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ABSTRACT 
 
 

 

Estimation of the equivalent viscous damping factor (EVDF) is an important step in the methodology of 

the direct displacement based design.  The dynamic response of the substitute structure is characterized by 

an effective stiffness and an equivalent viscous damping, simplifying considerably the dynamic problem 

and making this approach very desirable for design purposes.  However, errors in the estimation of these 

parameters characteristics lead to consequent errors in the ductility demand of the designed elements. 

 

The most used procedure to estimate the equivalent viscous damping is the Jacobsen’s approach, which 

estimates this factor based on the ratio between the elastic stored energy and the dissipated energy by a 

given hysteretic model.  However this approximation assumes complete loops under a sinusoidal 

excitation (steady-state harmonic response).  The real situation during an earthquake is different given 

that the complete loops are not formed in each cycle and the system is subjected to a random excitation. 

 

Evidence from past investigations has shown that the Jacobsen approach can estimate, for some hysteretic 

models, the EVDF with the same accuracy as more elaborated techniques such as Gulkan’s approach.  

This technique balances the input energy from the earthquake and the energy necessary to bring the 

system to rest using viscous damping.  However, there are also investigations that indicate that Jacobsen’s 

approach overestimates the value of the damping for some hysteretic models and for some earthquake 

characteristics such us pulses. Thereafter it is needed to carry out additional analyses to find the 

limitations of this approach. 

 

A comparison of the displacements obtained from a non-linear time-history analysis and a spectral design 

was carried out for a specific single degree of freedom system (SDOF), in order to evaluate how accurate 

can these displacement be estimated using Jacobsen’s approach.   This procedure was repeated for six 

different hysteretic rules which covered a wide range of energy dissipation: a thin and a fat Takeda model, 

a bilinear model with high post yielding stiffness, an elastic perfectly plastic model, a Ramberg Osgood 

type model and a ring spring model.  Six records were used, one synthetic, adjusted to a EC8 type target 

spectrum and five artificial records adjusted to Caltrans design spectra for soil type C (PGA=0.7g).  The 

SDOF model was designed for five different levels of ductility (2 to 6) and effective periods from 0.5 to 4 

s in steps of 0.5s.  In iterative methodology was carried out until the displacements from the non-linear 

time-history analysis matched the design displacement obtained from the damped response spectra.  In 
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order to separate the effects of elastic-viscous and hysteretic damping the designs and analyses were 

carried without elastic viscous damping. 

 

It was found that in general the Jacobsen approach overestimates the values of the equivalent viscous 

damping with a few exceptions; As a consequence, modified equations were proposed in order to estimate 

the EVDF. 
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1 INTRODUCTION 

 
Recent earthquakes (Northridge, Kobe, etc) have produced a large amount of damages to structures, with 

a significant number of deaths and high money losses.  In order to create methodologies which could be 

used to comply with defined performance levels, limiting and evaluating more accurately the level of 

damage the philosophy of the performance based design has been developed. [Vision 2000] 

 

Methodologies based on forces have generally been used, in the past, to define the capacity and demand 

of the structural systems under seismic excitation.  However, it is now generally accepted that design 

methodologies based on displacement are more appropriated, and can overcome inherent deficiencies of 

traditional force based design.  One of the main reasons is because the damage is more related to relative 

displacements than to forces.  One of the alternatives of the methodologies based on displacement is 

“Direct Displacement Based Design (DDBD)” proposed by Priestley [Priestley 1994].    The basic 

concept and the methodology are outlined in the next chapter.  

 

The accurate estimation of maximum displacements is then a key issue in the DDBD approach in order to 

obtain a reliable design of the elements.  This is because if the real displacements are higher than the 

design displacements the elements would suffer a larger ductility demand than expected and in 

consequence larger level of damage risking local or global instability. 

 

The system’s maximum displacements may be obtained using different techniques but those of interest in 

this study are the non-linear time-history analysis and the modal analysis (from displacement response 

spectra) for different levels of damping.  The former method is generally not used in design practice and it 

is preferred to use simplified methods such us the last one.  However, in order to take into account the 

non-linear behaviour of the system when the modal analysis is used, it is necessary to use simplifications 

of the non-linear dynamic problem.  Those will be explained in the next chapter. 

 

However, in order to introduce the problem of this study, one of the simplifications mentioned in the 

previous paragraph will be mentioned beforehand.  It relates to the issue of how the energy dissipation 

due to the non-linear behaviour can be taken into account into the linear response spectrum.  This is done 

by simply applying an equivalent viscous damping factor (chapter 3) in order to obtain a reduced or 

“damped” displacement response. 
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The key step of the relationship between that dissipated energy due to the non-linear behaviour and the 

equivalent viscous damping is the main topic of this study.  In actual practice, a relationship that has been 

obtained considering some theoretical assumptions has been used.  However it is necessary to analyze 

how accurate are these assumptions for different types of earthquakes, structural periods (effective 

periods), ductility levels and structural systems (hysteretic models).  Additionally, the effect on the 

response in terms of displacement will be studied.  

 

The main objective is to review the existing equations used to estimate the equivalent viscous damping 

factor and if necessary, develop a general or a set of equations for such factor for different hysteretic 

models, ductility levels and effective periods.  Such hysteretic models represent the general behaviour of 

the most common structural systems. 

 

Given that it will be necessary to use time-history analysis for a given set of structural models using a set 

of earthquake records, it will be seen that the results obtained in this study are applicable for some 

specific conditions of initial viscous damping.  This condition is important because it has been found that 

the selection of this parameter may influence significantly the response of the system.  A parallel study 

that has been carried out by different authors [Grant and Priestley, 2004] will try to give an answer to this 

limitation, so that it can be overcome in future studies. 

 

The document is divided in seven part which starts introducing the reader from the basic concepts of 

DDBD in chapter two and the concept of viscous damping and equivalent viscous damping in chapter 

three.  Then, chapter four explains the methodology used to estimate the equivalent viscous damping.  

Chapter five contains the methodology carried by Mendis and Bommer [2004] in order to obtain and 

spectra compatible synthetic accelerogram and a set of artificial accelerograms adjusted to match a 

specific Caltrans displacement design spectra.  In chapter six there is a description of the hysteretic 

models used in the analyses.  The modelling assumptions and the results of the analyses are included in 

chapter seven and finally, chapter eight discuss the proposals made in order to estimate the EVDF in a 

more accurate way. 
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2 FUNDAMENTALS OF DIRECT DISPLACEMENT BASED 
DESIGN 

 

The procedure is based on the concept of the substitute structure proposed by Shibata and Sozen [1976].  

The structure is represented by an equivalent SDOF structure with equivalent system, mass and damping.   

The basic idea is to obtain the base shear from a given target displacement and the level of ductility that 

can be estimated from the section of the element.  In this approach, structures are designed to achieve, 

rather than be limited by, displacements corresponding to a specified limit state 

 

Step 1:  Select a target displacement (∆C) of the structure based on considerations of the performance 

level, which change according to the use of the structure, code drift limit, or limit plastic rotation based on 

maximum strain levels.  For Multi degree of freedom (MDOF) structures it is necessary to transform this 

displacement as described in step 2.  For SDOF the next step is not necessary.  

 

Step 2:  For MDOF structures the problem is reduced into a SDOF system (Figure 2-1 (a)) with a target 

displacement (∆d) at a given equivalent height (He) and equivalent mass (me). [Priestley,2003] 
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(2-1a)  
 

 
(2-1b)  

 

 
 

(2-1c)  
 
 
 

(2-1d) 
 

where φi is the inelastic mode shape which are often very similar to the elastic mode shape and can be 

obtained from approximated equations depending on the structural system and the structure height. mi and 

∆i are the masses and displacements at each level of the MDOF structure. 
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Step 3: Calculate the level of viscous damping factor that is going to be used to reduce the elastic 

response spectra.   This factor can be obtained from the ductility, which at the same time, has to be 

computed using the yielding displacement (∆y). 

 

∆y is estimated from the assumed section of the elements based on the yielding curvature φy.  Based on 

analytical and experimental results, Priestley [2003] have obtained approximate equation to compute φy . 

Circular concrete column: Dyy /25.2 εφ =     ( 2-2 a)

Rectangular concrete column: cyy h/10.2 εφ =              ( 2-3 b)

Rectangular concrete wall: wyy l/00.2 εφ =  ( 2-4 c)

Symmetrical steel section: syy h/10.2 εφ =  ( 2-5 d)

Flanged concrete beam:  byy h/70.1 εφ =  ( 2-6 e)

where εy is the yield strain of the flexural reinforcement (=fy/Es), and D, hc, lw, hs and hb are the section 

depths of the circular column, rectangular column, rectangular wall, steel section and flanged concrete 

beam sections respectively.     

 

For a SDOF vertical cantilever, such as a bridge pier, or a low rise cantilever wall, the yield displacement 

is given by Eq. (2-7). 

3/2Hyy φ=∆   (2-7)

For reinforced concrete and structural steel frames, the yield drift can be developed from the yield 

curvature expressions Eq. (2-8a) as 

 

Reinforced concrete frame: bbyy hl /5.0 εθ =  

Structural steel frame:  bbyy hl /6.0 εθ =  

(2-8a) 
 

 (2-8b)

where lb is the beam span, and hb is the concrete or steel beam depth.    

 

Ductility yd ∆∆= /µ  ( 2-9)

Where ∆d is the maximum displacement and ∆y is the yielding displacement. 

 

Once this ductility is obtained it is possible to correlate it with an equivalent level of viscous damping.  

This value depends also on the structural system as shown in Figure 2-1 (c). There are multiple 

expressions proposed by different authors (see section 3.4).  However, there are some shortcomings that 

need to be analyzed. 

