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Abstract. An algorithm for the computation of natural frequencies in continuum models based on 

classical separation of variables and the Rayleigh quotient is presented. The iterative method uses 

frequency-dependent shape functions derived from conventional modal analysis to assemble the 

boundary condition matrix resulting from the application of separation of variables for modal analysis, 

and the corresponding mass and stiffness matrices.  An order reduction to a single generalized 

coordinate allows the application of the Rayleigh quotient for the estimation of a particular natural 

frequency. An iterative procedure is followed which starts from an initial estimate of a desired natural 

frequency. The evaluation of the Rayleigh quotient provides an improved estimate of the squared 

natural frequency and the corresponding improvement of the shape functions that estimate a mode 

shape. The recursive application of the proposed algorithm allows the estimation of any natural 

frequency and mode shape of the continuum model. The application of the proposed technique is 

illustrated using continuum-parameter rod and beam elements in longitudinal and flexural vibrations, 

respectively. Some characteristics of the speed of convergence and regions of convergence are 

explored. The algorithm shows excellent convergence characteristics. 
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1 INTRODUCTION 

The Finite Element Method (FEM) is the most frequently used technique for modal 

analysis of linear models in structural analysis software. The main reason is that efficient 

computational methods have been developed for the solution of the standard eigenvalue 

problem. The application of conventional FEM and hp-FEM (finite element formulation using 

high order polynomial shape functions) to free vibration of linear structures, leads to 

structural models with finite number of degrees of freedom that satisfy the following 

equations of motion (Clough and Penzien 1993, Chopra 1995): 
 

𝐌 �̈�(t) + 𝐊 𝐪(t) = 𝟎                                                  (1) 
 

The concepts of mesh refinement, adaptive mesh and high order finite element models 

have been covered in the literature and implemented in structural analysis software as 

strategies to improve model accuracy (Babushka and Guo, 1992). Once the discrete model 

mass and stiffness matrix have been computed, the following eigenvalue problem is 

formulated for modal analysis:  

𝐊 𝛗 = −ω2𝐌𝛗                                                       (2) 
 

In Eq. (2) 𝛗 and ω are a mode shape and the corresponding natural frequency of the 

model, respectively. 

Iterative methods are frequently used for natural frequency and mode computation, 

solution of the generalized eigenvalue problem given by Eq. (2). Starting with an initial guess 

vector, 𝐯o , the following sequence is applied: 
 

𝐊 𝐯n+1 = 𝐌𝐯n                                                   (3) 
 

The iterative technique converges to the fundamental mode of vibration of the model as the 

number of iterations increases.  Successive rotations align any random initial vector to the 

mode of vibration with the smallest natural frequency (fundamental mode of vibration). The 

search requires the solution of the linear set of equations indicated in Eq. (3) and the 

normalization of the iteration vector using the Euclidean norm or the norm of the vector in the 

mass matrix. Convergence to higher modes requires the mass orthogonalization of the trial 

vector with respect to lower mode shapes. Power iteration techniques are used usually in 

standard finite-element analysis software packages (Wilson, 2002) usually in combination 

with subspace order reduction (subspace iteration method). Inverse iteration with variable 

shift is also a frequently used technique to accelerate convergence.  

The Rayleigh Quotient Iteration (RQI) has been developed for real symmetric matrices and 

applied to modal analysis of discrete models (Eq. 2). In 1951 Crandall investigated the three 

variants: the original Rayleigh quotient iteration, inverse iteration with fixed shift and 

symmetric RQI (Crandall, 1951; Hodges 1997). At each step of the RQI procedure the trial 

vector is adapted using the updated estimate of natural frequency. RQI produces rotations of 

the trial vector towards the eigenvector whose associated natural frequency (eigenvalue) is 

close to the frequency estimation. 

Another technique that can be used to accelerate convergence along with RQI is the 

following. Given an estimate of a particular natural frequency we can compute estimates of a 

mode of vibration using the dynamic stiffness matrix 𝑫 of the discrete model: 
 

𝐃𝛗 = (𝐊 − ω2𝐌)𝛗 = 𝟎                                                 (2) 
 

The dynamic stiffness matrix and the mode shape can be partitioned as follows: 
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𝐃𝛗 = [
𝐃rr 𝐃rs

𝐃sr 𝐃ss
] [

𝛗r

𝛗s
] =  [

𝟎
𝟎
]                                              (3) 

 

for any partitions of the mode-shape estimate, φr and φs. 

