

CENTER FOR INFRASTRUCTURE ENGINEERING STUDIES

Geotechnical and Bridge Design Workshop: New Madrid

Seismic Zone Experience

By

Dr. Genda Chen

UTC ETT131

University Transportation Center Program at

The University of Missouri-Rolla

Disclaimer

The contents of this report reflect the views of the author(s), who are responsible for the facts and the accuracy of information presented herein. This document is disseminated under the sponsorship of the Department of Transportation, University Transportation Centers Program and the Center for Infrastructure Engineering Studies UTC program at the University of Missouri - Rolla, in the interest of information exchange. The U.S. Government and Center for Infrastructure Engineering Studies assumes no liability for the contents or use thereof.

3

Technical Report Documentation Page

1. Report No.	2. Government Accession No.	3. Recipient's Catalog I	No.
UTC ETT131			
4. Title and Subtitle		5. Report Date	
Geotechnical and Bridge Design Workshop: Experience	New Madrid Seismic Zone	Dec 2004	
		6. Performing Organiza	ation Code
7. Author/s		8. Performing Organiza No.	ation Report
Dr. Genda Chen		00001352	
9. Performing Organization Name and Address		10. Work Unit No. (TR	RAIS)
Center for Infrastructure Engineering Studie University of Missouri - Rolla	es/UTC program	11. Contract or Grant N	Vo.
223 Engineering Research Lab Rolla, MO 65409		DTRS98-G-002	21
12. Sponsoring Organization Name and Address		13. Type of Report and Covered	Period
U.S. Department of Transportation Research and Special Programs Administrat	ion	Final	
400 7 th Street, SW Washington, DC 20590-0001		14. Sponsoring Agency	/ Code
15. Supplementary Notes			
16. Abstract			
A technology transfer workshop will be held the research results from the UMR earthqua cover the bridge design related topics in geo Attempt will be made to work step-by-step t highlighting the contributions from the UMI	d in Cape Girardeau on October 28- ke hazards mitigation research prog physics, seismology, geotechnical through a complete design cycle for R efforts in each step.	-29, 2004 to disse gram. The worksh to structural engi r bridge systems,	eminate nop will neering.
17. Key Words	18. Distribution Statement		
Bridge Structure, Earthquake Mitigation	No restrictions. This document is through the National Technical In Springfield, Virginia 22161.	available to the p formation Servic	public e,
19. Security Classification (of this report)	20. Security Classification (of this page)	21. No. Of Pages	22. Price
unclassified	unclassified		

Form DOT F 1700.7 (8-72)

GEOTECHNICAL AND BRIDGE SEISMIC DESIGN WORKSHOP

New Madrid Seismic Zone Experience

Drury Inn Lodge Cape Girardeau, Missouri

October 28-29, 2004

Organizer:	University of Missouri-Rolla (UMR)
Sponsors:	Federal Highway Administration Missouri Department of Transportation University Transportation Center at UMR

PREFACE

The University of Missouri-Rolla (UMR) was awarded the project entitled "Earthquake Hazard Mitigation Research Program for Highway Systems" in 2002 by the U.S. Department of Transportation through the Federal Highway Administration. The period of performance was originally from January 30, 2002 through January 29, 2004, but was recently extended to February 28, 2005. Co-funded by the Missouri and Alaska Departments of Transportation, Missouri Department of Natural Resources, UMR, and the University Transportation Center at UMR, the project involves a multidisciplinary team of seismologists, geologists, geotechnical and structural engineers. Focused on the earthquake threat from the New Madrid Seismic Zone, the research project addresses several issues of national importance, including earthquake loss estimation, effect of near-field ground motions on bridge designs, post-earthquake assessment, and seismic retrofit techniques for Mid-American highway bridge systems.

At present, the research team is summarizing the findings and methodology developed from the research project. The final report is expected to become available in Spring 2005. As an integral part of the overall project, this Geotechnical and Bridge Seismic Design Workshop provides a forum for information dissemination. The main objective of the workshop is to present a methodology for the geotechnical and structural seismic design of bridge systems in the New Madrid Seismic Zone based on the recent research findings. The new methodology addresses the uniqueness of earthquake motions (near field and directivity), as well as the effects of deep soil stratigraphy on the seismic response in the New Madrid Seismic Zone. Participants in the workshop will apply this methodology to re-design an existing highway bridge in the vicinity of the New Madrid Seismic Zone.

This workshop is sponsored by the Federal Highway Administration (FHWA), the Missouri Department of Transportation (MoDOT), and the University Transportation Center at UMR; their support is greatly appreciated. The findings and opinions expressed in a series of presentations during the workshop reflect only those of the authors and do not necessarily represent those of the sponsors.

The investigators of the research project all contributed to the organization of this workshop by providing their inputs related to technical contents. The logistics of the workshop were coordinated by Ms. Victoria Bañales from the Continuing Education at UMR. The workshop was administrated by the Workshop Steering Committee, which consisted of Dr. Neil Anderson (Co-Chair), Dr. Genda Chen (Co-Chair), Peter Clogston (FHWA), Thomas Fennessey (MoDOT), and Timothy Chojnacki (MoDOT).

Genda Chen, Ph.D., P.E. Associate Professor of Civil Engineering at UMR Technical Director of the UMR Earthquake Hazard Mitigation Research Program

Neil Anderson, Ph.D. Professor of Geology and Geophysics at UMR Principal Investigator of the UMR Earthquake Hazard Mitigation Research Program

WORKSHOP PROGRAM

Thursday, October 28, 2004, State/Delta Room

7:45 – 8:30 am	Registration
8:30 – 8:45 am 8:45 – 9:30 am	Introduction (Drs. Neil Anderson/Genda Chen) Earthquake loss estimation of St. Louis transportation highway system (Dr. Bonaldo Luna)
9:30 – 10:00 am	Post-earthquake condition assessment of RC structures: Part 1 cable sensor and Part 2 microwave technology (Dr. Genda Chen)
10:00 – 10:15 am	Coffee break
10:15 – 10:45 am	Recommended LRFD guidelines for the seismic design of highway bridges (Dr. Phillip Yen)
10:45 – 11:30 am	Seismic design procedure of highway bridges – an overview (Mr. Thomas Fennessey/Anousone Arounpradith)
11:30 – 12:00 pm	General geologic setting and seismicity of the FHWA project site in the New Madrid Seismic Zone (Mr. David Hoffman)
12:00 – 1:00 pm	Lunch
1:00 – 2:00 pm	Synthetic near-field rock motions in the New Madrid Seismic Zone (Dr. Genda Chen)
2:00 – 3:00 pm	Geotechnical site characterization (Drs. Neil Anderson/Richard Stephenson)
3:00 – 3:15 pm	Coffee break
3:15 – 4:00 pm	Site response analysis including liquefaction (Dr. Ronaldo Luna)
4:00 – 4:30 pm	Seismic performance of embankments (Dr. Richard Stephenson)
5:00 – 6:00 pm 6:00 – 7:30 pm	Happy hour (Hayward Baker) Dinner
	Dinner Speech: brief overview of seismic threat posted by the New Madrid Seismic Zone (Dr. David Rogers)
Friday, October 29, 2	2004, State/Delta Room
8:00 – 8:45 am	Soil-pile-structure interaction – geotechnical aspects (Dr. Ronaldo Luna)
8:45 – 9:30 am	Bridge response to near-field ground motions (Dr. Genda Chen)
9:30 – 10:30 am	Seismic evaluation and retrofit of beam-column joints of Mid-America bridges: Part 1 carbon fiber reinforced polymer retrofit and Part 2 steel sheet and plate retrofit (Drs. Genda Chen/Pedro Silva)
10:30 – 10:45 am	Coffee break
10:45 – 11:15 am	Seismic design issues of long-span bridges (Mr. Steve Hague)
11:15 – 11:30 am	Closure (Dr. Genda Chen)