 



Chapter 2. Fundamentals of DDBD 

  5 

Step 4: The effective period of the structure can be obtained for the target displacement and the reduced 

design spectrum for the equivalent viscous damping level obtained in the previous step (Figure 2-1 (d)).   

 

Step 5: From the effective period it is possible to obtain the effective stiffness of the equivalent SDOF 

system as shown by Eq. (2-10): 

 22 /4 eee TmK π=  (2-10) 

where me is the effective mass of the structure participating in the fundamental mode of vibration.   The 

design lateral force, which is defined by Eq. (2-11) 

 

 deB KVF ∆==  (2-11)
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Figure 2-1 Fundamentals of Direct Displacement-Based Design [from Priesteley,2003] 

As mentioned previously, the scope of the study is to revise and adjust the relationships used to estimate 

the equivalent viscous damping from the ductility.  This is because the present equations have been 

obtained for particular conditions that are not complying for real earthquakes.  This issue is discussed in 

detail in the next chapter. 

 



Chapter 3. Viscous Damping 

  6 

 

 

 

 

3 VISCOUS DAMPING 
 

The concept of viscous damping is generally used to represent the energy dissipated by the structure in the 

elastic range.  Such dissipation is due to various mechanisms such as cracking, nonlinearity in the elastic 

phase of response, interaction with non-structural elements, soil-structure interaction, etc.  As it is very 

difficult and unpractical to estimate each mechanism individually, the elastic viscous damping represents 

the combined effect of all of the dissipation mechanisms.  There is no direct relationship of such damping 

with the real physical phenomena. However, the adoption of the viscous damping concept facilitates the 

solution of the differential equation of motion represented by Eq.3-1. 

3.1 INTRODUCTION 

One of the fundamental concepts of the structural dynamics is response of an undamped free vibrating 

SDOF system which is described by the differential equation  

0=+ kuum  ( 3-1) 

Where m is the mass, k is the stiffness and u is the displacement of the SDOF system.  The solution of this 

equation in terms of displacement for particular initial conditions represents the response of the system.  

The maximum amplitude of the response is constant in time.    

 

In order to represent real system where the maximum response decreases with time, an additional factor 

including damping of the system is introduced. 

 0=++ kuucum  (3-2) 

where c is a damping coefficient.  The proportionality to the velocity means that this factor represents a 

viscous damper.  There are not any special physical reasons to model the damping using such an approach 

unless real viscous dampers are added to the structure; the main reason to represent the dynamic response 

of the damped free vibration SDOF system with this differential equation is the fact that it is easy to 

solve.  Dividing Eq. (3-2) by m 

 

02 2 =++ uuu nn ϖξϖ  (3-3)

where 

 

m
k

n =ϖ  
 

(3-4)
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nm
c
ϖ

ξ
2

=  
 

(3-5)

ωn is the natural vibration frequency (radians/sec) of the system and ξ is the damping ratio or fraction of 

critical damping. There are different types of movement depending on the value of ξ but given the 

properties of the structures, only the underdamped case (ξ  < 1) is of interest. 

 

As mentioned above, the assumption of viscous damping simplifies greatly the dynamic problem and this 

is the reason why in the direct displacement based design the non-linear behaviour has been also 

represented by an equivalent viscous damping factor (ζeq).  Using Eq. (3-3) with an equivalent value of 

viscous damping representing both elastic and hysteretic energy dissipation it is possible to solve a simple 

linear system instead of a non-linear system which is more time and resource demanding for design 

applications. 

3.2 EQUIVALENT VISCOUS DAMPING 

An early proposal to model the inelastic behaviour with a parameter proportional to the velocity was 

made by Jacobsen [1930,1960].  He approximated the non-linear friction behaviour to a power of 

velocity.  This was initially used to compute the response of  single-degree-of-freedom-systems (SDOF) 

when subjected to sinusoidal loads.  Housner [1956] and Jennings [1964] carried out some investigation 

in order to extent the concept to other hysteretic systems.  The concept of equivalent viscous damping is 

explained briefly emphasising the main assumptions.  

 

As a general start point, the equations that have been proposed by other authors (see 3.4) divide the  

viscous damping coefficient in two parts: 

hystoeq ξξξ +=  (3-6)

where oξ  corresponds to the initial damping in the elastic range and hystξ  correspond to the equivalent 

viscous damping ratio that represents the dissipation due to the non-linear (hysteretic) behaviour.   

 

There are some procedures that have been used to estimate the viscous damping for the elastic case such 

us measuring the amplitude decay from real test in laboratories or real buildings [Chopra, 1995].  In 

practice the value for the coefficient range between 2% and 5%.  However, this part of the equation is 

outside of the scope of this study (see section 7.2). 

 

For the equivalent viscous damping corresponding to the hysteretic response, the concept of dissipated 

(EDiss) and stored (Esto) energy has been used [Jacobsen, 1930].  With reference to Fig 3.1, the value of the 

equivalent viscous damping ratio can be obtained equating the energy dissipated by a viscous damper 

with the energy dissipated from non-linear behaviour Eq. (3-7). 
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(3-7)

In order to use this approach it is necessary to assume that both systems are subjected to a harmonic 

excitation as describe by Eq. (3-8).  This is necessary to ensure that the loops are complete and to obtain a 

closed-form solution for the displacement. 

tpkuucum o ϖsin=++  (3-8)

where ω is the frequency of the load and t is the time. The solution of this differential equation has two 

parts, however, only the part that represents the stabilized vibration (steady state) is taken into account as 

given in Eq. (3-9). 

( )φϖ −= tutu o sin)(  

2
1

1

2
tan






−








= −

n

n

ϖ
ϖ

ϖ
ϖξ

φ  

 

 

(3-9) 

 

As shown in Figure 3-1 (a), the dissipated energy is equal to the area enclosed inside an entire loop.  The 

elliptical loop is obtained from the equation that describes the energy dissipated by the viscous damper.  

Meanwhile, the hysteretic model (Figure 3-1 (b)) is used to represent the non-linear behaviour of an entire 

structural system.   Depending on this system, the hysteretic model changes its characteristics and shape.  

In chapter 6 there is a description of the hysteretic models used in this study.  The stored energy is also 

plotted by lines inside the triangle of the first quadrant (Figure 3-1 ) and can be obtained from Eq. (3-10). 

2

2
o

sto
ku

E =  (3-10)

The energy dissipated by the viscous damper can be expressed as the integral of the force of the damper 

(fdamp) by each differential displacement (du). 

∫∫ ⋅=⋅=
ϖπ /2

0

)( dtuucdufE dampDiss  

Given that is assumed that the system is subjected to harmonic loading 

( )[ ]∫ =−=
π

ϖπφϖϖ
2

0

2
0

2cos ucdttucE oDiss  

Hence

2
02 kuE

n
Diss ϖ

ϖπξ=  
 

(3-11)

When the areas inside the loops of Figure 3-1 are made equal and substituting Eq. (3-10) in Eq. (3-11) 

then Eq. (3-7) is obtained. 
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Figure 3-1.  Dissipated and stored force for viscous damping (a) and hysteretic cycles (b) 

Finally, it is assumed that the excitation frequency is the same as the natural frequency of the SDOF 

system (resonance condition), so the final equation is: 

oo

hyst

sto

Diss
hyst uF

A
E
E

ππ
ξ

2
1

4
1 =⋅=   (3-12)

The equivalent damping of the structure has been defined based on the work of Jacobsen, for a sinusoidal 

response of a SDOF.  It is clear, however, that response to real earthquake excitation cannot be exactly 

represented by steady-state harmonic response, and that an unknown error will be introduced in the 

estimation of displacements, based on the approximations made in Jacobsen’s approach. 

3.3 PREVIOUS RESEARCH 

 

Gulkan and Sozen [1974] extended Jacobsen’s approach by introducing the concept substitutive viscous 

damping (SVD) based on limited experimental results.  They obtained the value of this factor for a given 

secant stiffness (effective period) and a given time-history by balancing the input energy of the SDOF 

with a linear dashpot that would bring the system to rest as described by Eq. (3-13):   

 

∫

∫ ⋅⋅
= t

t

gsubstitute

substitute

dtu

dtuuT

0

2

0

4π
ξ  

 

(3-13)

where u is the structure displacement, t is the total time of the accelerograms and üg is the ground 

acceleration. Tsubstitute is the effective period corresponding to the secant stiffness to maximum response 

and ξsubstitute is the SVD. 
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They also computed the same factor using the approximation by Jacobsen and they found out that the 

results were not significantly different.  This indicated that practically there is no need to make extra 

efforts to compute the viscous damping factor, at least for the cases that they studied. However, more 

extensive analyses by Judi et al [2000] found significant differences between Jacobsen’s Equivalent 

viscous damping factor, and Gulkan and Sozen’s substitute damping factor, and concluded that designs 

based on the latter provided a better estimate of the expected displacement response. 

 

Kowalsky and Ayers [2002] carried out a bibliographic investigation of research in the past aimed at 

obtaining the non-linear response of a SDOF system using equivalent damping factor and the period. For 

instance Iwan and Gates [1979] carried out several time-history analysis using initial period, ductility and 

ground motion as variables and the found that the equivalent viscous damping factor that would estimate 

the inelastic response of the SDOF system would not exceed 14%.  Additionally, they found out that the 

peak displacement was relatively insensitive to the equivalent damping. (using a hysteresis model derived 

form a combination of elastic and Coulomb slip elements) 

 

Kowalsky and Ayers [2002] also investigated the substitutive damping approach and tried to identify 

potential limitations and the range of applicability of the equivalent damping for the DDBD and based in 

the initial stage of the work they found that “on average, assessment of non-linear response with 

equivalent linear systems defined by effective period at maximum response and equivalent damping 

defined by Jacobsen’s approach yields good results for the majority of cases considered”.  However they 

found that in cases with time histories with large pulses, the equivalent damping approach fails to 

recognize that the peak non-linear response is not longer a function of the energy dissipated.  It is 

important to mention that only the Takeda degrading stiffness model was used in this work, changing the 

post yielding stiffness and stiffness degrading parameter.  The velocity pulses phenomena was also 

pointed out by Priestley [2003] when he proposed a modified reduction equation for high damping   

spectral displacements for earthquakes containing large velocity pulses. 

