OPINION

PROCEDURES FOR CALCULATING THE SHEAR RESPONSE OF
REINFORCED CONCRETE ELEMENTS: A DISCUSSION

By Michael P. Collins'

ABSTRACT: This paper demonstrates that the two so-called ‘“‘conceptual errors’’ which are claimed to exist in
the modified compression field theory are actually conceptual errors about the modified compression field theory.

INTRODUCTION

During the last 20 years, a considerable amount of experi-
mental and analytical research has been conducted with the
aim of developing analytical procedures capable of predicting
the load-deformation response of reinforced concrete elements
loaded in shear. At the University of Toronto, a procedure
called the compression field theory, CFT (Collins 1978), was
first developed. Based on experiments of reinforced concrete
panels Ioaded in pure shear, this procedure was further devel-
oped and became called the modified compression field theory,
or MCFT (Vecchio and Collins 1981, 1982, 1986).

At the University of Houston, the rotating angle-softened
truss model, RA-STM (Belarbi and Hsu 1995), and the fixed
angle-softened truss model, FA-STM (Pang and Hsu 1996;
Hsu and Zhang 1997), were developed. Though the formula-
tions of these two versions of the softened truss model are
considerably more complex than those of the modified com-
pression field theory, it is claimed (Hsu 1996, 1998; Pang and
Hsu 1996) that the MCFT contains ‘‘two conceptual errors’’
which cause it to be up to 32% unconservative. Hence, Hsu
states that this earlier procedure *“‘can not be considered a ra-
tional theory.”’ It is the intention of this short article to clarify
the issues that have led to these erroneous conclusions.

CFT, MCFT, RA-STM, FA-STM, AND V,

The compression field theory neglects the ability of concrete
to resist tensile stress. The modified compression field theory
accounts for the influence of the tensile stresses in the cracked
concrete. This is illustrated in Fig. 1, which shows how the
tensile strength of concrete can, in some cases, increase shear
strength. The additional shear strength that results from the
tensile strength of concrete is called V.. Note that for panels
with 1% longitudinal reinforcement and with from 0.6 to 1.6%
transverse reinforcement, this figure, which is from the 1982
Vecchio and Collins report, predicts that V, will be zero. This
is because, for these reinforcement ratios, failure is governed
by yielding of both the transverse and the longitudinal rein-
forcement at the cracks.

Hsu, apparently, is unclear about the distinction between the
compression field theory and the modified compression field
theory. Referring to the 1981 paper, he states, ‘“Vecchio and
Collins called their analysis the compression field theory,”” and
he goes on to state that, in essence, this theory is the same as
the rotating angle-softened truss model and that neither of
these theories can predict the concrete contribution V.. To al-
low for the derivation of V,, he introduced the fixed angle-
softened truss model. It is true that the compression field the-
ory cannot predict V., but the modified compression field
theory, even as presented in the 1981 paper, can predict V,.
For the MCFT, V, becomes zero when the reinforcement in
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both directions has yielded at a crack. For the RA-STM, V,
becomes zero when the reinforcement in either direction yields
at a crack.

In many practical situations, it is necessary to investigate
the shear capacity of cracked reinforced concrete elements that
do not contain reinforcement in both longitudinal and trans-
verse directions (e.g., beams without stirrups). For such cases,
it is critical to evaluate V, accurately. The second major series
of experiments conducted on the University of Toronto’s mem-
brane element tester involved 30 tests of panels reinforced in
only one direction (Bhide and Collins 1987, 1989). In 18 of
these tests, the panel was subjected to combined uniaxial ten-
sion and shear, simulating the loading experienced by the flex-
ural tension region of the web of a beam. It was found that
such elements have considerable postcracking shear capacity
and that the 1986 MCFT could predict the V, values well. The
ratio of observed to calculated V, had an average value of 1.00
with a coefficient of variation of 11%. In some of these tests
(e.g., PB21), the principal strain directions were observed to
rotate by nearly 50° between first cracking and final failure.