11:15 - 11:30 amClosure (Dr. Genda Chen)11:45 am -Site visit - Bill Emerson Memorial Bridge (Mr. Steve Hague)

TABLE OF CONTENTS

PRESENTATION	TITLE PAGE
1	Introduction1
2	Earthquake loss estimation of St. Louis transportation highway system5
3	Post-earthquake condition assessment of RC structures: Part 1 cable sensor and Part 2 microwave technology
4	Recommended LRFD guidelines for seismic design of bridges
5	Seismic design procedure of highway bridges – an overview
6	General geologic setting and seismicity of the FHWA project site in the New Madrid Seismic Zone
7	Synthetic near-field rock motions in the New Madrid Seismic Zone154
8	Geotechnical site characterization177
9	Site response analysis including liquefaction
10	Seismic performance of embankments
11	Dinner speech: brief overview of seismic threat posed by the New Madrid
	Seismic Zone
12	Soil-pile-structure interaction – geotechnical aspects
13	Bridge response to near-field ground motions
14	Seismic evaluation and retrofit of beam-column joints of Mid-America
	bridges: Part 1 carbon fiber reinforced polymer retrofit and Part 2 steel
	sheet and plate retrofit
15	Seismic design issues of long-span bridges
	Closure

St. Louis, Missouri	USGS background seismicity	0	7.0	None - assumed possible anywhere in the Central U.S. inboard "craton" zone	Unknown	G
New Madrid, Missouri	New Madrid seismic zone	148	7.7	Historic earthquakes and paleo-liquefaction features	107	C, G
Vincinnes, Indiana	Wabash Valley fault zone	146	7.5	Paleo-liquefaction features	6,100	C, E, F
Centralia, Illinois	Unknown -	56	7.5	Paleo-liquefaction features	< 6,500	A, C, D
Germantown, Illinois	Unknown	38	7.0	Paleo-liquefaction features	< 6,500	A, C
Arnold, Missouri	Unknown	18	5.2	Paleo-iquefaction features	< 2750	A, B, C
Name of EQ Source Zone	Source Zone Fault or Structure	Dist. From STL (miles)	Dec	Evidence for EQ source	Most recent EQ. (yrs BP)	Refs.

Engl L [J	Decem	ber 1	6. 8 2	K 1
Name Earthquake Scenario	Lat. (d,d)	Long. (d,d)	Mm	Epicenter Depth (km)	Attenuation Relationship
1. St. Louis, MO	38.63	-90.2	7.0	10	Project 2000 East
2. Germantown, IL	38.56	-89.5	7.0	10	Project 2000 East
3. New Madrid, MO	36.55	-89.54	7.7	10	Frankel (1996)

Structure	1	County	Feature Intersected	Facility Carried	Year Built	1999 ADT	Structure Length
A40171 2		St Charles	MISSOURI RIVER	US 40 (E)	1991	(NBI Itel 29,30)	796.7
A5585 4		St. Charles	MISSOURI RVR	MO 364	1999	72400	986.9
A4557 2		St. Charles	MISSOURI RVR	MO 370 (N)	1992	9532	1053.1
A4557 3		St. Charles	MISSOURI RVR	MO 370 (S)	1993	9532	1053.1
J10004 3		St. Charles	MISSOURI RVR	US 40 (W)	1935	39463	796.7
A3047 4		St. Charles	MISSOURI RVR	US 67	1979	32567	848.3
A4278 4	6	St. Charles	MISSISSIPPI RVR	US 67	1994	28565	1408.2
A3292R 2		St. Louis	MISSOURI RIVER	IS 70 (E)	1978	143463	1155.8
L05617 3		St. Louis	MISSOURI RVR	IS 70 (W)	1958	87752	1244.5
A1850 3	:	St. Louis	MISSISSIPPI RVR	IS 255 (W)	1985	28859	1220.1
A4936 2	:	St. Louis	MISSISSIPPI RVR	IS 255	1990	26393	1220.1
A 890 4		St. Louis City	MISSISSIPPI RVR	IS 270	1964	52299	824.8
A4856 1	4	St. Louis City	MISSISSIPPI RVR	MO 770	1900	41076	1222.2
A1500R3 4		St. Louis City	MISSISSIPPI RVR	IS 70	1963	149848	659.9
K09691 1	1	Franklin	MISSOURI RVR	MO 47	1934	8811	780.9

			959
Bridge Inventory	December	Date Updated	Inventory Items
MoDOT GIS	GIS	2001	45
MoDOT District 6 (1)	Database	1999	6
MoDOT District 6 (2)	Database	2002	6
Illinois ISIS/SIMS	GIS/Database	2003	170
FEMA's HAZUS-MH	GIS/Database	2001	0° 25
FHWA's NBI	GIS/Database	2002	116

507		_	-73
Multiple	Bridge d	ataba	ses
1/72-	December	602	TZA I
Bridge Inventory	Media	Date Updated	Inventory Items
MoDOT GIS	GIS	2001	45
MoDOT District 6 (1)	Database	1999	6
MoDOT District 6 (2)	Database	2002	6
Illinois ISIS/SIMS	GIS/Database	2003	170
FEMA's HAZUS-MH	GIS/Database	2001	0° 25
EHWA's NBI	GIS/Database	le (W) 2002	116

Items in HAZUS-MH bridge inventory (Adapted from FEMA Metadata for HAZUS-MH Release 28-D.)