 

In conclusion, Kowalsky and Ayers, found that it is necessary to carry out additional investigation in 

order to find out the limits and variation of using this simplified assumption.  The results obtained by 

Gulkan and Sozen, contrast with those obtained by Hudson [1965] and Judi [2000], which conclude that, 

at least for bi-linear oscillators, the equivalent damping factor underestimate the real response and the 

substitute viscous damping (SVD) gives better approximations.  However, the use of the SVD is not 

practical, given that this value would be different for each earthquake record and it would be necessary to 

obtain a time-history response each time that the SVD is needed.  
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Regarding to the equivalent damping coefficient, some analysis were carried out in order to obtain the 

value of this variable that match the displacement and the equivalent period from the spectra and the time 

histories.  A large scatter was found in the equivalent damping; such scatter is larger in the short periods 

than in the long periods.  This means that the number of cycles is important in the damping since short 

periods structures will be subjected to a larger number of cycles than long period structures.  Additionally, 

short period structures have smaller displacements than the long periods, so a slight variation of the 

displacement is much larger in proportion in the shorter periods. 

 

Reasoning about the last paragraph, it could be possible to say that this behaviour is expected.  This is 

because, as the damping increases, the effect on the displacement decreases (Figure 3-2). 

 

 

Figure 3-2 Effect of the viscous damping in the displacement spectra. 

The effect of damping is even lower for cases where the time-history is characterized by velocity pulses. 

This was also observed by Kowalsky when he compared the response of different SDOF using the 

Pacoima dam Record and an artificial UBC matched record.  In the former one, a large long duration 

acceleration pulse occurs early on in the record causing the structure to go inelastic with just a few or 

almost no oscillation, reducing significantly the capacity of the structure to dissipate energy by hysteresis.   

 

The results obtained by Kowalsky are coherent with those obtained by Otani [1981] and Riddell et al 

[2002].  They carried out several time-history analysis using different hysteretic models. They found that 

if the parameters that described the hysteretic model were “equivalent” (initial stiffness, yielding 

force,etc) in order to obtain approximately the same ductility level, the displacements obtained for each 

model were very close among them.  Once again, there seems to be a given level of independence of the 

response from the damping.  However, it is necessary to review the limits of this independence and the 

level of uncertainty that the damping should be estimated for the DDBD design procedure. 
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In a more recent research, Kowalsky and Dwairi [2004] concluded that the Jacobsen approach  frequently 

overestimated the damping and that the fundamental period of the system, the characteristics of the 

ground motion and the ductility level are critical variables for the equivalent damping concept. 

 

Concluding from these researches, the equivalent damping deserves additional studies due to fact that it is 

practical use for design and there are still several uncertainties and contradictory results that need to be 

explained. It is necessary then, to find accurate expressions to estimate this parameter based on the kind of 

hysteretic loop and time-history records.  

3.4 EXISTING EQUIVALENT VISCOUS DAMPING EQUATIONS 

The DDBD is based on an equivalent SDOF system that represents the MDOF system.  The non-linear 

behaviour of the structure is represented by a linearized equivalent SDOF (Figure 3-3) using the concept 

of the substitute structure [Shibata Sozen,1974]. 

 

Figure 3-3 Substitute structure. 

 

For a bilinear type hysteretic model, the initial stiffness (or initial period) and the yielding strength are the 

main parameters that need to be defined. In the paper by Miranda [2001], the equations proposed by 

Rosenblueth and Herrera in Eq.(3-14), and by Iwan in Eq. (3-15) define the relationship between the 

initial and effective periods for a given ductility level and post elastic stiffness coefficient.  However, in 

the direct displacement based design the effective or equivalent period as defined by this equation is an 

input parameter that is already known. 

µ
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where r is the post-elastic stiffness coefficient. 
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(3-15)

The difference in these equations is based on the fact that the results obtained by Rosenblueth were 

obtained analytically from the relationship between initial and secant stiffness for a given ductility and 

post-elastic coefficient, meanwhile, the results given by Iwan were obtained from a statistical evaluation 
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of a large number of inelastic analysis using systems and accelerograms with different characteristics.  

The effective damping estimated by the previous equations is shown in Figure 3-4.  Even though it is not 

clear which characteristic used Iwan for his systems, it is clear that the effective period obtained with his 

equation is lower than that obtained by Rosenblueth.  The r factor used for the last equation was 0.05, 

which would have to be increased to 0.3 in order to obtain approximately the same values estimated by 

Iwan’s equation. 
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Figure 3-4 Initial vs effective period relationship (Rosenblueth -continuous line; Iwan – 
dashed line). 

 

However, the equations to obtain the effective period of the SDOF do not have practical use in the DDBD 

process given that this parameter is obtained from other parameters as explained in chapter 2 (Figure 

2-1).  It is important, however, the definition of the equivalent viscous damping. 

 

There are multiple references which report different equations for the equivalent viscous damping factor 

Preistley[2003], Fardis and Panagiotakos[1996], Miranda and Ruiz [2002], Calvi [1999].  Some of the 

reported equations are shown afterwards. 

 

Bilinear elasto-plastioc system, Rosenblueth and Herrera [1964]
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Takeda Model, Gulkan Sozen [1974]. 
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Elastic and Coulomb slip elements, Iwan[1980]
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Takeda model  α= 0.5 and β =0. Kowalsky [1994] 
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Steel members,  Priestley[2003] 
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Concrete frames,  Priestley[2003] 
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Concrete columns, and walls,  Priestley[2003] 
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Precast walls or frames, with unbonded prestressing  Priestley[2003] 
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in general, the equations proposed by Priestley have the form 









−+= βµ

ξξ 11aoeq   ( 3-17)

where r is the post yielding stiffness coefficient, ξeq is the equivalent viscous damping factor, ξo is he 

initial viscous damping and µ is the ductility level.  Some of these equations will be compared with those 

obtained by the methodology described in the next chapter.  Figure 3-5  shows equivalent viscous 

damping obtained for each of the previous equations. r value for those equations which required it was set 

equal to 0.05.  As can be observed, there are large variations depending on the system represented, i.e. the 

EVFD for linear elastic systems (Rosenblueth) gives the highest values meanwhile, the prestressed 

unbonded concrete (Priestley) gives the lowest values.  There are significantly differences in the EVDF 

estimated for the concrete systems (Kowalsky, Gulkan, Concrete wall) which may affect the estimated 

displacement obtained form the design spectra. 
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Figure 3-5 Equivalent viscous damping factor for (3-16a) to Eq. (3-16h). (* proposed by Priestley [2003] 

 

Miranda (2002) carried out an investigation comparing the capabilities of different performance based 

methodologies in estimating the inelastic displacement for Takeda, modified Clough, stiffness degrading 

and elastoplastic system using 264 ground motion records. He classified these methodologies in two: 

Method based on equivalent linearization which use the equations proposed by Rosenblueth, Gulkan, 

Iwans and Kowalsky; and Method based on a displacement modification factor (Miranda, Newmark and 

Hall).  For the scope of this study, only the results for the first class is discussed 

 

It was found out the ratio between the time-history analyses and the design displacement from the 

linearized system changed according to the equation used to estimate the damping and the effective 

period.  The equations proposed by Iwan produced the best results (ratios closer to one) and the lowest 

deviations followed in order by the equation proposed by Kowalsky, Gulkan and Rosenblueth.  There is 

however, a significant inaccuracy for all the equations when predicting the displacement for short period 

systems (T < 0.5 sec). Additionaly, there are large dispersion in some particular cases, which means, as 

pointed out by Miranda, that if this equations are applied to individual ground motions they could lead to 

significant error in the estimation of the maximum inelastic displacement.  This situation has been taken 

into account when the accelerograms and displacement spectra have been defined for this present work 

(see chapter 5).  The findings of Miranda also suggest that it is necessary to carry out additional studies in 

order to find out the reason of this variability and improve the relationships used to estimate the viscous 

damping factor.  

 

The studies mentioned above consistently indicated problems with use of Jacobsen’s approach for 

equivalent viscous damping within DDBD methodology.  However, rigorous analyses had not been 

carried out to optimise damping values applicable to a wide range of hysteretic models and period ranges.   

This study attempts such an optimization 
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4 METHODOLOGY FOR THE ESTIMATION OF THE 

EQUIVALENT VISCOUS DAMPING 
 

Based on the results obtained from the previous research described in the previous section, a methodology 

was implemented, to modify where necessary Jacobsen’s equations for the equivalent viscous damping 

factor (ξ).   

The scope of the procedure is to determine the value of equivalent damping that has to be applied to an 

equivalent elastic system with a given effective period based on the secant stiffness to maximum 

displacement response in order to match its response (in terms of maximum displacement) to that 

obtained from a system with the same period (effective period) and a given level of ductility using non- 

linear time-history analysis.  The final objective of this procedure was to develop equations that define the 

equivalent damping factor to be used in DDBD for a given level of ductility and a hysteretic model.  The 

flow diagram of the proposed method is shown in Figure 4-1. 

 

 

Figure 4-1 Flux diagram for the proposed methodology. 
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The process is repeated for effective periods from 0.5s to 4s each 0.5 s, for 5 ductility levels from 2 to 6.  

Six different hysteretic curves are used (section 5.2) and all the cases are analyzed for six records (chapter  

5).   

 

Step 1: Initially, an effective period (Teff) and a ductility level (µ) are selected.    