Given φr,  φs can be computed from the solution of the linear set of equations 
 

𝐃𝐬𝐬𝛗s = −𝐃sr𝛗r                                                        (4) 
 

If we set a particular coordinate in the mode shape estimate equal to one, φr = 1, the rest 

of the mode shape vector can be computed using the linear set of equations (Eq. 4). An 

improved estimation of the squared natural frequency can be computed then using the 

Rayleigh Quotient 

𝑅 =
𝛗T𝐊 𝛗

𝛗T𝐌 𝛗
                                                             (5) 

 

Using R as a new estimate of squared frequency, an updated dynamic stiffness matrix can 

be computed to proceed with the computation of an updated mode shape estimate using Eq. 

(3). A convergence criterion based on mode shape rotation in successive steps or natural 

frequency estimates in successive steps can be used to establish convergence. To compute a 

different natural frequency, the algorithm must start with an initial estimate of this natural 

frequency in the dynamic stiffness matrix (Eq. 2). 

The aforementioned techniques are introduced as background because the computational 

method reported herein uses the Rayleigh quotient as the frequency estimation in each step of 

the algorithm in an analogous manner. However, instead of using a weak formulation to 

approximate the solution of the vibration problem with frequency-independent shape 

functions in a finite dimensional configuration space, the mode of vibration is searched in 

evolutionary subspaces generated by trial functions that satisfy the differential equation of the 

mode of vibration. 

If continuum models are used to represent vibrations of structures, displacement fields are 

governed by partial differential equations instead of ordinary differential equations of discrete 

models (Clough and Penzien 1993, Rao 2007). In the case of constant parameter conservative 

models, the computation of natural frequencies using the method of separation of variables 

leads to the solution of a nonlinear eigenvalue problem of the type 
 

𝐁c(ω)𝐜 = 0                                                              (6) 
 

where the square matrix Bc is derived from the boundary conditions of the model (Clough 

and Penzien 1993; Rao 2007; Lee 2009; Inaudi and Matusevich 2006)  and the vector c 

contains the participation coefficients of special displacement fields that satisfy the modal 

differential equation.  Natural frequency computation requires the search of values of 

frequency that make matrix Bc singular.  

An alternative for continuum model analysis is the assembly of the dynamic stiffness 

matrix in the frequency domain (Clough and Penzien 1975; Leung 1983; Preziemienieki 

1985; Yu and Roesset 2001; Lee 2009) . The computational effort to find and compute natural 

frequencies as singularities of the dynamic stiffness matrix or singularities of the boundary 

condition matrix is the main disadvantage of these approaches when compared with standard 

discrete FEM. 

The basic idea in this paper is to compute the Rayleigh quotient in continuum models with 

frequency-dependent shape functions to provide an improved-precision estimation of natural 

frequencies. Rather than using subspaces with fixed basis to approximate the continuum fields 

using a linear combination of trial functions as conventional FEM does, the proposed method 

uses only frequency dependent trial functions parameterized by a frequency variable. At each 

Mecánica Computacional Vol XXXIV, págs. 1459-1477 (2016) 1461

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://en.wikipedia.org/wiki/Hp-FEM#cite_note-0
http://en.wikipedia.org/wiki/Hp-FEM#cite_note-0
http://en.wikipedia.org/wiki/Hp-FEM#cite_note-0
http://en.wikipedia.org/wiki/Hp-FEM#cite_note-0


step, shape functions are updated and the natural frequency estimation is improved using the 

Rayleigh Quotient. The convergence and accuracy of the proposed method is analysed using 

examples of straight rods in longitudinal vibration and beams in flexural vibrations. 

The paper is organized as follows. First, the proposed technique is explained using axial 

vibration of constant parameter rods and beams in flexure as application examples. Next, the 

convergence and regions of convergence of the technique are investigated for continuum 

models containing different number of frequency dependent functions and different boundary 

conditions. Finally, the main results of this piece of research are presented in a discussion and 

a brief conclusion. 

2 RAYLEIGH QUOTIENT ITERATION IN CONTINUUM MODELS 

In this section, the convergence of the proposed iterative procedure for computation of 

natural frequencies using frequency-dependent shape functions is analyzed using continuum 

models with different boundary conditions. The proposed technique is explained using 

application examples of axial vibration of rods and flexural vibration of beams Even though 

the proposed methodology can be extended to other types of continuum models, the analytical 

simplicity of axial vibrations and flexural vibrations of straight frame elements is considered 

convenient for this introductory paper. 