Item Name	Description	Item Name	Description	
Highway Bridge Id	HAZUS-MH Internal ID	Year Built	Year Bridge Was Built	
Bridge Class	Analysis Class	Vear Remodeled	Vear Bridge Remodeled	
Tract	Census Tract			
Name	Bridge Name	Pier Type	Pier Type	
Owner	Bridge Owner	Foundation Type	Foundation Type	
Bridge Type	Structure Type	Scour Index	Scour Index	
Width	Bridge Width (m)	Traffic	Daily Traffic (cars/day)	
Number of Spans	Number of Spans	Traffic Index	Traffic Index	
Length	Total Bridge Length (m)	Condition	General Condition Rating	
Max Span Length	Maximum Span Length (m)	Cost	Replacement Cost (thous. \$)	
Skew Angle	Skew Angle (degrees)	Latitude	Latitude of Bridge	
Seat Length	Seat Length (m)	Longitude	Longitude of Bridge	
Seat Width	Seat Width (m)	Comment	Misc. Comments	

December 16						
157	Initial Damage State					
Probability of Occurrence	Complete	Exceed Extensive	Exceed Moderate	Exceed Slight	None	
pril_1.8,	0	0	0	0	81	
906 _{≥0.75} 7.8	29	163	216	367	1448	
≥0.50	188	469	564	732	1913	
≥0.25	521	836	997	1197	2278	
>0	2216	2423	2480	2564	2645	
≥0	2645	2645	2645	2645	2645	

Germantown Earthquake, M=7.0						
1		Decemb	Damage State			
Probabability of Occurrence	Complete	Exceed Extensive	Exceed Moderate	Exceed Slight	None	
pril=1.0	0	0	0	0	81	
906 _{≥0.75} 7.8	0	0	2	232	2427	
≥0.50	0	9	50	103	2542	
≥0.25	9	112	155	218	2613	
>0	1483	1999	2146	2239	2645	
≥0	2645	2645	2645	2645	2645	

New Madrid Earthquake, M=7.7						
Probabability of Occurrence	Initial Damage State					
	Complete	Exceed Extensive	Exceed Moderate	Exceed Slight	None	
pril=1.8	0	0	0	0	13	
906 _{≥0.75} 7.8	0	0	0	0	2494	
≥0.50	0	0	5	58	2587	
≥0.25	0	29	67	151	2645	
>0	1738	2306	2471	2632	2645	
≥0	2645	2645	2645	2645	2645	

December 16, W					
System	Replacement Value (\$ thousands)	Label	Component Classification		
Highway	20,000	HWB1 / HWB2	Major Bridges		
	5,000	HWB8, 9, 10, 11, 15, 16, 20, 21, 22, 23, 26, 27	Continuous Bridges		
120°	1,000	HWB3, 4, 5, 6, 7, 12, 13, 14, 17, 18, 19, 24, 25, 28	Other Bridges		

17	Model Lin	k Removal No. Bridges from	No. Bridges Selected	No. Links on EWG	
Scenario (2004)	@ Time (days)	HAZUS 99/MH Output	for EWG Runs	Model Altere	
New Madrid	1	- December	10, ₃₂		
New Madrid	30	60811-	32	33	
New Madrid	90	60	32	33	
New Madrid	250	60	32	33	
Germantown	1	50	17	19	
Germantown	30	50	17	19	
Germantown	90	50	17	19	
Germantown	250	50	17.	19	
Germantown	400	50	17	19	
St. Louis	11100	29	23	19	
St. Louis	30	29	23	19	
St. Louis	90	29	23 81)° 19	
St. Louis	250	100°29 hungitu	de (W) 23	19	
St. Louis	350	29	23	19	
URAL HAZARDS	400	29	23	19	

508	Earthquake Scenarios Missouri & Illinois					
Name of EQ Source Zone	Source Zone Fault or Structure	Dist. From STL (miles)	Dece	Evidence for EQ source	Most recent EQ. (yrs BP)	Refs.
Arnold, Missouri	Unknown	18	5.2	Paleo-iquefaction features	< 2750	А, В, С
Germantown, Illinois	Unknown	38	7.0	Paleo-liquefaction features	< 6,500	A, C
Centralia, Illinois	Unknown -	56	7.5	Paleo-liquefaction features	< 6,500	A, C, D
Vincinnes, Indiana	Wabash Valley fault zone	146	7.5	Paleo-liquefaction features	6,100	C, E, F
New Madrid, Missouri	New Madrid seismic zone	148	7.7	Historic earthquakes and paleo-liquefaction features	107 80°	C, G
St. Louis, Missouri MITIGATIC	USGS background seismicity	0	7.0	None - assumed possible anywhere in the Central U.S. inboard "craton" zone	Unknown	G JM D

-	1 5-	1 De	cember 16	.W.a.	Li.
Column	Retrofit	Stroke (mm)	Rubber- Sensor	Teflon- Sensor	Crack
C1	No	1.78	N/A	T1	Surface
C2	No	1.78	N/A	T2	Surface
C3	Yes	1.78	N/A	T3	Hidder
C4	Yes	1.78	N/A	T4	Hidder
C5	Yes	0.76	N/A	T5	Hidder
C6	No	0.76	R1	N/A	Surface

Key Concepts

- National hazard maps, site factors, spectra
- Performance objectives and design earthquakes
- Emphasis on capacity design principles
 - Selected yielding / damage sites
 - Essentially elastic response elsewhere
- Seismic Design and Analysis Procedures (SDAP)
- Improved foundation, abutment and liquefaction design procedures

Per	formance Obje	ctives	
	Performance Objective		
Probability of Exceedence	Life Safety	Operational	
Rare EQ SL	Significant disruption	Immediate	
3%/75yr <i>D</i>	Significant	Minimal	
Freq EQ SL	Immediate	Immediate	
50%/75yr <i>D</i>	Minimal	None	
SL = Ser	vice Level D =	= Damage	

Sei	smic Hazaro	l Levels
Seismic Hazard Level	Value of $F_v S_1$ (1-second)	Value of $F_a S_s$ (0.2 –second)
I	F _v S ₁ ≤0.15	F _a S _s ≤0.15
II	0.15 <f<sub>vS₁≤0.25</f<sub>	0.15 <f<sub>aS_s≤0.35</f<sub>
III	0.25 <f<sub>vS₁≤0.40</f<sub>	0.35 <f<sub>aS_s≤0.60</f<sub>
IV	0.40 <f<sub>vS₁</f<sub>	0.60 <f<sub>aS_s</f<sub>
	I I	

	Desię	gn Opti	ons		
Seism ar	ic Design ar d Seismic D	nd Analysis Design Rec	s Procedure juirements	es (SDAP) (SDR)	
Seismic	Life S	Life Safety		Operational	
Level	SDAP	SDR	SDAP	SDR	
1	A1	1	A2	2	
II	A2	2	C/D/E	3	
III	B/C/D/E	3	C/D/E	5	
IV	C/D/E	4	C/D/E	6	

"No Seismic Analysis" SDAP B

- 'Regular' bridges in lower seismic hazard areas
- Bridge does not require seismic demand analysis
- Capacity design procedures used for detailing columns and connections
- No seismic design requirements for abutments

Capacity Spectrum SDAP C

- Conceptually similar to Caltrans' displacement design method
- May be used for 'very regular' structures
- Period of vibration does not need to be calculated
- Designer sees explicit trade-offs between design forces and displacements

Parameter Study, Trial Designs and Design Examples

- ◆ 2400 simplified substructure designs
- ◆ 19 trial designs by state DOTs
- ◆ 2 design examples
- Broad, nationwide data sets included
- Costs similar to or only moderately higher (+/- 10%) than those by current provisions