 

Step 2: Estimate the equivalent damping factor (ξ). For the first iteration this was based on Jacobsen’s 

approach according to the hysteretic loop considered (Section 5.2).  This equation was used only to have 

an initial estimate of the equivalent damping.  However, after the results of the first iteration were 

obtained, the equivalent damping was changed in the next iterations to improve the substitute-

structure/time-history agreement. 

 

One important assumption used in this step and in the time-history analysis was the definition of the 

initial viscous damping factor (ξo).  It was found that the initial elastic viscous damping would influence 

significantly in maximum response as explained section 7.2.  In order to separate the influence of this 

factor from the hysteretic part of the problem, the initial elastic viscous damping factor was taken as zero 

in both design and time-history analysis. 

 

Step 3: Determine the average damped displacement spectrum for the calculated value of ξ based on the 

average spectra obtained from the accelerograms described in section 5. 

 

Step 4: An initial response displacement (∆spec) is obtained from the average damped spectrum for the 

selected effective period Teff as shown in Figure 4-2. 

 

Figure 4-2.  Selection of the displacement from the averaged reduced 
spectrum. 
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Step 5:  For a given hysteretic model, the initial stiffness (Kini) and yielding force (Fy).  are defined using 

∆spec, mass (meff), effective period (Teff) and the ductility (µ) as follows:   

Yielding displacement 

 
µ
spec

y

∆
=∆  

( 4-1)

Secant stiffness            

 22 /4 effeffe TmK π=  

 

     ( 4-2) 

Maximum Force  

speceffKF ∆=max  

 

          ( 4-3)

Depending if the envelope of the hysteretic model is bilinear or continuous (Figure 4-3)  , it is possible to 

find the yielding force (Fy).  The equations are given in section 5.2 for each hysteretic model.  The initial 

stiffness can then be found from: 

Initial stiffness   

Y

y
ini

F
K

∆
=   

 

( 4-4)

 

Figure 4-3 Characteristic values parameters of the SDOF system. 

Step 6:  Run time-history analysis for each of the records and obtain the maximum displacements.   

 

Step 7:  Compare the displacements obtained from step 6 with that from step 4. The values of the first and 

last iterations are stored.  The first set of values is used to measure how accurately Jacobsen’s equation 

can predict the viscous damping factor related to the design displacement (see results in chapter 0).  The 

last set of values are use to check the convergence of the spectral and time-history displacements. 

 

Step8:  If the displacements are similar (within a tolerance of 3%) , keep the damping factor used and 

repeat the process from step 1 with a new Teff and µ, otherwise, modify the damping factor and repeat the 

process from step 2. 
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5 ACCELEROGRAMS AND DISPLACEMENT SPECTRA 

 
 
Six different synthetic accelerograms were selected in order to carry out the time-history analysis of the 

SDOF systems.  All of them were constructed matching a given displacement design code shape response 

spectrum at 5% damping.  The first accelerogram was a synthetic record developed by Bommer and 

Mendis [2004] for use specifically in this research.  The rest of the accelerograms were artificial records 

obtained as part of this study and complemented with others obtained by Alvarez [2004] and Sullivan 

[2003].  All of these records were compatible with the ATC32 design spectrum for soil type C and PGA 

0.7 g. [ATC32, 1996].  A brief description of the procedure and the tools used for both cases are given in 

the following sections. 

5.1 BOMMER AND MENDIS 

Mendis and Bommer selected several accelerograms from a world-wide records database in order to 

create code compatible response spectra.  The target shape of the response spectrum was defined as 

described in section 5.1.1.  From all the analyzed accelerograms, only one record could be matched to the 

spectrum for different levels of damping (see section 5.1.2).  Regarding to this point, as explained in step 

3 of the previous section, the inelastic displacement spectra are obtained from the elastic spectra using a 

reduction coefficient (η) [Borzi et al 2000].  This factor is analogous to the behaviour factor q used in 

force based design (Eq. (5-1)).  The response spectra can be reduced according to the viscous damping 

factor using Eq. (5-2).  

inelastic

elastic

SD
SD=η  (5-1)

7
2 εη +=  

 

(5-2)

This equation has demonstrated that the reduced spectra obtained match with good accuracy the median 

value of a set of accelerograms.  However, there can be large variation when the spectrum of each 

accelerogram is reduced individually [Borzi et al, 2001].  In order to reduce this variation, the same 

authors that selected the accelerograms modified them using different techniques. 

5.1.1 Target Design Spectrum 

The target spectrum was obtained using the methodology proposed by Bommer et al [2000] for the 

scenario of stiff soil at 10 km from an earthquake of magnitude Ms 7.0.  The peak ground motions are 
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obtained from the attenuation equations1 of Tromans & Bommer [2002] using data from the European 

strong-motion data. 

22 27.7log049.1214.0138.2)log( +−+= dMPGA s  PGA = 309.3 cm/s2 (0.315g) 

22 06.6log058.1356.0141.0)log( +−+= dMPGV s  PGV= 31.85 cm/s 

22 18.6log144.1597.0995.1)log( +−+−= dMPGD s  PGD = 9.11 cm   

   

The parameters and the procedure used in the methodology used by Bommer are described briefly 

afterwards. 

 
Figure 5-1 Compatible acceleration and displacement spectrum as defined by 

Bommer et al. (2000) [from Bommer,2004]. 

 

The corner periods, TC and TD, are defined by equations: 
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The displacement plateau is defined by the following equation:  

24
))(5.2(

π
η DCTTPGASD = = 23.08 cm  (for 5% of damping)  

where η is the scaling factor for damping levels mentioned previously, taking a value of unity for 5% of 

critical damping. The adjustment for other levels of damping is made using a similar type of equation as 

Eq. (5-2) but with different coefficients (10 instead of 7 and 5 instead of 2), proposed by Bommer et al. 

[2000] which is included in the current version of EC8.  The obtained target spectrum for different 

damping levels is shown in Figure 5-2.  However, the adjusted records, match better to the damped design 

spectra using the initial coefficients of Eq. (5-2). 
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Figure 5-2 Target spectrum. 

5.1.2 Records (Manjil, Iran, 20th June 1990) 
 

As mentioned previously, only the record of Manjil matched the spectral shape after the process. The 

original accelerogram is the longitudinal component of the Ms 7.3 Manjil earthquake, in the Ghazvin 

station which is located in stiff soil at a distance of 51 km from the fault rupture. The first step was to 

scale the record by a factor of 2.07 in order to produce a better match with the displacement spectra 

(Figure 5-3).  

5.1.3 Spectral Matching 

In order to improve the match of the selected accelerogram with the target spectra, Mendis and Bommer 

carried out an adjustment using wavelets. They used the program RSPMATCH, developed by Dr Norman 

A. Abrahamson [1998].  Consulting with the developer, they fount that the program is currently only able 

to provide reasonable matches to two different damping levels in the current version of the program.  The 

investigation carried out by these two authors confirmed the tendency of the program to produce highly 

unstable results if more than two target spectra are used.  
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Figure 5-3 Displacement spectra from the scaled Manjil record (solid lines) and the design spectra (dashed 

lines) ( 5, 10, 20 and 30% damping) [from Bommer,2004]. 

 
The spectral matching is performed in the time domain, using the acceleration spectra as the target, but 

the results are presented here in terms of displacements.   Finally, the match of the record was made for 

10% and 20% and 30% viscous damping factor (Figure 5-4). 

 

 

 

Figure 5-4 Displacement spectra from the adjusted Manjil record (solid lines) and the design 

spectra (dashed lines). ( 5, 10, 20 and 30% damping) [from Bommer,2004]. 



Chapter 5. Accelerograms and Displacement Spectra                        

  23 

5.1.4 Adjusted Accelerogram 

The adjusted accelerograms present some differences with the original record (Figure 5-5), given than the 

wavelets modify the original signal producing an artificial accelerogram.  However, the signal obtained 

retains the physical characteristics of the original record in the time domain. 

 
 

Figure 5-5 Acceleration and velocity time-histories of the scaled (left) and adjusted (right) accelerograms 

[from Bommer,2004]. 

For the scope of the study, it was desirable to have a corner period at 4 s.  Therefore the scale of time of 

the accelerograms was modified by increasing the duration of the accelerograms taking step increments of 

half the original time step.  The displacement spectra for this modified record is shown in Figure 5-6. 

 Manjil

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5
Period (s)

D
is

pl
ac

em
en

t (
m

) 5
10
15
20
30
40

 
Figure 5-6  Modified Manjil record response spectra. 



Chapter 5. Accelerograms and Displacement Spectra                        

  24 

5.2 ARTIFICIAL ACCELEROGRAMS 

In order to have additional data which could allow observing a particular trend of the results, five 

additional accelerograms were selected from a set of artificial records obtained for this study 

complemented by a set prepared beforehand by Alvarez [2004] and Sullivan [2003].    

 

The target design spectrum for this set of accelerograms was the one proposed by Caltrans (Figure 5-7) 

for a soil type C and PGA of 0.7 g.  For these accelerograms, it was not necessary to obtain an initial 

record but they were obtained from a random process carried out by the specific software called 

“SIMQKE”[Carr, 2002]. 
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Figure 5-7 Caltrans Target Displacement Design Spectrum for soil type C (PGA= 0.7 g). 

 

The reduced displacement response spectra for different levels of damping for this plot were also obtained 

using Eq. (5-2).  The match of these reduced spectra is better using this equation that the one proposed by 

EC8.  However, the reduced displacement spectra of the artificial spectra obtained with SIMQKE were 

computed using the program SPECTRA [Carr, 2002]. 