In addition to calculating average stresses and average
strains, the MCFT, even as presented in the 1981 paper, checks
the stress conditions at a crack. Instead of directly checking
stresses at a crack, the RA-STM adjusts the average stress-
average strain relationships of the reinforcement to account for
the possibility of local yielding at a crack. Unfortunately, the
forms of expression chosen involve dividing by the percentage
of reinforcement; hence, as the percentage approaches zero,
the expressions give unreliable results. For elements with large
differences in the amounts of reinforcement in the two
directions—that is, elements which will experience a large
rotation in principal strain direction—Pang and Hsu (1996)
recommend the use of the fixed angle-softened truss model.
Unfortunately, the FA-STM equation given for V, [Eq. (13),
Hsu (1998)] again involves dividing by the percentage of
transverse reinforcement. Elements with no transverse rein-
forcement would appear to have a V, value of infinity.

TRANSMITTING LOADS ACROSS CRACKS

The two so-called ‘“conceptual errors’’ in the MCFT are
claimed to occur in the 1986 procedures for checking that the
loads can be transmitted across the cracks. The simpler crack
check procedures used in the 1981 and 1982 versions of the
MCFT apparently are deemed to be satisfactory. To clarify the
specifics of these objections, it is useful to consider a numer-
ical example. The example chosen by Hsu (1998) to illustrate
that the 1986 MCFT predicts shear strengths 32% higher than
“Hsu and Zhang’s accurate set’’ will be employed. This is an
element loaded in pure shear, which contains 1.2% of longi-
tudinal reinforcement (x direction) and 0.6% of transverse re-
inforcement (y direction). The yield strength of the reinforce-
ment is 400 MPa, and the cylinder strength of the concrete is
40 MPa. The objective is to determine the relationship between
the applied shear stress and the resulting shear strain.
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FIG. 1. Predicted Shear Strengths of Four Series of Rein-
forced Concrete Panels as Given by Vecchio and Collins (1982)

In the MCFT, the shear stress and shear strain associated
with a chosen value of principal tensile strain, €, are deter-
mined. These calculations are then repeated for a range of
values of €, in order to determine the complete load-defor-
mation response of the element. Herein, a case where €, equals
0.0025 is considered. For this strain, the average principal ten-
sile stress in the concrete is given by Vecchio and Collins
(1986) as

£ 0.33\Vf!
T 1+ V200,

= 033V 40 = 1.223 MPa
1 + V200 x 0.0025 (1)

The basic assumption of both the CFT and the MCFT is
“that for the diagonally cracked concrete the direction that is
subjected to the largest average compressive stress will coin-
cide with the direction that is subjected to the largest average
compressive strain’’ (Collins 1978). This direction is deter-
mined by solving the equilibrium conditions, the compatibility
conditions, and the appropriate stress-strain relationships. Us-
ing the 120-line program Shear (Collins and Mitchell 1991)
and changing the 56th line of this program so that it uses the
\/200¢, recommended by Vecchio and Collins (1986) rather
than the 500e;, recommended by Collins and Mitchell
(1987), one finds that 6 = 41.4° and that the average strains
are €, = 0.00100; €, = 0.001333; and v = 0.00265. The applied
shear stress is then given by

v=ficot8 + p,f, cot 8
= 1.223 cot 41.4° + 0.006 X 0.001333 X 200,000 cot 41.4°
= 1.387 + 1.814 = 3.20 MPa )

Note that in (2), f; represents the average principal tensile
stress in the concrete, whereas f;, (=267 MPa) represents the
average tensile stress in the y reinforcement. Hsu (1998) is not
correct when he states that, in this equation, ““‘the second term
represents local steel stress at cracks, while . . . the first term is
the average tensile stress of concrete.”’

Fig. 2 illustrates the equilibrium conditions for the example
element when the applied shear stress is 3.20 MPa. To convert
stresses to forces, the thickness of the element has been taken
as 200 mm. Fig. 2(a) shows the equilibrium in terms of the
average stresses. A free-body diagram has been made by cut-
ting a corner off the element at an angle of 41.4°. The average
principal tensile stress of 1.223 MPa acting on the 1,333 mm
long and 200 mm thick plane will produce a tensile force of
326 kN normal to the plane. The y component (vertical com-
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FIG. 2. Equilibrium of 200 mm Thick Example Element when v
= 3.20 MPa: (a) Equilibrium in Terms of Average Stress; (b) Equi-
librium in Terms of Stresses at Crack

ponent) of this force will be 245 kN. The total area of vertical
reinforcement crossing the diagonal plane will be 0.006 X
1,000 X 200 = 1,200 mm®. At an average tensile stress of 267
MPa, this reinforcement will produce a tensile force of 320
kN. The 245 kN component from the concrete plus the 320
kN from the vertical reinforcement will balance the 565 kN
downwards force produced by the 3.20 MPa shear stress acting
on the vertical edge of the element.