Bridge # S.= For clay, the undrained shear strength. For rock, the shear capacity, ket or kha. Route:	
E = Elastic Modulus of soil, ksf or kPa, where: E = 2*(1+v)*G and v = Poisson's ratio = 0.35 (sand), 0.45 (clay), or 0.20 (rock). Em = Rock mass modulus for intact rock, ksf or kPa (AASHTO Div. I, Section 4.4.8.2). RQD = Rock Quality Designation, %.	
Em = Rock mass modulus for intact rock, ksf or kPa (AASHTO Div. I, Section 4.4.8.2). RQD = Rock Quality Designation, %. Structured Turg, N, A, S, r, East Em, DOD, Giving, B, F.S., two table to the section of the se	
RQD = Rock Quality Designation, %.	
Structural Tuna N A S u For Far DOD fuiding Bassing & F.S. (a)	
Bent No's (Seismic Category) $\# \# \# (degrees)$ (kefor kPa) (nofor kNm ³) (kefor kPa) (%) (kefor kPa) (kefor kPa) (methodin (fr)	er ** AASHT Elev. soil profil
Bridge (General A) X	ing type
Category A) A	
(Category B, C, or D) X X X X X X X X	X
Drilled Shafts	
(Category A) X X X X X X X X X X	
Diffued sharts (Category B C or D) X X X X X X X X X X X X X	x
Retaining Wall	
(Category A) X X X X	
Retaining Wall	
(Category B, C, or D) X X X X	
* Provide safety factors for liquefaction for the recommended seismic magnitude at the bridge site. The magnitude shall be based on the p of exceedance of 10% in 50 years (approximately corresponding to a return period of 500 years). ** Provide soil profile type (type I, II, III, or IV based on AASIITO Div, I-A, Sec. 3.5) at each boring location. Note: If an item above is checked, then "X" indicates the soil properties required at each boring location. Other required soil properties:	obabilities
(or special instructions) 2: 3: 4	

General Geologic Setting and Seismicity of the FHWA Project Site in the New Madrid Seismic Zone

David Hoffman University of Missouri – Rolla Natural Hazards Mitigation Institute Civil, Architectural & Environmental Engineering Department

dhoffman@umr.edu

General Geologic Setting and Seismicity of the FHWA Project Site in the New Madrid Seismic Zone

- Central and Eastern United States Earthquake Hazard
- Regional geology, topography and seismicity
- Mississippi Embayment and Reelfoot Rift (Mississippi Valley Graben)
- Stratigraphy
- Geologic structure, faults and seismicity
- Sandblows
- Attenuation

URAL HAZARDS MITIGATION INSTITUTE

- Local site alluvial soils
- Important Considerations

General Geologic Setting and Seismicity of the FHWA Project Site in the New Madrid Seismic Zone Central and Eastern United States Earthquake Hazard Regional geology, topography and seismicity Mississippi Embayment and Reelfoot Rift (Mississippi Valley Graben) Stratigraphy Geologic structure, faults and seismicity Sandblows Attenuation

UMR

- Local site alluvial soils
- Important Considerations

NTURAL HAZARD MITIGATIO INSTITUT

Soil Type and Properties	Soil Profile Type	Average Shear Wave Velocity (Ft/Sec)	Possible Amount of Amplification times bedrock Ground Motions	
Amplification	А	>5,000	0.8	
	В	2,500 - 5,000	1.0	
cation	с	1,200 - 2,500	1.3 - 1.7	
plific	D	600 - 1,200	1.5 - 2.4	
ang Am	E	<600	2.4 - 3.5	
Institute	F	Not Applicable	Site Specific Investigation should be performed - can be <1 to as high as 10X	

General Geologic Setting and Seismicity of the FHWA Project Site in the New Madrid Seismic Zone

- Central and Eastern United States Earthquake Hazard
- Regional geology, topography and seismicity
- Mississippi Embayment and Reelfoot Rift (Mississippi Valley Graben)

UMR

- Stratigraphy
- Geologic structure, faults and seismicity
- Sandblows
- Attenuation
- Local site alluvial soils
- Important Considerations

N TURAL HAZARD MITIGATIO INSTITUT

General Geologic Setting and Seismicity of the FHWA Project Site in the New Madrid Seismic Zone

- Central and Eastern United States Earthquake Hazard
- Regional geology, topography and seismicity
- Mississippi Embayment and Reelfoot Rift (Mississippi Valley Graben)
- Stratigraphy
- Geologic structure, faults and seismicity
- Sandblows
- Attenuation

URAL HAZARDS MITIGATION

- Local site alluvial soils
- Important Considerations

UMR

- Central and Eastern United States Earthquake Hazard
- Regional geology, topography and seismicity
- Mississippi Embayment and Reelfoot Rift (Mississippi Valley Graben)

UMR

- Stratigraphy
- Geologic structure, faults and seismicity
- Sandblows
- Attenuation
- Local site alluvial soils
- Important Considerations

ERA	SYSTEM		FORMATION	MAXIMUM THICKNESS (in feet)	LITHOLOGIC CHARACTER
CENOZOIC	NATERNARY		Alluvium	275	Sand and gravel, some clay, lignite.
			Loess	80	Sill, yellow-brown.
	-	_	"Lafayette"	60	Gravel, sand, clay.
	IARY	WILCOX GROUP	Holly Springs ?	1300	Sand, several well-developed clay zones, thick basal sand.
	TERT	WAY GROUP	Porters Greek	650	Glay, blue-gray, conchoidat fracture, siderite and silt in upper portion. Glauconitic and calcareous in lower portion.
		W	Clayton	15	Limestone and calcareous clay, fossiliferous, glauconitic.
MESOZOIC	S		Owl Greek	70	Clay, brown, sandy, glauconitic. Very fossiliferous.
	CRETAGEOU		Mc Nairy (Ripley)	250	Sand, sandy clay, glauconitic, fossiliferous.
			Ozan ? Maribrook-Saratoga ?	250	Sand, calcareous sand and clay.

