigorous frequency 
domain approach. The model uses only conventional soil 
mechanics parameters or parameters directly correlated 
to them. 

(2) Single pile stiffness and damping parameters, as 
well as interaction between the piles, are greatly affected 
by the level of  loading. Such an effect should be included 
in the analysis of  the dynamic lateral response of  pile 
groups, particularly for strongly nonhomogeneous soil 
profiles and limit state considerations. 

(3) The effect of  nonlinearity is that it reduces single 
pile and pile group stiffness as well as damping. Also, 
nonlinearity reduces the amplitude of  interaction factors 
between piles, while the phase shift oscillates, but still 
may be considered constant. These effects are more 
pronounced for stiffer soils or softer piles, such as 
those typical of  offshore structures. 

(4) Finally, the model facilitates direct analysis of  a 
pile group lateral response to dynamic loading with little 
computing effort and allows the generation of  interaction 
factors for different loading ratios, different pile spacing 
to diameter ratios and different soil profiles. For  a basic 
range of  parameters, the nonlinear interaction factors are 
provided. 
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