 

It was necessary to carry out several attempts before obtaining several accelerograms that would adjust 

the design spectrum within an acceptable margin.  Finally, five accelerograms were selected from the 

generated set of artificial records; Figure 5-8 shows the response spectra for different levels of damping 

for the selected accelerograms.  
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Figure 5-8 Displacement Response Spectra for the adjusted records 

 

The average displacement response spectra used for the design step described in the methodology is 

shown in Figure 5-9. As observed, this average spectra have approximately smooth shapes and have good 

approximation to the target Caltrans spectra. 
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Figure 5-9 Average displacement response spectra 
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6 HYSTERETIC RULES 

 
The assumptions which form the basis of the current equations used to estimate the equivalent viscous 

damping factor were discussed in chapter 3.  It was seen that Jacobsen’s approach equates the area inside 

complete closed loops of a viscous damper and a hysteretic loop.  However, few equations have been 

defined for specific hysteretic loops.  In order to observe the behaviour of the equivalent viscous damping 

factor several hysteretic rules were used in the analysis.  Additionally, for the same hysteretic loop some 

parameters were changed to increase the range of possibilities of the response.  This is justified by the fact 

that the response using the same hysteretic loops but with different parameter may vary significantly. 

 

Six hysteretic models were used in the analysis:  Elastic perfectly plastic (EPP), Bilinear type, a “narrow” 

and a “fat” Takeda loop, a Ramberg Osgood model and finally a ring spring (flag shape) model.  A brief 

description of the hysteretic rules is shown in the next sections. 

6.1 TAKEDA 
 This model is used to represent the non-linear behaviour of concrete structures and members (Figure 

6-1). There are three factors that define the fatness of the loops; post yielding stiffness (r), unloading 

stiffness parameter (α) and reloading stiffness parameter (β).  Two variations of this model were used for 

the analysis; one representing systems with narrow loops (α = 0.5 and β = 0.0) such us walls or columns 

and other with fatter loops (α = 0.3 and β = 0.6) such as beams.  Post yielding stiffness factor was kept 

constant for the two models (r =0.05).  The theoretical equivalent viscous damping for the Takeda model 

depends on these factors.   Equation (6-1) is the equivalent viscous damping obtained from the Jacobsen 

approach [Kowalsky and Ayers,2000] 

 

1

11
4
1112111

4
1

4
312

22
11

+−=
































−−








−








−⋅−








+








−−−= −−

rr

rr
equ

µγ

µγ
µβγµ

µ
β

µγ
βµµ

π
ξ αα

 

(6-1) 

α









=

m

y
ou d

d
kk   Unloading stiffness (see Figure 6-1) (6-2)

 

where r is the post-yielding stiffness ratio, m is the displacement ductility, a is the unloading 

stiffness parameter and b is the reloading stiffness parameter.  Two versions were used in the 
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analyses.   The fatness of the loop is controlled by the factors α and β.  The former parameter controls 

the slope of the unloading stiffness; as this parameter increases the loop tend to be fatter.  The maximum 

value of this parameter is 1, in which case the unloading and loading stiffness are equal.  A value of 0.5 is 

considered to be the lowest value of this parameter, according to experimental observations.  The 

parameter β defines the point where the reloading curve reaches the post elastic branch.  Values between 

0.6 (fat loop) and 0 (narrow loop) are considered to be the extreme of the variation range. 

 

For this project a “thin" Takeda model with α= 0.5 and β=0 was considered appropriated for bridge piers 

and wall structures.  The second “fat” Takeda model (α=0.3, β=0.6) was intended to be appropriate for 

reinforced concrete frames.  In both cases the post-yield stiffness ratio was taken as 0.05.  
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Figure 6-1 Takeda Model. [from Ayers, 2000] 

 

Figure 6-2 illustrates the EVDF for four different Takeda models described in Table 6-1.  The EVDF 

increases as β increases and r and α decreases. 
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Table 6-1.  Takeda models 
 

Model α β r 

Model 1 0.5 0 0.05

Model 2 0.3 0.6 0.05

Model 3 0.5 0 0 

Model 4 0.3 0.6 0 

Figure 6-2  equivalent viscous damping factor for Takeda 

models 
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6.2 ELASTO PLASTIC RULE (EPP)  

The EPP model was included solely because of its historic importance in seismic time-history analysis. Its 

closest approximation in real structures is a flexible structure isolated with a flat coulomb (friction) 

damper. However, the loops tend to overestimate the amount of energy dissipated in most structural 

systems.  The rules of this model are very simple and consist of a loading and unloading stiffness (Ko) that 

changes when the yielding force (Fy) has been reached.  After yielding, the stiffness drops to 0 if the 

system has not hardening (Figure 6-3). 

 

 

Figure 6-3 Elastic Perfectly plastic Hysteretic Loops. (No Hardening) 

 

The theoretical equivalent damping for this hysteresis rule is significantly large given the area enclosed by 

the loops in proportion with the elastic stored energy, and is given by Eq. (6-3).   
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where r is the post yielding stiffness coefficient and α is the unloading degrading coefficient as defined in 

Eq. (6-2). For the case of the elastic perfectly plastic model with no post yielding stiffness and no 

unloading stiffness degradation Eq. (6-3) simplifies to Eq. (6-4) 
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6.3 BILINEAR 

This hysteretic model was intended to model the dynamic behaviour of a structure incorporating an 

isolation device (friction pendulum system FPS). This mechanism combines a sliding action and a 

restoring force by geometry [ Naeim and Kelly, 1999].  Due to the properties of the dissipating system, 

the initial stiffness is very high so in Figure 6-4 the loop starts directly from zero displacement and the 

characteristic strength.  However, when combined with the structural flexibility, the FPS is modelled with 

a bilinear envelope (Dash line).  The equivalent damping is given by Eq. (6-5). 
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Figure 6-4 FPS hysteretic loop. 

In general, the FPS devices are used to isolate the movement of the superstructure of bridges from that 

from the piers.  Therefore, the hysteretic model should represent the combination of the force deformation 

relationship of the piers and the FPS device.  Given that there are many possible combinations that can be 

considered the values of initial stiffness and post yielding stiffness were selected based in some 

assumptions that are typical in design. 

 

The main assumptions are that the response of the pier is always linear with a fundamental period (Tp) of 

2 seconds.  The period of the FPS (TFPS, based on rK0) is equal to 4s.  Finally, r = 1/50.  With these 

assumptions, the system (pier-FPS) is modelled as a bilinear system with a post yielding coefficient of 

0.2. (Assuming a weight (w)=10.000 KN). 
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p

p T
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6.4 RAMBERG OSGOOD 

This model is often used to describe the resistance deformation strain relation of steel members in frame 

analysis.  The loading curve is defined by Eq. (6-6): 
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(6-6)

The curve passes at (Fy, (2Dy)) for any value of γ, which controls the shape of the primary curve.  As 

shown in Figure 6-5, the loading curve may vary from a linear elastic line for γ = 1.0, to an elasto-plastic 

bilinear segment, for γ = ∞. 

 

Figure 6-5 Ramberg Osgood curve.  From [Otani,1981] 

 

The unloading curve from the maximum point (Do, Fo) follows the equation: 
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(6-7)

The force is computed by an iterative procedure using the Newton – Rapson method.  As pointed out by 

Otani [1981] this hysteretic model dissipates energy even if the ductility factor is less than one, the 

dissipated energy is sensitive to γ, increasing with the increasing of this parameter. 

 

There are four input parameters which define the hysteretic models: the yield strength (Fy), yield 

displacement (Dy), Ramber Osgood Parameter (γ), and the convergence limit for the Newton Rapson 

procedure (β1).  The EVDF of the Ramberg Osgood model depends on the value of γ and increases as the 

value of this parameter increases as described in Eq. (6-8). This parameter was selected as being 

reasonably appropriate for structural steel members equal to 7. 
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6.5 RING SPRING MODEL (FLAG SHAPE) 

This model was original developed to model a specific kind of energy dissipation [Hill 1994], however, it 

can be also used to model prestressed concrete (post tensioned unbonded concrete).  The model is 

characterized by small energy dissipation given the small enclosed areas in the loop, and also by the 

absence of permanent deformation given that the curve always return to the origin (Figure 6-6). 

 

The model is described by the initial stiffness (K0), the post elastic coefficient (r), the unloading steep 

stiffness coeffiecient (rsteep), the unloading lower stiffness coefficient (rlower) and a dummy displacement 

dxinit.  The yielding force (Fy), yielding displacement (dy), and the point where the unloading branch 

intersects the initial loading branch (d0,F0)  rest of the parameters can be obtained from Eq. (6-9a) 

initxlowero drd =  (6-9a)

initx
lower

y d
r

rrd
−

−=
1

)1(  (6-9b)

yy dkF 0=    (6-9c)

000 dkF =  
 

(6-9d) 
 

 

 
Figure 6-6 Ring spring model [Hill, 1994], from Carr [2002]. 

 
The expression obtained using Jacobsen’s approach to estimate the EVDF for this hysteretic rule is 

significantly complicated and extended, so it will not be included here.  However, Figure 6-7  shows the 

EVDF for all the hysteretic model described in this chapter for the parameters specified in Table 6-2.. 

d
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Table 6-2.  Model Parameters 

Model Parameters 
Takeda Fat r=0.05 α= 0.3 β=0.6 

Takeda Narrow r=0.05 α= 0.5 β=0.0 
EPP r=0.0 

Bilinear r=0.2 
Ramberg γ=7 

Ring Sring rlower=0.035, 
rsteep=1,r=0.04 
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7 MODELLING ASSUMPTIONS AND RESULTS 

7.1 INTRODUCTION 

Time-history analysis were carried out using the program RUAUMOKO [2003], using a Newmark 

constant average acceleration integration scheme with β = 0.25.   As described in chapter 4, this 

procedure was carried out iteratively until the displacement of the equivalent SDOF system is the same 

for the time-history and for the design spectral analysis.  Time step used for the integration was taken as 

half of the discretization step of each accelerograms, this is, 0.005 s except for Manjil adjusted record 

which has a discretization step of 0.0045.   