- Central and Eastern United States Earthquake Hazard
- Regional geology, topography and seismicity
- Mississippi Embayment and Reelfoot Rift (Mississippi Valley Graben)

UMR

- Stratigraphy
- Geologic structure, faults and seismicity
- Sandblows
- Attenuation
- Local site alluvial soils
- Important Considerations

- Central and Eastern United States Earthquake Hazard
- Regional geology, topography and seismicity
- Mississippi Embayment and Reelfoot Rift (Mississippi Valley Graben)
- Stratigraphy
- Geologic structure, faults and seismicity
- Sandblows
- Attenuation

MITIGATION

- Local site alluvial soils
- Important Considerations

- Central and Eastern United States Earthquake Hazard
- Regional geology, topography and seismicity
- Mississippi Embayment and Reelfoot Rift (Mississippi Valley Graben)
- Stratigraphy
- Geologic structure, faults and seismicity
- Sandblows
- Attenuation

URAL HAZARDS MITIGATION

- Local site alluvial soils
- Important Considerations

- Central and Eastern United States Earthquake Hazard
- Regional geology, topography and seismicity
- Mississippi Embayment and Reelfoot Rift (Mississippi Valley Graben)
- Stratigraphy
- Geologic structure, faults and seismicity
- Sandblows
- Attenuation
- Local site alluvial soils
- Important Considerations

N TURAL HAZARD MITIGATIO INSTITUT

UMR

- Central and Eastern United States Earthquake Hazard
- Regional geology, topography and seismicity
- Mississippi Embayment and Reelfoot Rift (Mississippi Valley Graben)

UMR

- Stratigraphy
- Geologic structure, faults and seismicity
- Sandblows
- Attenuation
- Local site alluvial soils
- Important Considerations

PRESENTATION 7

SYNTHETIC NEAR-FIELD ROCK MOTIONS IN THE NEW MADRID SEISMIC ZONE

UN

Synthetic Near-Field Rock Motions in the New Madrid Seismic Zone

Genda Chen*, Ph.D., P.E., and Mostafa El-Engebawy, Ph.D. *Associate Professor of Civil Engineering Department of Civil, Architecture and Environmental Engineering University of Missouri-Rolla gchen@umr.edu

> Geotechnical and Bridge Seismic Design Workshop New Madrid Seismic Zone Experience October 28-29, 2004

Objectives

- To provide rock motion time histories at three bridge sites within the NMSZ for various combinations of moment magnitude and fault mechanism
- To evaluate near-field characteristics in the NMSZ
- To compare the spectra of the simulated motions with those of the AASHTO and the NCHRP 12-49 project
- To compare the results of the composite-source method with those of the finite-fault and the pointsource models

UMR

	Seisr Be	nic Sourc	ce Parameters					
	Rupture Area $log A = -3.42 + 0.90 M_W$ $s = 22\%$ (26%) s is the standard deviation for strike-slip (reverse) faults after Wells & Coppersmith (1994)							
Fault		Best-estimate mechanism	Best-estimate rupture area					
Southwe (strike-s	estern segment slip fault)	Strike = 226.5° dip = 90° rake = 180°	$ \begin{array}{ll} {\rm L} = 120 \; {\rm km}, {\rm W} = 18 \; {\rm km} & \textit{for } M_{\rm W} \; 7.5, \\ {\rm L} = 56 \; {\rm km}, {\rm W} = 13.6 \; {\rm km} & \textit{for } M_{\rm W} \; 7.0, \\ {\rm L} = 27 \; {\rm km}, {\rm W} = 10 \; {\rm km} & \textit{for } M_{\rm W} \; 6.5 \end{array} $					
Reelfoo (reverse	t fault fault)	Strike = 156.1° dip = 32° rake = 90°						
MITIGA INSTIT	ARDS TION U T E		UM					

Influence of Depth to top of Fault and Stress Drop on the Fling Step at L472 site

Near-Field Characteristics of the Selected Motions

Selection criteria of rock motions

- 1) Fit the average response spectra
- 2) Fling step in the direction of the slip on the fault

UM

- 3) Velocity pulse in the fault-normal direction
- 4) Realistic peak rock accelerations (within 75%-125% of Toro et al., 1997)

Concluding Remarks

- Velocity pulses are dependent on the hypocenter location along the strike and rupture velocity
- The simulated spectral accelerations are higher than those of the attenuation relations, point-source or finitefault models due to forward rupture directivity effects, particularly for M_w 7.5 for strike-slip faults
- Velocity pulses associated with M_W 7.5 are very large as compared to M_W 7.0 or 6.5 that may impose special seismic demands for structures very close to active faults

UMR

N TURAL HAZARDS MITIGATION INSTITUTE

60	40°-	B	ridge	e A146	56	A	
	Test type	СРТ	SCPT		Borehole		
	Number	4	3	2	1	2	
1	Depth (ft)	23~65	40~66	80	100	200	
-	Note	An observ Two 200' test.	ation well w boreholes w	as installed at ere used for c	one 80' bor ross-hole ge	rehole. eophysical	-
2 2	TURAL HAZARDS MITIGATION INSTITUTE	rcted by ea	rthauakes o	f similar magi	nitude—the	Dece	T

Bridge L472					
Test type	СРТ	SCPT	Boi	rehole	
Number	4	3	2	2	
Depth (ft)	41~54	36~41	80	100	
Note	P1 and P2 slope du	were moved fi ie to the soft s	rom the bottom soil after raining	to the top of	
TURAL HAZARDS MITIGATION IN STITUTE	ected by earth	quakes of sim	ular magnitude	-the Dece	

(Gmax)field	(Gmax) of A14)correlati 166	ion at B3
Ratio of G _{max}	SCPT/Hardin	SASW/Hardin	Cross-hole/Hardi
CL (0~5.5 m)	0.87	3.13	0.95
ML (5.5~9.1 m)	0.87	3.18	0.81
SM (9.1~13.2 m)	1.57	1.50	0.82
SP (13.2~21.3 m)	-	0.74	0.45
SP-SM (21.3~25.6 m)	-	0.70	0.66
Overall	1.06	1.30	0.68

Co (Gmax)field/	omparison o (Gmax)corre of L472	f elation at B1
Ratio of G _{max}	SCPT/Hardin	SASW/Hardin
CL (0~3.7 m)	0.58	0.56
OH (3.7~5.2 m)	1.41	1.18
CL (5.2~6.4 m)	0.70	0.71
CH (6.4~8.5 m)	0.35	0.67
SM (8.5~11.6 m)	0.37	0.47
SP-SM(11.6~25.6 m)	-	0.87
Overall	0.60	0.79

	Site Class	Description	
	A	Hard rock with $v_s > 1500 \text{ m/s}$	
nde (N	В	Rock 760 m/s < $^{-}\mathrm{v_{s}}$ \leq 1500 m/s	
No.	С	Very dense soil and soft rock with 360 m/s< $^-\mathrm{v}_\mathrm{s}$ \leq 760 m/s	
al.	D	Stiff soil with $^-v_s<$ 180 m/s or with 15≤N'≤50 or 50 kPa≤ ^-s_u 180 m/s \le 100 kPa $_$	
1	E	A soil profile with $v_s < 180 \text{ m/s}$ or with either N ≤ 15 , $s_u < 50 \text{ kPa}$ or any profile with ore than 10 ft (3 m) of soft clay defined as soil with PI>20, w ≥ 40 %, and $s_u < 25 \text{ kPa}$	
(²	F	Soils requiring site-specific evaluations: 1. Soils vulnerable to potential failure or collapse under seismic loading such as liquefiable soils, quick and highly sensitive clays, and collapsible weakly cemented soils. 3. Peats and/or highly organic clays ($H > 3$ m of peat and/or highly organic clay where $H =$ thickness of soil) 3. Very high plasticity clays ($H > 8$ m with PI > 75) 4. Very thick soft/medium stiff clays ($H > 36$ m)	
A LA	Aulie	fected by earthquakes of similar magnitude-the Dece	