2.1 Longitudinal vibrations of a rod. 

A single bar and two connected bars in axial vibrations are considered. Regions of 

convergence are explored by numerical simulation of the proposed algorithm for a range of 

initial natural frequency estimates. 

 

 

 

 

 

 

 
Figure 1: Continuous model of a rod in longitudinal vibration. 

 

Using the separation of variable method, an analytical expression of the mode shape of a 

clamped-free rod in longitudinal vibration (see Figure 1) is obtained; this expression is used 

as trial function of the Rayleigh Quotient of the continuum model for frequency estimation. 

The axial displacement field of a portion of a rod in free longitudinal vibration is governed 

by the following partial differential equation: 
 

∂

∂x
[EA

∂u(x,t)

∂x
] − ρA

∂2u(x,t)

 ∂x2
= 0                                     (7) 

 

In Eq. (6), (x, t) is the axial displacement field, E and ρ are the Young modulus and mass 

density of the rod material, respectively, and A is the cross-sectional area. In a domain with 

constant parameters, the natural mode of vibration of the rod satisfies 
 

d2φ(x)

 dx2 + 
ω2ρ

E
φ(x) = 0                                             (8) 

 

where φ(x) is a natural mode shape and ω a natural frequency of the structure. The general 

solution of this equation can be expressed as 
 

l 

EA,  

u(x,t) 

x 
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φ(x) = c1  sin (√
ω2ρ

E
x) + c2 cos (√

ω2ρ

E
x)                           (9) 

 

The boundary conditions for the model in Fig. 1 require 
 

φ(0) = 0                                               (10) 

 

EA
dφ

dx
(l) = 0                                             (11) 

 

In standard modal analysis, Eqs. (10) and (1) are expressed as the boundary matrix, Bc, 

times the vector of coefficients, c, as follows: 
 

Bc 𝐜 = [

0 1

EA√
ω2ρ

E
cos (√

ω2ρ

E
l) −EA√

ω2ρ

E
sin (√

ω2ρ

E
l)

] [
c1

c2
] = [

0
0
]              (12) 

 

The computation of natural frequencies requires the search for singularities of Bc as a 

function of 𝜔, The determinant of this matrix set equal to zero provides the characteristic 

equation for a root search: 
 

det(𝐁c) = EA√
ω2ρ

E
cos (√

ω2ρ

E
l) = 0                                (13) 

 

In this case, an analytical expression of natural frequencies can be obtained 
 

ωn√
ρ

E
l = n

π

2
           n = 1,2,3, …                                  (14) 

 

The corresponding modes of vibration can be resolved from Eqs. (9) and (12). In this case, 

letting 𝑐1 = 1, 

φn(x) = sin (√ωn
2ρ

E
x)                                                (15) 

For other boundary conditions or in the case of model including several continuum 

elements, the search of singularities of Bc requires a numerical iterative search because 

analytical expressions cannot be obtained for the singularities. 

Alternatively, let us formulate the problem using frequency dependent interpolating 

functions. The displacement field is expressed as a function of the estimated frequency ω̂  
 

φ(x) = c1ζ1(x) + c2ζ2(x) = c1 sin (√
ω̂2ρ

E
x) + c2cos (√

ω̂2ρ

E
x)               (16) 

 

For the proposed set of frequency-dependent shape functions (Eq. 16), the mass matrix of 

the rod element can be computed as 
 

Mij = ρA ∫ ζi
l

0
(x)ζj(x)dx                                                (17) 

 

Where the shape functions, ζj(x), are defined in Eq. (16). For this model, defining β =

ω̂√
ρ

E
 , the mass matrix can be computed as 
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𝐌e = ρA [

l

2
−

1

4β
sin(2βl)

1−cos2(βl)

2β
 

1−cos2(βl)

2β

2βl+sin2(2βl)

4β

]                                        (18) 

 

Similarly, the element stiffness matrix can be computed as 
 

Kij = EA∫
d

dx
ζi

l

0
(x) 

d

dx
ζj(x)dx                                      (19) 

 

𝐊e = EA [

β2l

2
+

β

4
sin(2βl) −

β

4
(1 − cos(2βl))

−
β

4
(1 − cos(2βl))

β2l

2
−

β

4
sin(2βl)

]                               (20) 

 

From the kinematic boundary condition, first row of Bc in Eq. (12), we can define c2 =0 

and c1 as an arbitrary constant. Thus, we can express the complete 𝒄 vector as a linear 

function of a single coordinate c1 

𝐜 = 𝐋 c1 = [
1
0
]c1                                                             (21) 

 

Therefore, for the single degree of freedom model defined by c1, the Rayleigh quotient can 

be evaluated given an estimate of a particular natural frequency as 
 

R(ω̂n) =
𝐋(ω̂n)T𝐊(ω̂n)𝐋(ω̂n)

𝐋(ω̂n)T𝐌(ω̂n)𝐋(ω̂n)
                                                    (22) 

 

Where L (Eq. 21), 𝐊 =  𝐊e (Eq. 20) and 𝐌 =  𝑴e (Eq. 18) are evaluated as functions of 

the assumed or estimated natural frequency. 