 

The results shown in this chapter are the average of the individual analysis for each of the six 

accelerograms used for each hysteretic model.  The C.O.V for each case are also included in order to 

observe the variability of the results.  Three set of plots are analysed for each case; the first one consist on 

the ratio between the displacements obtained from the time-history analysis (THA) and those from 

spectral design procedure (using DDBD for the equivalent damping from Jacobsen’s approach).  From 

this ratio would be possible to estimate how accurate is the Jacobsen’s approach to estimate the maximum 

time-history displacements (effective displacements). 

 

Second set of plots show the effective equivalent viscous damping factor obtained from the iterative 

procedure.  Finally, the last set of plots show the dispersion in terms of C.O.V of the effective EVDF. 

7.2 INITIAL VISCOUS DAMPING 

The initial elastic viscous damping used for time-history analysis of SDOF systems has been traditionally 

defined in practice by use of a constant damping coefficient corresponding to 5% of critical damping 

though lower values are sometimes used for steel structures.  This value is assumed to represent the 

different sources of energy dissipation when the structure is considered in the elastic range.  It is not clear 

that constant coefficient damping is appropriate for structures responding inelastically, since the hysteretic 

models generally incorporate the full structural energy dissipation in the inelastic range, and other 

contributory mechanism, such as foundation damping will be greatly reduced when the structure enters 

the inelastic range.  It would appear that tangent-stiffness proportional damping would be more 

appropriate than constant coefficient (initial-stiffness proportional, or mass-proportional) damping in 

modelling initial elastic damping in seismic response. The adoption of different characteristic stiffnesses 

in DDBD (secant stiffness) and time-history analyses (initial stiffness) further confuses the issue.  From 
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analyses conducted parallel to this study [Priestley and Grant, 2005], it was found that the choice of 

damping model used to represent elastic damping has a significant effect on the response of the system.  

As the results of Priestley and Grant’s study were not available at the start of the present study, and in 

order to eliminate the effects of this uncertainty and clarify the effective damping due only to hysteretic 

behaviour, the initial viscous damping was taken as zero in both the DDBD process, and the time-history 

analyses 

7.3 TAKEDA 

7.3.1 Model 1 (Narrow type) 
 
The results of the time-history analysis (THA) / initial design displacement ratio presented in Figure 7-1 

indicate that displacements for short periods (less than 1s) are overestimated indicating a conservative 

design; meanwhile, for larger periods the average displacements obtained by the THA are larger than the 

initial design displacements (using EVDF given by Jacobsen’s approach Eq. (6-1)).  This means that the 

effective displacements are underestimated, indicating an unconservative design.  However, the initial 

design displacements are in general inside ± 10% the value estimated by the THA with a coefficient of 

variation (C.O.V) around 0.15, which is an acceptable range for design.  A slight correction of the 

damping estimated using Jacobsen’s approach would improve the results. 
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Series represent ductility level from 1 to 6 

Figure 7-1 Time-history analysis / Initial design displacement average ratio (left) and dispersion (right) 
for Takeda model  (Narrow type, α = 0.5, β = 0.0, r=0.05), based on Jacobsen’s Approach. 

The lack of consistency in matching the design and time-history displacement justifies the application of 

the procedure described in chapter 4.  The steps described there were applied for all the six synthetic 

accelerograms. Figure 7-2  shows the average results (six records) of the equivalent damping factor 

obtained after the iterative procedure.  Using the EVDF shown in the figure, it is possible to obtain 

approximately the same displacement from a design displacement spectra and a non-linear time-history 

analysis (for an effective period and a given level of ductility).   
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Figure 7-2 (left) shows that there is a slight dependency of the EVDF on the period but the dependency 

on ductility (right) is much stronger.  In the left plot (EVDF vs Ductility) the bold black line (JB) 

represents the estimation of the damping obtained using Jacobsen’s approach.  It can be observed that this 

estimation gives an approximate average of the EVDF for all periods and gives a good representation of 

the damping variation with ductility.  The red bold line gives the estimation of the same factor using Eq. 

(3-16a) proposed by Priestley.  This equation gives a larger estimation of the EVDF because it does not 

take into account the value of the post elastic coefficient (r).  In general, there is a gradual decrease of the 

damping from the short periods to the intermediate periods until a constant value is reached.  The same 

pattern occurs for different levels of ductility, being more irregular at lower ductility levels. 

 

The coefficient of variation associated to the average damping ranges between 0.1 to 0.25 (Figure 7-3); 

however it would be necessary to carry out more analysis with additional records in order to obtain a 

reliable value of the coefficient of variation.  From the available results it is possible to observe that the 

coefficient does not follow any particular trend either in terms of period or in terms of ductility. It would 

be possible then to select a constant conservative value average value of this coefficient, which could be 

approximately 0.2. 
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               Series represent ductility level from 2 to 6                              Series represent periods from 0.5 to 4.  

Figure 7-2 Average Equivalent Damping for Takeda model (Narrow type, α = 0.5 and β = 0.0) 
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Series represent ductility level from 2 to 6                              Series represent periods from 0.5 to 4. 

Figure 7-3 COV of the effective EVDF for Takeda Model (Narrow type, α = 0.5 and β = 0.0). 

7.3.2 Model 2 (Fat Type) 
 
The EVDF estimated by Jacobsen’s approach is given by Eq. (6-1) with a different set of coefficients.  

The theoretical energy dissipation is larger than in the previous case.  As shown in Figure 7-4, the 

displacements obtained from THA are in general larger than the initial design displacements.  There is a 

slight tendency to estimate better the displacements for short periods than for large periods.  However the 

trend is not very clear for all ductility levels.   In terms of dispersion, the C.O.V seems not to have any 

relationship with ductility nor period, even if there is a large reduction of the C.O.V for intermediate 

periods.  In practical terms the C.O.V for the results is around 0.2.  It is clearly seen that Jacobsen’s 

approach need a calibration for this rule, given the significant underestimation of the effective 

displacements. 
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               Series represent ductility level from 1 to 6                               
Figure 7-4 Time-history analysis / Initial design displacement average ratio (left) and dispersion (right) for 

Takeda model  (Fat type, α = 0.3 and β = 0.6, r=0.05), based on Jacobsen’s Approach. 

 

The results of the iterative procedure are shown in Figure 7-5.  The obtained effective damping shows the 

same trend as the narrow Takeda model.  In general, there is a decrease of the damping from the short 
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periods to intermediate periods until an approximate constant damping is reached.  The damping given 

from Jacoben’s (JB) approach in Eq. (6-1) is overestimated, which is the reason why the average THA/ 

initial design displacement ratio is, in general, significantly larger than 1.  The Jacobsen’s equation 

however, gets more or less the right pattern of dependency on ductility.  Equation (3-16a) proposed by 

Priestley (red line) gives a better match to the effective damping. However it still overestimates this factor 

for some periods. 
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               Series represent ductility level from 2 to 6                              Series represent periods from 0.5 to 4. 

Figure 7-5 Average Equivalent Damping for Takeda model (Fat type, α = 0.3 and β = 0.6) 

 
For this hysteretic rule, the dispersion of the data, expressed with the coefficient of variation (COV) tends 

to be larger than in the case of the “narrow type” Takeda model, but in practical terms there seems to be 

almost no difference (Figure 7-6), therefore, a C.O.V of 0.20 could be taken to define the dispersion of the 

EVDF.   
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Figure 7-6 COV of EVDF for Takeda Model (Fat type, α = 0.3 and β = 0.6). 

7.4 BILINEAR 

For this type of hysteretic model, the design displacements using damping from Eq. (6-3) are significantly 

underestimated for most cases.  Figure 7-7 shows that for short periods the average displacement can be 
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predicted safely with an acceptable level of accuracy except for high ductility levels (5 and 6).  For the 

rest of the cases, the results are unconservative tending to be even more unsafely as ductility decreases.  

The dispersion of the displacement ratio is lower than in the previous two cases, showing more stability of 

the response.  From these plots, it is demonstrated that Jacobsen’s equation needs further corrections.   
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Figure 7-7Average displacement for the bilinear hysteresis model (Jacobsen’s approach) 

The effective damping follows the same pattern as in the previous model; reducing as period increases 

until a constant damping is obtained (Figure 7-8).  The variation is also stronger in terms of ductility than 

in terms of period.  Jacobsen’s equation (Eq.(6-3)- black line), overestimates in general, the effective 

EVDF; Additionally, in this model, the variation with ductility is not well represented.  The real data 

tends to follow a pattern that could be described better for a curve that is always increasing with the 

square root of the ductility as in the EPP or Takeda models.  This behaviour indicates that Eq. (6-4) is not 

reliable in terms of variation with ductility, as the post elastic stiffness coefficient (r) increases. 
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               Series represent ductility level from 2 to 6                              Series represent periods from 0.5 to 4. 