	Site	Maximu	m Consic	lered Ear	thquake	Spectral
	Class			Response	è '	
8		A	ccelerati	on at Sho	ort Perioc	s
Din.		<i>S_s</i> ≤ 0.25	<i>S_s</i> = 0.50	<i>S_s</i> = 0.75	<i>S_s</i> = 1.00	<i>S_s</i> ≥ 0.25
	А	0.8	0.8	0.8	0.8	0.8
1	В	1.0	1.0	1.0	1.0	1.0
	С	1.2	1.2	1.1	1.0	1.0
-	D	1.6	1.4	1.2	1.1	1.0
	E	3.5	1.7	1.2	0.9	0.9
	F	а	а	а	а	A

	50%	-				TA	
5	Site Class	Maxir	num Consi Accelera	dered Eart Response tion at long	hquake Sp g Periods	ectral	
ade r		$S_{l} \leq 0.1$	<i>S</i> _/ = 0.2	<i>S</i> _/ = 0.3	<i>S</i> _/ = 0.4	<i>S</i> _/ ≥ 0.5	
1.	А	0.8	0.8	0.8	0.8	0.8	
05	В	1.0	1.0	1.0	1.0	1.0	
1	С	1.7	1.6	1.5	1.4	1.3	\backslash
1	D	3.4	3.0	1.8	1.6	1.5	
	Е	3.5	3.2	3.8	3.4	3.4	
	F	а	а	а	а	A	
	UTURAL HAZARDS MITIGATION IN STITUTE	ected by ear	thquakes of .	similar magr	nitude—the L		R

Geophysical tests	S1	S2	S3	Cross- hole	SASW
Depth (m)	13.92	20.23	6.55	30.50	29.28
V _s (m/s)	135.96	171.53	220.01	178.06	241.78
Borings	B1	В	2	В	3
Depth (m)	21.65	23.	56	25	5.6
N	22	2	0	8.	56
Sito Class E-Basoc	l on average sh	ear wave ve	alocity from	n cross-hole	a test

Geophysical tests	S1	S2	S3	SASW
Depth (m)	11.90	13.50	14.07	30
v _s (m/s)	133.02	130.45	128.54	193.10
Borings	B1	B2	B3	B4
Depth (m)	25.6	31.1	31.1	25.6
N	11.54	17.63	13.88	8.59

	Gianne a	ile ve	sho	1196
10 N	Ionlinear Meth	ods in the	Time	Domain:
Program	Soil model	Method	Stress	Reference
CHARSOIL	Ramberg-Osgood	Characteristics	Total	Streeter et al. (1973)
DESRA-2	Hyperbolic	Finite element	Effective	Lee and Finn (1978, 1991)
DESRAMOD2	Hyperbolic	Finite element	Effective	Vucetic (1998)
DESRA-MUSC	Hyperbolic	Finite element	Effective	Qiu(1998)
D-MOD(derived from DESRA-2)	M-K-Z (Matasovic, Konder, and Zelasko)	Finite element	Effective	Matasovic (1993)
MASH	Martin-Davidenkov	Finite element	Effective	Martin and Seed (1978)
DYNA1D	Nested yield surface	Finite element	Effective	Prevost (1989)
TESS	HDCP (Hardin-Drnevich- Cundall-Pyke)	Finite difference	Effective	Pyke (1979, 1985, 1992)
SUMDES	Hypoplasticity	Finite element	Effective	Li et al. (1992)
DEEPSOIL (derived from D-MOD)	Modified hyperbolic with extended Masing criteria	Finite element	Total	Hashash and Park (2001)

	Seismic S	Site Re	spo	nse				
11			ope					
		December 16, W						
2D Nor	nnear Meth	ods in th	2 / /m	le Doma				
Program	Soil model	Method	Stress	Reference				
TARA-3	Hyperbolic	Finite element	Effective	Finn et al. (1986				
DYNAFLOW	Multiple yield surface	Finite element	Effective	Prevost (1986)				
DIANA	Different advanced models	Finite element	Effective	Kawai (1985)				
FLAC	Hyperbolic (Finn and Byrne model)	Finite difference	Effective	Commercial				
DYSAC2	Hypoplasticity	Finite element	Effective	- 80°				
	1	0 Innvitude	(W)	4				

5	0%												~		
8.40°-	5	Syr s	nth Sum	Jel	tic	Ir Dec	1p Syn	ut ber	M 16, ic M	otio	t io	ons		/	
Magnitude	$rac{1}{2}$	18	M =6.5	4				M =7.0	t	3	7-	¥.	M =7.5	5	-
Series No.	118	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a _{max} (g) FP	0.18	0.27	0.23	0.18	0.13	0.45	0.54	0.39	0.47	0.31	0.78	0.55	0.85	1.03	0.68
a _{max} (g) FN	0.15	0.24	0.27	0.20	0.12	0.42	0.47	0.32	0.41	0.35	1.10	0.73	0.94	1.02	0.79
-	120°	-	S	No.	N.	AX	T				A N	- Enº	_	_	~
						100		angib	ude (W)		00			
NTURAL HAZ MITIGA	ZARDS TION UTE	ected	by e	arth	quak	es of	simi	lar n	nagn	itude	th:	e De	CE	REAL OF MIS	

Layer	Layer Depth No. (m)	Soil	Max Pore Water Pressure Ratio										
No.		Туре	FP Direction					FN Direction					
1	Series	No.	1	2	3	4	5	1	2	3	4	5	
14	5.5~7.4	Sandy Silt	0.18	0.56	0.16	0.15	0.13	0.18	0.63	0.84	0.96	0.19	
219	7.4~11.8	Loose Sandy Silt	0.30	0.68	0.24	0.25	0.22	0.37	0.76	1.00	1.00	0.31	
3	11.8~18.2	Medium Dense Sand	0.13	0.27	0.11	0.11	0.10	0.13	0.30	0.40	0.46	0.13	
4	18.2~22.5	Dense Sand	0.05	0.16	0.06	0.07	0.06	0.10	0.18	0.23	0.27	0.08	
5	22.5~39.3	Dense Sand	0.03	0.06	0.02	0.03	0.02	0.04	0.07	0.09	0.09	0.03	