Fig. 2(b) illustrates what happens if a crack forms at 41.4°
to the x axis (horizontal axis) of the element. At the crack
location, no significant tensile stress normal to the crack can
be resisted by the concrete. Hence, all of the normal tensile
stress must be resisted by the reinforcement. The maximum
tensile force that can be resisted by the vertical reinforcement
is 480 kN, when this reinforcement reaches its yield stress at
the crack. This 480 kN force is not large enough to resist the
565 kN vertical force produced by the 3.20 MPa shear stress
applied to the edge of the element. To hold the corner in equi-
librium, a shear stress of 0.48 MPa must act on the crack
surface to produce a vertical component of 85 kN. The hori-
zontal reinforcement will need to be stressed to 348 MPa at
the crack to resist the 640 kN provided by the applied shear
and the 96 kN caused by the shear stress on the crack.

In the modified compression field theory, the “‘reasonable
simplification”’ is made that the direction of the average prin-
cipal compression strain, the direction of the average principal
compressive concrete stress, and the crack direction all occur
at the same angle, 0. For the example case, 0 = 41.4°. It can
be seen that, in terms of average stresses, Fig. 2(a), there are
no concrete shear stresses on this plane. However, in terms of
local stresses, Fig. 2(b), equilibrium requires shear stresses on
a crack that is inclined at 41.4°. Hsu (1996) is incorrect in his



statement that having shear stresses on this crack “violates the
basic principle of mechanics.’’

The requirements of equilibrium illustrated in Fig. 2(b) dic-
tate that, at a crack, the local stress in the x reinforcement,
Jixer €quals 348 MPa. This local stress in the x reinforcement
cannot exceed the yield strength of this reinforcement, f,.
Rather than determining the 348 MPa stress by considering
the equilibrium of the corner element in the x and y directions,
as was done above and in Vecchio and Collins (1986), the
stress could have been found by considering the equilibrium
of the corner element only in the direction normal to the di-
agonal crack. This simpler approach, which was used by Vec-
chio and Collins (1981, 1982), results in the requirement that,
to avoid exceeding the yield stress of the reinforcement at a
crack

fl = py(f;fx - f:rx) Sinze + py(f:vy - f:vy) cosze
= 0.012(400 — 200) sin’41.4° + 0.006(400 — 267) cos’41.4°
=1.499 MPa 3

It can be seen that at the chosen value of g, this limit on f;
does not control.

Because the 1982 version of the MCFT did not check the
ability of the crack surface to resist the shear stresses required
by equilibrium, it was cautioned that ‘‘the model should only
be applied to situations where there is sufficient reinforcement
to provide adequate crack control.”” Otherwise, “‘a crack may
become sufficiently large to destroy aggregate interlock action
and lead to a premature shear failure’’ (Vecchio and Collins
1982). This concern was directly addressed in the 1986 version
of the MCFT, which included procedures to calculate both the
width of the diagonal cracks and the magnitude of the shear
stress that could be resisted by aggregate interlock action.

If the size and spacing of the reinforcement in the example
panel is such that if the element was loaded with uniaxial
tension in the x direction, the spacing of the cracks, s,, would
be 200 mm; whereas if it was loaded with uniaxial tension in
the y direction, the spacing of the cracks, s,, would be 300
mm; then the spacing of diagonal cracks inclined at 41.4° to
the x axis is calculated as

Sy = =
® sin@

8y 5y

1
" sin 41.4 + cos 41.4
200 300 “)

=172 mm

For a principal tensile strain of 0.0025, the width of these
diagonal cracks is calculated as

W = S4€,
=172 X 0.0025 = 0.43 mm 3

The interface shear stress capacity, v, of a crack 0.43 mm
wide in concrete with a maximum aggregate size of 10 mm
and with no compressive stress on the crack is calculated as

- 0.18\Vf!

cf
24w
0.31 +
31 a+ 16

0.181/40
24 X 0.43
10 + 16 (6)

= = 1.61 MPa
0.31 +

As this interface shear stress capacity is considerably greater
than the 0.48 MPa shear stress on the crack required for equi-
librium, a crack slip failure will not limit the capacity at this
strain level.