Figure 7-8 Equivalent Viscous Damping Factor for bilinear hysteretic loop (K1=0.2K0) 

The variation associated with the average value of the EVDF for the bilinear hysteretic model does not 

seem to have a clear dependency on period nor ductility.  Figure 7-9 shows a larger and more unstable 

C.O.V of the EVDF as ductility decreases but without any specific tendency.  In this model, the C.O.V 
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could also be taken as 0.2 for all periods and ductility levels.  The large C.O.V presented for a ductility of 

2 are caused by a particular record.  However, it would be expected that as the number and the quality of 

the records increase, this peak would tend to disappear. 
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Figure 7-9 COV of EVDF for FPS Model 

7.5 ELASTIC PERFECTLY PLASTIC RULE (EPP)  

The average ratio between the time-history design and design displacements for the EPP hysteretic model 

indicates that there is a significant overestimation of the effective damping (Figure 7-10).  Therefore, 

Jacobsen’s equation Eq. (6-4) needs adjustment   This hysteretic rule is the one with the largest 

displacement ratio in comparison with the other hysteretic models analyzed.  Additionally to the 

THA/Initial design displacement ratio which indicates displacements more than twice the design 

displacement, the variability of the response is vary large. This indicates that the response is unstable, 

which can be attributed in part to the post yielding coefficient used (r=0).  Based on this result, the 

displacement obtained using this type of model, using Jacobsen approach are quite unreliable. 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 1 2 3 4 5
Period (s)

D
is

pl
ac

em
en

t R
at

io
TH

A
/J

ac
ob

se
n

1
2
3
4
5
6

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0 1 2 3 4 5
Period (s)

C
.O

.V

2
3
4
5
6

 
               Series represent ductility level from 1 to 6    

Figure 7-10   Average Displacement for the elastic perfectly plastic hysteresis model (r=0),  Jacobsen 
Approach 

The cause of the large error in the estimation of the displacements is the overestimation of the EVDF by 

the theoretical equation (6-3).  Figure 7-11 clearly shows that the real EVDF is much smaller from the one 

predicted by the theoretical equation by a factor of 0.3 to 0.5 approximately.  The dependency of the 
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EVDF with period and ductility can still be noticed but the trends are not as clear as in the other models 

due to the large variation in the results. 
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Figure 7-11   Equivalent Viscous Damping for the elastic perfectly plastic hysteresis model 

The COV of the EVDF is significantly large, which indicates that the estimation of this factor is quite 

unreliable (Figure 7-12).  The large values of the C.O.V and the difficulty to identify clear tendencies of 

the displacements or the EVDF suggest that the estimation of this factor has to be carried out in a 

conservative way when this hysteretic model is used.  
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Figure 7-12   COV of the Equivalent Viscous Damping Factor for the elastic perfectly plastic hysteretic 
model. 

7.6 RAMBERG OSGOOD HYSTERETIC MODEL 

The theoretical damping given by Eq. (6-8) underestimates the effective displacements as shown in Figure 

7-13.  The time-history displacements are larger for all periods and ductility levels than the initial design 

displacements.   There is also a large C.O.V associated to this ratio which indicates unreliable estimation 

of the displacements. 
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Figure 7-13  Average Displacement for Ramberg Osgood hysteretic model (γ=7),  Jacobsen approach. 
 
The effective EVDF obtained from the iterative procedure tends to show the same behaviour than the rest 

of the hysteretic models.  Even if the average values are slightly disperse, in practical terms it would be 

possible to have a constant value of damping for all periods for each ductility level.  As shown in Figure 

7-14,  Jacobsen’s equation (black line) and (3-16a) proposed by Priestley overestimate the EVDF by a 

factor of 2 approximately; however, the shape of the variation with ductility is well captured by these 

equations. 
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               Series represent ductility level from 1 to 6                              Series represent periods from 0.5 to 4. 

Figure 7-14   Equivalent Viscous Damping for the Ramberg - Osgood hysteresis model 
 
The effective damping has a C.O.V that ranges approximately between 0.2 and 0.4, however, for design 

purposes, it could be taken as 0.3 for all cases given that there is no a particular trend that could allow a 

differentiated value for each ductility level or effective period.  
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Figure 7-15   COV of the Equivalent Viscous Damping Factor for the Ramberg Osgood hysteretic model. 

7.7 RING SPRING (FLAG SHAPE) HYSTERETIC MODEL 

 
The THA/ Initial design displacement ratio for this model has some scatter but it indicates that 

Jacobsens’s equation (not presented in the document)  tends to give damping factors that produce a 

overestimation of the displacement for short periods changing to the opposite for large periods (Figure 

7-16).  The reason for the scatter of the response and the values of the C.O.V is that the effective damping 

associated to this model is small; hence, a small change of this parameter produces a significant change in 

terms of displacement. 
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Figure 7-16  Average Displacement for ring spring model,  Jacobsen approach. 

 
Once again, the effective damping obtained presents the same characteristics as the previous models 

(Figure 7-17).  The damping estimated by Jacobsen’s approach give an average value of the effective 

damping.  The equation (3-16a) proposed by Priestley underestimates the damping values. However it 

estimates the shape of the damping in a correct way.  For design purposes it would be better to use a 

modification of this last equation given the complexity of the theoretical equation, for this reason, some 

corrections will be obtained for it in the next chapter. 
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               Series represent ductility level from 2 to 6                              Series represent periods from 0.5 to 4. 

Figure 7-17  Equivalent Viscous Damping for the ring spring hysteresis model 
 
The variation of the effective damping is shown in Figure 7-18; where it is possible to observe that there 

is no evident dependence on ductility or period.  A value of 0.20 could be suggested for the C.O.V 

associated to the mean value. 
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Figure 7-18  COV of the Equivalent Viscous Damping Factor for the ring spring hysteretic model. 
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8 CORRECTED EQUIVALENT VISCOUS DAMPING FACTOR 
From the results shown in the previous chapter, it is clear that it is necessary to implement some kind of 

correction to estimate the EVDF.  This correction will depend on the type of hysteretic model, the 

ductility level and the effective period.  Three methods are proposed in this chapter, but only one will be 

implemented. 

8.1 PROPOSED METHODOLOGIES FOR CORRECTION OF THE EQUIVALENT VISCOUS 

DAMPING FACTOR 

8.1.1 Modified equivalent viscous damping equation 

This methodology is the one that will be implemented in this study. It consists simply in modifying 

existing proposed equations to estimate the equivalent viscous damping factor (see section 3.4).  Initially, 

it was proposed to apply a modification factor for the EVDF estimated using Jacobsen’s approach; 

however for most of the hysteretic models, these equations are complicated for practical use in design.  

Hence, the equations proposed by Priestley were taken as the base for the modified equations proposed 

here.    Finally, the obtained equations have the form: 

( )
N

Tffeffective
1)( ⋅⋅= µξ  

( ) NcT
a

dbeffective
11111 ⋅









+
+⋅








−⋅=

µπ
ξ

 

(8-1) 

a,b,c and d are coefficients defined for each hysteretic model µ is the ductility, T is the effective period 

and N is a normalizing factor; all of which will be explained afterwards. 

 

One important difference of this equation from previous existing proposals is the extra term which is 

dependant on effective period.  This was included given that in the previous chapter it was demonstrated 

that in general, there is a reduction of the EVDF as period increases.  

 

f(µ) was matched as close as possible to the values of the effective damping for a period 0.5 s. This 

function is then modified by the f(T) in order to match the damping to the other periods. 
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The normalizing factor (N) is just the result of the expression depending on period (second parenthesis of 

Eq (8-1)) evaluated for T = 0.5. 

( )dc
N

+
+=

5.0
11  (8-2)

 
It was found that the parameter c varies between 0.85 and 1, and defines how large is the difference of the 

EVDF for short effective periods and intermediate periods.  The parameter d was found to vary between 2 

and 4 and defines how flat the variation of the EVDF at intermediate and large periods is. 
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Figure 8-1 Influence of parameters c and d in EVDF. 

 

It is important to mention that the implementation of this approach in DDBD will modify slightly the 

design process.  This is because, in the methodology presented in chapter 2, the damping is obtained 

directly from the ductility; then, the effective period is obtained for a given target displacement.  

However, using the modified equation it will be necessary to iterate in order to obtain the period. 

 

The step 4 described in chapter 2 could be as follows: 

 

•  Step 4-1 : Select an EVDF randomly or suppose T=0.5s in the modified equation. 

•  Step 4-2: For the target displacement, obtain the effective period. 

•  Step 4-3: Compute the EVDF for the period obtained in the previous step and the selected 

ductility. 

•  Step 4-4: Repeat the procedure starting at step 4-2 until the effective period converges to the one 

obtained in the previous loop. 

 

8.1.2 Inelastic Design Response Spectrum 

This methodology is based on the displacement response spectrum that is reduced by a factor of ductility, 

period and hysteretic model (Figure 8-2) [Chopra,1995].  
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Figure 8-2 Inelastic Design Displacement Response Spectra 

 

8.1.3 Correction Factor For The Elastic Response Spectra 

This methodology is based on the reduction of the elastic response spectrum by an empirical factor which 

depends on damping (Figure 8-3).  This technique was used in this study in the iterative process in step 3 

using Eq. (5-2) that is repeated here. 
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Figure 8-3 Inelastic Design Displacement Response Spectra 

 

Based on the data obtained from the time-history analysis, it would be possible to develop a modified or 

new expression for the factor η.  However; some modifications would be needed in the time-history 

analysis given that the design elastic response spectrum is based on a 5% initial viscous damping, and for 

this study this factor was taken as 0. 

Effective Period 

Elastic 

D
is

pl
ac

em
en

t 

µ = 2 

µ = 3 
µ = 4 
µ = 5 
µ = 6 

Effective Period 

D
is

pl
ac

em
en

t

ξ = 10 

ξ = 15 
ξ = 20 
ξ = 25 
ξ = 30 

ξ = 5 



Chapter 8. Corrected Equivalent Viscous Damping Factor  

  48 

8.2 MODIFIED EVDF EQUATIONS 

The process to obtain the correction factors described in 8.1.1 was carried out for each hysteretic model 

analyzed.  Not all the correction factors depend in the same proportion on the variables (period and 

ductility) because of different reasons that will be explained for each case. 

 

A perfect match was not possible for all the cases because it was necessary to keep a simple form of the 

equation.  However, in some particular cases, it was necessary to modify the basic form of (8-1) to get a 

match that could lead to satisfying damping values. 

8.2.1 Takeda model (Narrow Type) 

As shown previously (Figure 7-2), both Kowalsky’s equation based on Jacobsen’s approach as given by 

Eq (6-1) and Priestley’s equation ((3-16a) estimate the damping factor with good accuracy by only for a 

specific effective period.  The equation by Priestley was selected given that it estimates with better 

precision the effective damping obtained by the iterative procedure for a period of 0.5s.   