Lavor	Denth	Soil	Max Pore Water Pressure Ratio											
No.	(m)	Туре	FP Direction						FN Direction					
Series No.		6	7	8	9	10	6	-7	8	9	10			
Ap	5.5~7.4	Sandy Silt	0.93	0.98	0.87	1.00	0.38	0.98	0.84	0.97	0.92	1.0		
190	7.4~11.8	Loose Sandy Silt	1.00	1.00	1.00	1.00	0.49	1.00	1.00	1.00	1.00	1.0		
3	11.8~18.2	Medium Dense Sand	0.50	0.56	0.42	0.64	0.21	0.48	0.41	0.49	0.50	0.5		
4	18.2~22.5	Dense Sand	0.33	0.37	0.26	0.48	0.14	0.31	0.26	0.32	0.31	0.3		
5	22.5~39.3	Dense Sand	0.14	0.17	0.10	0.20	0.06	0.13	0.12	0.13	0.12	0.1		
	11	24		Dec	:em	ber	16,	P.	1	Ľ.	1			
------------	--------------	----------------------	-------------------------------	------	--------	------	------	------	------	--------	------	------		
Layer	Depth (m)	Soil Type	Max Pore Water Pressure Ratio											
No.				FP	Direct	ion	17	-25	FN	Direct	ion	1		
Series No.			11	12	13	14	15	11	12	13	14	15		
Apr	5.5~7.4	Sandy Silt	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0		
190 2	7.4~11.8	Loose Sandy Silt	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0		
3	11.8~18.2	Medium Dense Sand	0.85	0.50	0.59	0.55	0.66	1.00	0.60	0.93	0.92	0.6		
4	18.2~22.5	Dense Sand	0.64	0.36	0.44	0.39	0.48	0.84	0.64	0.67	0.65	0.4		
5	22.5~39.3	Dense Sand	0.28	0.19	0.21	0.20	0.22	0.36	0.33	0.32	0.21	0.24		

Soil unit	Soil Material	Density (Mg/m ³)	(kPa)	(°)	Shear modulus G (kPa)	Porosity n	(N ₁) ₆₀
1	CL	2023	10.8	25	59848	0.4	19
2	CL	1947	34.5	25	44393	0.44	11
3	ML	1876	0	32	56136	0.48	9
4	SM	2161	0	31	89935	0.3	8
5	SP	2181	0	45	118429	0.28	40
6	SP-SM	2120	0	44	112163	0.32	36
7	SP-SM	1916	0	44	179445	0.44	36
	1200	0,	May 1	8		Sinº	

predictions for the New

histories with assumed specific characteristics

LIQUEFACTION

Liquefaction is a failure mechanism by which cohesionless materials lose shear strength when the pore pressure is excited to a level equal to the effective confining stress. Usually limited to the upper 50 feet and typically occurs in silt, sand and fine gravel.

	i Earinquake Even
Magnitude	Recurrence Interva
4.0	14 Months
5.0	10 – 12 Years
6.0	70 – 90 Years
7.0	254 – 500 Years
8.0	550 – 1200 Years

Illinois Central Bridge at Cairo, IL

UMR

- The Illinois Central Railroad bridge across the Ohio River at Cairo, IL was the longest iron or steel bridge in world when completed in 1889 (4 miles).
- One of its masonry bents was cracked and severely damaged during Oct 1895 Charleston, MO quake

	Estimat	ing V _s from (N ₁) ₆₀
	Regression	Equation for Predicting V_s (m/s)
	FC < 10 %	$V_{s} = 95.5 (N_{1})_{60}^{0.226}$
	FC = 10-35 %	$V_{s} = 103.4 (N_{1})_{60}^{0.205}$
	FC = 0-40 %	$V_{s} = 101.8 (N_{I})_{60}^{0.205}$
	$(N_1)_{60}$ in blows/0.3	meter
UMR		Andrus et al., 2004

Generation of Artificial Time Histories

Artificial time histories were generated using SMSIM code developed by Dave Boore of the USGS and modified by Bob Herrmann at St. Louis University for Midwest deep soil sites.

Model	NAME	SITE EFFECT
1	Atkinson-Boore 1995 (AB95)	ENA Hard Rock
2	USGS 1996	Generic B-C Boundary
3	USGS 1996 (modified)	Mid-Continent Deep Soil (new)
4	Mid-America Deep Soil AB95 source (modified)	Mid-Continent Deep Soil (new)
5 MR	Mid-America Deep Soil USGS 96 source (modified)	Mid-Continent Deep Soil (new)

Type of Deposit	<500 yr	Holocene	Pleistocene	Pre-Pleistoce
River Channel	Very High	High	Low	Very Low
Flood Plain	High	Moderate	Low	Very Low
Alluvial Fan	Moderate	Low	Very Low	Very Low
Delta	High	Moderate	Low	Very Low
Lacustrine	High	Moderate	Low	Very Low
Colluvium	High	Moderate	Low	Very Low
Glacial Till	Low	Low	Very Low	Very Low

	SEIS	SEISMIC EVALUATION		
	Earthquake Magnitude	Soil Profile Type I and II (Stiff Sites)	Soil Profile Type III and IV (Soft Sites)	
		Very Low Hazard for		
	M < 5.2	Amax < 0.4g	Amax < 0.1g	
	5.2 < M < 6.4	Amax < 0.1g	Amax < 0.05g	
	6.4 < M < 7.6	Amax < 0.05g	Amax < 0.025g	
	7.6 < M	Amax < 0.025	Amax < 0.025	
UMR	Youd (1998)	Soil Profile Descriptions from AASHT) D (1996)	

WATER TABLE EVALUATION

Groundwater Table Depth	Relative LiquefactionSusceptibilityVery High	
< 3 m		
3 m to 6 m	High	
6 m to 10 m	Moderate	
10 m to 15 m	Low	
> 15 m	Very Low	
	Youd (1998)	

l

Earthquake Events for Centrifuge Tests				
April	A	Kobe	0.055	
1 1 200	В	Kobe	0.055	
_	С	Kobe	0.016	_
	D	Kobe	0.20	
	E	Kobe	0.58	

BRIDGE RESPONSE TO NEAR-FIELD GROUND MOTIONS

Genda Chen*, Ph.D., P.E., and Mostafa El-Engebawy, Ph.D. *Associate Professor of Civil Engineering Department of Civil, Architecture and Environmental Engineering University of Missouri-Rolla gchen@umr.edu

> Geotechnical and Bridge Seismic Design Workshop New Madrid Seismic Zone Experience October 28-29, 2004

340

Participants

Genda Chen, Ph.D., P.E. (Team Leader) Mostafa El-Engebawy, Ph.D. Ronaldo Luna, Ph.D., P.E. Richard Stephenson, Ph.D., P.E. Wei Zheng, Ph.D. Graduate Student Wenxig Liu, Ph.D. Graduate Student

UN

Objectives

- To evaluate the response of a multi-span simply supported bridge (L472) and a multi-span continuous bridge (A1466) to near-field ground motions from future earthquake scenarios in the NMSZ
- To compare the bridge response subjected to near-field ground motions simulated using the composite-source model with that of far-field motions of the pointsource model
- To recommend a simple method for including nearfield effects in highway bridge design

UM

N TURAL HAZARDS MITIGATION INSTITUTE

<section-header><section-header>

Description of A1466 Bridge

Located on interstate highway I55, Pemiscot County

- Multi-span continuous bridge 4 spans
- Designed according to the 1949 AASHO specifications without seismic considerations

UM

- 10° skew
- Laterally-restrained steel plate girders
- TYPE "D" fixed and expansion steel bearings
- Supported by deep pile foundations

