Boris Jeremić

Department of Civil and Environmental Engineering University of California, Davis

OpenSees User Workshop, RFS, August 26th 2005, http://sokocalo.engr.ucdavis.edu/~jeremic/

Outline

Material Models

Elastic Small Deformation Elastic–Plastic Continuum Small Deformation Elastic–Plastic Multiaxial and Uniaxial Large Deformation Hyperelastic–Plastic Continuum

Elements

Single Phase Multi Phase

Various Procedures

Static, Dynamic, Parallel

Single Element Examples Template Elastic-Plastic Solids

- Material Models

- Elastic

Elastic Material Models

- Small deformation elasticity (linear isotropic, nonlinear isotropic, cross anisotropic...)
- Large deformation hyperelasticity (Neo–Hookean, Ogden, Logarithmic, Mooney–Rivlin, Simo–Pister...)

-Material Models

-Small Deformation Elastic-Plastic Continuum

Elastic–Plastic Continuum Models

- Small deformation template elasto-plasticity
 - Yield surfaces: von Mises, Drucker–Prager, Cam–Clay, Rounded Mohr–Coulomb, Parabolic Leon...
 - Plastic flow directions: Drucker–Prager, von Mises, Cam–Clay, Rounded Mohr–Coulomb, Manzari Dafalias
 - Evolution Laws: Linear scalar, nonlinear scalar (CamClay), Linear (translational and rotational) tensorial, nonlinear (translational and rotational) tensorial (Armstrong Frederick and bounding surface),
- Large deformation template hyperelasto-plasticity
 - Yield surfaces: von Mises, Drucker–Prager...
 - Plastic flow directions: Drucker–Prager, von Mises, Cam–Clay, Rounded Mohr–Coulomb, Manzari Dafalias
 - Evolution Laws: Linear/nonlinear scalar, Linear (translational and rotational) tensorial
- Stochastic elasto–plasticity

- Material Models

- Small Deformation Elastic-Plastic Continuum

Elastic–Plastic Continuum Models (Contd.)

- Pressure dependent soil model (for sand and silt)
- Pressure independent soil model (for clays and silts)
- Large deformation template hyperelasto-plasticity
- Stochastic elasto–plasticity

-Material Models

- Small Deformation Elastic-Plastic Multiaxial and Uniaxial

Elastic–Plastic Multiaxial and Uniaxial Models

- Generalized foundation rocking material (M, N, T) model
- > 2D frictional contact material model
- P–Y spring response material model
- P–Y liquefied spring response material model

-Material Models

Large Deformation Hyperelastic–Plastic Continuum

Large Deformation Hyperelastic–Plastic Models

- Large deformation hyperelasticity (Neo–Hookean, Ogden, Logarithmic, Mooney–Rivlin, Simo–Pister...)
- Large deformation template hyperelasto-plasticity
 - Yield surfaces: von Mises, Drucker–Prager...
 - Plastic flow directions: Drucker–Prager, von Mises, Cam–Clay, Rounded Mohr–Coulomb, Manzari Dafalias
 - Evolution Laws: Linear/nonlinear scalar, Linear (translational and rotational) tensorial

-Elements

– Single Phase

Single Phase Formulations

- Small deformation solid elements (8, 20, 21, 27, 8-20 variable node bricks)
- Large deformation (total Lagrangian) solid elements (20 node brick)

-Elements

—Multi Phase

Multi Phase Formulations

- ▶ Fully coupled, u–p–U elements (3D) for small deformations
- Fully coupled, u–p (plane strain and 3D) elements for small deformations
- Fully coupled u-p elements for large deformations

- Various Procedures

-Static, Dynamic, Parallel

Various Procedures

- Hyperspherical Arc–length constraint equations
- Plastic Domain Decomposition (dynamic CPU load balancing distributed parallel implementation)
- Domain reduction method for seismic input/characterization

-Single Element Examples

Lemplate Elastic-Plastic Solids

Single Element Examples

- Solid Template example (various elastic-plastic material models), triaxial compression, monotonic and cyclic)
- u-p-U example for monotonic and cyclic loading
- > Large deformation example (shearing to $\gamma = 50$ %)

Single Element Examples

L Template Elastic-Plastic Solids

Elastic Part

set E 1.0e7

set v 0.2

set rho 1.8

nDMaterial ElasticIsotropic3D 1 \$E \$v \$rho

Single Element Examples

L Template Elastic-Plastic Solids

Yield Function and Plastic Flow Directions

set	PI 3	8.1416		
set	FA	10		
set	DA	10		
set	FAr	[expr	\$FA*\$PI/180]	
set	DAr	[expr	\$DA*\$PI/180]	
set	al	[expr	$2 \times \sin(\$FAr) / sqrt(3) / (3 - sin(\$FAr))$]
set	a2	[expr	2*sin(\$DAr)/sqrt(3)/(3-sin(\$DAr))]

Yield function set ys "-DP"

Potential function (flow rule)
set ps "-DP \$a2"

Single Element Examples

- Template Elastic-Plastic Solids

Nonlinear Kinematic Hardening

```
## Isotropic hardening
set ES1 "-Leq 0.0"
set ES2 "-Leq 0.0"
```

```
## Kinematic hardening
set ET1 "-AF 35.0 60.0"
```

EP state, NOD? NOS? a? k?
set EPS "-NOD 1 -NOS 2 \$a1 0.0"

Single Element Examples

Lemplate Elastic-Plastic Solids

Putting it all together

-----Template3Dep matTag? EmatTag? YS? nDMaterial Template3Dep 2 1 -YS \$ys PS? EPState? ELS? ELT? -PS \$ps -EPS \$EPS -ELS1 \$ES1 -ELS2 \$ES2 -ELT1 \$ET1 ## ----Brick8N eleTag? nodes matTag? element Brick8N 1 1 2 3 4 5 6 7 8 2 body-forces density 0.0 0.0 0.0 \$rho