 

By a trial and error procedure, the constants a and b maintained the same values given by the original 

Priestley’s equation (a = 95 and b = 0.5).  Using the same procedure, constants a and b were defined. 

Table 8-1   Constant values for the modified Takeda hysteretic model equation (Narrow Type) 

Constant Value 
a 95 

b 0.5 

c 0.85 

d 4 

 

Matching to the different ductility levels and effective periods are shown in Figure 8-4.   The left plot 

shows how the EVDF estimated by the modified equation (dashed lines) tends to decrease as the period 

increase; it also captures the variation with ductility.  The right plot shows that the variation between the 

average value of the EVDF (obtained from the iterative procedure) and the value estimated by the 

modified equation is for almost all the cases lower than 10% and none of the cases exceeds 22%.  It also 

shows that as the level of ductility increases, the estimation of the EVDF by the modified equation tends 

to be better. 
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               Series represent ductility level from 2 to 6   

Figure 8-4 comparison of the EVDF by the modified equation (dashed) and the average effective values 
(continuous). 

It is expected that the displacements obtained using the average value of the correction factor will not 

have the same coefficient of variation of the EVDF.  This is because the variation of this last variable 

does not occur in the same proportion for displacements.  This is true for level of equivalent damping 

which are not significantly low (see Figure 3-2). 

8.2.2 Takeda Model (Fat type) 

For this hysteretic model, the equation by Priestley (3-16a) was modified in order to match the effective 

damping at 0.5 s.  The coefficients for the modified equation are shown in table Table 8-2 

Table 8-2   Constant values for the  modified Takeda hysteretic model equation (Fat Type) 

Coefficient Value 
a 130 

b 0.5 

c 0.85 

d 4 

 
The modified equation shows the same behaviour of the “narrow” model (Figure 8-5).  However, the 

EVDF are larger for the fat model and there is also a steeper decrease of the damping as period increases.  

In this case, the variation of the damping factor obtained with the modified equation and the average of 

the effective damping is lower than 10% for most of the cases but not larger than 20% in any of them.  

The variation of the estimated damping factor is still lower than the C.O.V proposed for this model in 

section 7.3.2. 
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               Series represent ductility level from 1 to 6      
Figure 8-5 comparison of the EVDF by the modified equation (dashed) and the average effective values 

(continuous). (fat type) 

8.2.3 Bilinear 

The effective damping obtained for the bilinear model (section 7.4) show some characteristics which are 

somehow different from the previous models.  The relationship between the EVDF and the ductility tend 

to have a different shape for ductility levels larger than 4, this is, the EVDF get flatter much quicker than 

those obtained for the Takeda model.  In order to follow this behaviour, it was necessary to adjust the 

general equation (8-1) as follows: 

( ) NcT
ra

dbeffective
1111.011 ⋅









+
+⋅








⋅⋅−−⋅= µ

µπ
ξ   ( 8-3)

r is the post elastic stiffness coefficient.  However, it would be necessary to carry out additional analyses 

in order to determine for which range of values of r this equation is valid.  The factors obtained for a,b,c 

and d are given in Table 8-3. 

Table 8-3   Constant values for the bilinear hysteretic model modified equation 

Constant Value 
a 160 

b 0.5 

c 0.85 

d 4 

 

The ductility dependent term of the modified equation was adjusted to the effective damping values for a 

period of 0.5s as shown in Figure 8-6 (red line).  The damping is adjusted to the rest of the periods by the 

normalized factor dependent on period. 
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Series represent periods from 0.5 to 4.(Black line Jacobsen’s estimation and red line estimation with modified 

equation) 
Figure 8-6 Ductility dependant factor of the modify EVDF equation. 

 

Figure 8-7 shows the comparison between the EVDF from the modified equation and that obtained from 

the iterative procedure.  For this model, the increase of the damping reduces significantly after a ductility 

level of 4.  Right plot shows that the variation between the two approaches is lower than 10% for almost 

all cases and with only one exception, the variation for all the cases is lower than 20%.   
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               Series represent ductility level from 2 to 6                              Series represent periods from 0.5 to 4. 

Figure 8-7 Comparison of the EVDF by the modified equation (dashed) and the average effective values 
(continuous). 

8.2.4 EPP 

The modified equation for the EPP hysteretic model was adjusted to the general form  (8-1), reducing 

significantly the damping obtained by Jacobsen approach Figure 8-2.   
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Series represent periods from 0.5 to 4. 

Figure 8-8  Comparison of the modified equation (red line) with Jacobsen’s approach equation (black line) 

The values for the coefficients for Eq. (8-1), are shown in Table 8-4.  These coefficients were selected in 

order to adjust the damping to the effective values for 0.5 s.  However, as observed in the figure, the 

effective damping presents significant scatter. 

Table 8-4   Constant values for EPP hysteretic model modified equation. 

Constant Value 
a 140 

b 0.5 

c 0.85 

d 2 

 

Comparison between the effective damping and the estimation by the modified equation shows that the 

variation is larger than in the previous models.  However, most of the variation is lower than 15% and for 

all cases, lower than 22%.  This variation is lower than the C.O.V obtained for the effective EVDF as 

discussed in 7.5. 

0

5

10

15

20

25

30

35

0 1 2 3 4 5
Effective Period (s)

D
am

pi
ng

 F
ac

to
r 

(%
)

2
3
4
5
6

 

0.7

0.8

0.9

1.0

1.1

1.2

1.3

0 1 2 3 4 5
Effective Period (s)

M
od

ifi
ed

/A
ve

ra
ge

2
3
4
5
6

 

Figure 8-9 Comparison of the EVDF by the modified equation (dashed) and the average effective values 
(continuous) for EPP model. 
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8.2.5 Ramberg Osgood 

 
In order to adjust an equation to the Ramber effective damping obtained in 7.6, several coefficients were 

proved, however, it is difficult to get a simple equation having the from of Eq. (8-1) due to the scatter that 

the effective damping has.  Finally, the coefficients shown in Table 8-5 were selected.  The variation 

shown in Figure 8-10 indicates that almost all the values of damping estimated by the modified equation 

are lower than ± 20% the effective EVDF.  As in the previous models, this variation is lower than the 

C.O.V obtained in 7.6. 
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               Series represent ductility level from 2 to 6 

Figure 8-10 Comparison of the EVDF by the modified equation (dashed) and the average effective values 
(continuous) for Ramberg model. 

Table 8-5   Constant values for Ramberg  hysteretic model modified equation. 

Constant Value 
a 150 

b 0.45 

c 1 

d 4 

8.2.6 Ring Spring 

Compared with the equation proposed by Priestley for precast unbonded concrete elements by Eq. 

(3-16a), the modified equation increase the equivalent damping factor by a factor of 2 for a period of 0.5 

sec.  The agreement between the effective EVDF and that obtained by the modified equation is better than 

in the previous models.  As shown in Figure 8-11, the variation between the two approaches is lower than 

10% for most of the cases but not larger than 15% for any of the cases, which is desirable in particular for 

this model, given the low effective damping.  This is because for this level of effective damping, slight 

variations of this parameter affect significantly the displacement.  Coefficients obtained for Eq. (8-1) are 

shown in Table 8-6. 
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               Series represent ductility level from 2 to 6                              Series represent periods from 0.5 to 4. 

Figure 8-11 Comparison of the EVDF by the modified equation (dashed) and the average effective values 
(continuous) for ring spring model. 

Table 8-6   Constant values for ring spring  hysteretic model modified equation. 

Constant Value 
a 50 

b 0.5 

c 1 

d 3 
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9 CONCLUSIONS 
 

Design methodologies based on displacements such as the direct displacement based design have 

demonstrated to be a more rational approach than the methodologies based on forces.  However, there are 

still some improvements that have to be carried out in the design procedure in order to produce more 

reliable designs. 

 

The traditional method to estimate the equivalent viscous damping for the substitute structure has 

demonstrated to work adequately for some specific cases of hysteretic models, ductility levels and 

periods.  However, from the results of the analyses carried out in this study, it is possible to conclude that 

this methodology tends to overestimate the equivalent viscous damping for a large number of cases.  This 

fact cause a significant underestimation of the real displacements making the ductility demands much 

larger than expected and hence an unconservative design of the members. 

 

The effective equivalent viscous damping factors obtained from the iterative approach have shown to be 

dependent not only on the ductility but also on period, but not in the same proportion for the different 

hysteretic models.   

 

These effective factors have a significant variation from the average value; however, the level of variation 

on displacements is not so significant.  This means that it is not necessary to have an exact evaluation of 

the damping but instead, some coarse evaluation of this factor could lead to accurate levels of 

displacement. 

 

In order to have a better estimation of the equivalent damping and therefore of the displacements, it is 

necessary modify the equations obtained using Jacobsen’s approach. In order to reduce the complexity for 

design applications, a general equation was proposed.  The coefficients of this equation are modified 

according to the hysteretic model considered. 

 

The modified equations to estimate the EVDF proposed in this study take into account the effective 

period.  This will require a slight modification of the design procedure of the DDBD.  However, the 

iterative procedure required to apply this equation does not demand complex or time-consuming steps. 
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Additional analyses have to be carried out in order to evaluate the Jacobsen approach to additional 

modelling assumptions, such us elastic damping.  This means that it will be necessary to repeat the same 

procedure carried out in this study for a different level of initial viscous damping (probably 5%) whether 

simple addition of hysteretic and initial elastic damping is appropriate.  In carrying out such a study, 

reference should be made to the relevance of the difference between initial (elastic) period and effective 

(secant) period at maximum displacement response, as discussed by Priestley and Grant (2004).  This 

difference in period affects the value of elastic damping to be added to the Direct Displacement Based 

Design Procedure. 
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