Concluding Remarks

- The curvature ductility ratio of columns increase significantly with the moment magnitude. Forward rupture directivity and liquefaction effects are the dominant reasons for the high ratios
- The vertical acceleration increases the compressive forces in the columns under the maximum considered earthquake. They are remarkably reduced with lower moment magnitudes
- Liquefaction yields large displacements in the fault-normal direction and permanent offset of the soil near the top of the embankment that develop extreme large deformations in the plane of the bridge bents leading to large in-plane curvature ductility ratios of the columns

N TURAL HAZARDS MITIGATION INSTITUTE

Recommendations

- A site-specific rock and ground motion simulations are recommended for highway bridges within 10 km from active faults in the NMSZ. The resulting rock motions should include forward rupture directivity while fling step is not likely to occur in future earthquake events
- For highway bridges located beyond 10 km, a simple methodology is recommended for considering near-field effects in their design response spectra based on the average directivity conditions at the site and the directivity models of Abrahamson (2000) and Somerville et al. (1997)

					- and
Bridge #	Year Built	Main Span Length	Girder Type	No. of Bents	No. of Columns/Ben
(#)	(Year)	(feet)	(type)	(#)	(#)
A-1466	1966	68	Steel Continuous	5	2
A-1931	1969	52	Steel Continuous	4	2
A-1938	1969	95	Steel Continuous	5	3
A-2024	1970	112	Steel Continuous	5	3
A-2332	1968	65	Steel Continuous	6	2
A-2333	1968	72	Steel Continuous	6	2
A-2334	1968	70	Steel Continuous	8	2
A-2336	1968	65	Steel Continuous	6	2
A-2427	1968	93	Steel Continuous	5	3
A-2429	1968	90	Steel Continuous	5	4 000
A-2430	1971	113.75	Steel Continuous	4	3 00
	1070	75	Steel Continuous		4

1 K	Bei	Column	
Bridge #	Flexural Failure	Joint Shear Failure	Column Shea
(#)	(PASS/ FAIL)	(PASS/ FAIL)	(PASS/ FAIL)
A-1466	FAIL	PASS	PASS
A-1931	PASS	MARGINAL	PASS
A-1938	PASS	MARGINAL	PASS
A-2024	PASS	MARGINAL	FAIL
A-2332	PASS	FAIL	MARGINAL
A-2333	PASS	MARGINAL	MARGINAL
A-2334	PASS	MARGINAL	MARGINAL
A-2336	PASS	FAIL	MARGINAL
A-2427	FAIL	PASS	PASS
A-2429	PASS	FAIL	PASS
A-2430	PASS	O° L. FAILde (W)	PASS
A-3478	FAIL	FAIL	MARGINAL

	50 50	Seismic	Dem	and	周	
8-40 72	Distance From NMSZ (km)	Performance Objective	R	Demand (kips)	System Capacity (kips)	
	4.6	Life Safety	2.55	832	400	
/	1.0	Operational	1.31	1623	535	
a le	16	Life Safety	2.61	378	400	
U/A	10	Operational	1.32	752	535	
/ 19	160	Life Safety	2.66	240	400	
/	100	Operational	1.33	485	535	1
-	}	A. My	(otion Ext	-
	Life Safety MCE Reliable: μ_{Δ} = 6 F _U = 400kN	Occupational MCE Reliable: μ_{Δ} = 2 F_{U} =530kN	R =	$1 + (\mu_{\Delta} - 1)$	$\left(\frac{T}{1.25 T_s}\right)$	
VIUR IN	AL HAZARDS TIGATION STITUTE Forced by	earthquakes of s	imilar magi	nitude—the	Dece	

Rows of Nails	Number of specimens	Load at Peak (lbf)	Strain at Peak (%)	Strain at Break (%)
2	4	1990	0.39	0.59
06, 3/17.8	4	2360	0.68	0.88
4	4	3370	1.94	2.66
15	3*	4100	3.23	3.36

Geotech	hnical and Br	idge Seismic Desig	jn Workshop on ΙΔ	
	TABLE 4	.2A Minimum Analy	sis Requirements	
	Seismic Performance Category	Regular Bridges with 2 Through 6 Spans	Not Regular Bridges with 2 or More Span	S
	A B, C, D	Not required Use Procedure 1 or 2	Not required Use Procedure 3	
				INTE

TABLE 4.2B	Regular	Bridge	Requi	remen	ts
Parameter			Value		
Number of Spans	2	3	4	5	6
Maximum subtended angle (curved bridg	90° e)	90°	90°	90°	90°
Maximum span length ratio from span-to-s	jan 3	2	2	1.5	1.5
Maximum bent/pier stiffness ratio from span-to-span (excluding abutmen	ts)	4	4	3	2

Rec	urrence	Interval for N	ew Madrid Even
	Magnitude	Recurrence Interval	Comments
	1.0 - 1.9	2 Days	Not Felt
	2.0 - 2.9	2 Weeks	Some Felt
	3.0 - 3.9	4 Months	Almost Always Felt
	4.0 - 4.9	4 Years	Minor Damage (1989)
	5.0 - 5.9	40 Years	Damaging (1976)
	6.0 - 6.9	80 Years	Destructive (1895)
	7.0 - 7.9	200 Years	Devastating (1812)
	8.0 - 8.9	500 Years	Disastrous (1812)

CLOSURE

This Geotechnical and Bridge Seismic Design Workshop represents the first of its kind, addressing the seismic hazard evaluation and mitigation of transportation structures in the vicinity of the New Madrid Seismic Zone (NMSZ). It draws the interest of over 60 engineers from the seven Midwest State Departments of Transportation and a number of leading consulting firms in the Central United States, and attracted faculty and students from several universities as well. Overall, the results are quite satisfactory and surpass my original expectations.

Although UMR leads the effort to organize this event, the turn out of this workshop is far beyond what UMR alone can achieve. The role of each Steering Committee member of the workshop is instrumental in bringing together the geotechnical and bridge engineers from various state agencies. As a Co-Chair of the workshop, I wish to express my sincere thanks to Mr. Peter Clogston from the FHWA regional office in Jefferson City, Mr. Thomas Fennessey and Mr. Timothy Chojnacki from MoDOT for their initiative and enthusiasm as well as their effort made in realizing this workshop.

The workshop is part of the technical transfer effort of the current UMR Earthquake Hazard Mitigation Research Program. The research team is currently summarizing the findings and recommendations in a final project report that will be due in Spring 2005. The participants of this workshop can request a copy of the final report through the FHWA report distribution center or UMR after permission has been granted by FHWA. Although every effort has been made to check the accuracy of the statements in all presentations, it is the responsibility of users to properly apply the presented results into their practice. Comments on the organization of this workshop or suggestions to future workshops should be addressed and emailed to Dr. Genda Chen, P.E. via <u>gchen@umr.edu</u>.

Genda Chen, Ph.D., P.E. Associate Professor of Civil Engineering, UMR Co-Chair of the Geotechnical and Bridge Seismic Design Workshop: NMSZ Experience