If the calculations shown above are repeated for different
values of €, the predicted shear stress—shear strain response
labeled ‘““Vecchio and Collins 1986 according to Collins’’ in
Fig. 3 is obtained. Also shown in Fig. 3 is Hsu’s calculated
response of this example panel according to Vecchio and Col-
lins (1986). It can be seen that Hsu (1998) calculates a shear
capacity for this panel that is about 24% higher than that cal-
culated from the widely available program Shear (Collins and
Mitchell 1991). The reason for this discrepancy is that Hsu
neglects to apply the limits on f; that result from checking the
local conditions at a crack. Thus, for an €, value of 0.005,
program Shear calculates an f; value of 0.26 MPa, rather than
the 1.04 MPa given by (1). Angle 6 = 38.0°; the average strains
are €, = 0.00171, €, = 0.00299, and y = 0.00514; and the shear
stress is 3.41 MPa. Eq. (3) then limits f; to

fi < 0.012(400 — 200,000 X 0.00171) sin®38.0
+ 0.006(400 — 400) cos?38.0 < 0.26 MPa Q)

It is interesting that the parameters of the example panel
chosen by Hsu (1998) are very similar to those of panel Bl
tested by Pang and Hsu (1992). This element was loaded in
pure shear and contained 1.19% of longitudinal reinforcement
and 0.60% of transverse reinforcement. The yield strength of
the longitudinal reinforcement was 463 MPa, the yield strength
of the transverse reinforcement was 445 MPa, and the cylinder
strength of the concrete was 45 MPa. The element was 178
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FIG. 3. Predicted Shear Stress—Shear Strain Relationships
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mm thick. The observed shear stress—shear strain relationship
for the element is compared with the load-deformation rela-
tionships calculated from the MCFT and the RA-STM in Fig.
4. From this figure, it would seem that the behavior of this
specimen is at least as well calculated by the MCFT as by the
RA-STM.

CONCLUDING REMARKS

The two so-called ‘“‘conceptual errors’’ that Hsu (1996,
1998; also Pang and Hsu 1996) claims are in the modified
compression field theory are actually conceptual errors about
the modified compression field theory. As noted by Vecchio
and Collins (1986): “In this theoretical model cracked con-
crete is treated as a new material with its own stress-strain
characteristics. Equilibrium, compatibility, and constitutive re-
lationships are formulated in terms of average stresses and
average strains. . .. Consideration is also given to local stress
conditions at crack locations.”” The values of the average re-
inforcement stresses and the average concrete stresses differ
from the local values at crack locations. For the average
stresses, the angle 8 defines the principal stress direction, but,
in general, this will not be the principal stress direction for the
local stresses. Equilibrium can require that a crack forming at
this angle is subjected to shear stress.

The difference than can occur between the average stress—
average strain response of a reinforcing bar embedded in con-
crete and the measured local stress—local strain response of
the same bar tested in air are discussed by Collins (1978) and
by Vecchio and Collins (1982, 1986). It was concluded that it
is reasonable to use the *“simplifying approximation’’ that
these two relationships are the same, provided that the ability
of the reinforcement to transmit the loads across the cracks is
checked. The fact that Hsu neglects this check when using the
modified compression field theory has caused him to question
the validity of this simplifying assumption.

All theoretical models contain simplifying assumptions,
with the test of the theory being that it should be simple
enough to be used, but complex enough to capture what hap-
pens in reality. As has been said many years ago, ‘‘Nothing is
more practical than a simple theory.”” The modified compres-
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sion field theory makes a number of simplifying assumptions
about the complex behavior of cracked reinforced concrete
elements subjected to shear. Since being finalized in 1987, this
set of assumptions has proved capable of predicting many as-
pects of observed shear behavior with reasonable accuracy.
The results shown in Fig. 4 are typical. Though all theories
can and should be improved over time, the cost-benefit ratios
of any improvements need to be carefully assessed. In this
regard, the softened truss model is more limited in scope than
the modified compression field theory, is considerably more
complex, and does not seem to offer any improvements in
accuracy.
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