An improved estimate of the natural frequency is obtained as 
 

ω̂n+1 = √R(ω̂n)                                                         (23) 
 

The recursive application of Eqs.(12), (21), (22) and (23) to estimate a specific natural 

frequency and convergence regions of the initial frequency estimate are investigated 

numerically. The following parameters are assumed: 𝐸 = 1, , 𝜌 = 1, 𝐴 = 1. The tolerance 

criterion to define convergence in natural frequency is |ω̂n+1 − ω̂n| < 0.001. Figure 2 shows 

the convergence of the algorithm for several initial estimates of natural frequencies. The x-

axis represents the n-th iteration step and y-axis represents natural frequency estimate in dot 

symbol. The initial natural frequency estimate is presented for 𝑛 = 0.  The exact natural 

frequencies, to which the iteration converges, are presented in continuum horizontal lines. The 

figure shows that for all values of initial estimates, the algorithm converges to a natural 

frequency of the model. The speed of convergence is dependent on the absolute value of the 

difference between the initial estimate and the natural frequency to which the algorithm 

converges. The speed of convergence reduces significantly in the case of initial frequency 

selected close to the boundary of the interval of convergence of a particular natural frequency. 

Figure 3 shows the behavior of the algorithm in one step.  The x-axis shows the value of 

frequency estimate at step n and the y-axis shows the value of the natural frequency estimate 

of the algorithm at step n+1 (solid line). The dashed line corresponds to ω̂n+1 = ω̂n. The o 

symbols represent the natural frequencies of the model. The regions of convergence of initial 

estimates to each natural frequency of the model of the algorithm can be identified in Fig 3; 

the values of frequency for which the solid line intersects the dashed line with positive slope 

define the boundary values for each convergence regions. As the figure shows, there exist 

regions (intervals) of convergence for each natural frequency. Provided the initial estimate of 
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the natural frequency belongs to this convergence interval, the recursive application of the 

algorithm will converge to the corresponding natural frequency with any desired accuracy 

level (fixed point of the algorithm). 
 

 
Figure 2: Convergence of Rayleigh quotient iteration method. Clamped-free rod of parameters: 𝐸 = 1, 𝐴 =

1, 𝜌 = 1, and 𝑙 = 1. 

 

 
Figure 3: One step frequency estimate. Clamped-free rod of parameters: 𝐸 = 1, 𝐴 = 1, 𝜌 = 1, and 𝑙 = 1. 

 

Figure 4 presents, in solid line, the quotient 
�̂�𝑛+1

�̂�𝑛
 as a function of ω̂n. The “o” symbols 

represent the natural frequencies of the model, attraction points or fixed points of the 

algorithm. These are stable points of the algorithm because a small perturbation around this 

value of ω̂n = ωj + ε for j = 1,2,3, …, produces a value of ω̂n+1 closer to a natural frequency, 

ωj. On the other hand, the values of frequency ω̂n of intersection with positive slope of the 
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solid line with the dashed line 
ω̂n+1

ω̂n
= 1 define the boundaries of convergence regions of 

initial estimates. These are unstable points of the algorithm because positive perturbations 

around these values of ω̂n produce values of ω̂n+1 larger than ω̂n, and a negative perturbation 

around these values of ω̂n produce a value of ω̂n+1 even smaller than ω̂n, indicating 

divergence. 
 

 
Figure 4: One step frequency estimate ratio. Clamped-free rod of parameters: 𝐸 = 1, 𝐴 = 1, 𝜌 = 1, and 

𝑙 = 1. x-coordinates of circles (‘o’ symbols) indicate natural frequencies of the model. 

 

The application of a method to a bar in longitudinal vibrations with a fixed support at the 

left end and a linear spring at the other end (𝑥 =  𝑙) is developed. The assumed parameters in 

the numerical example are: 𝐸 = 1, 𝐴 = 1, 𝜌 = 1, 𝑙 = 1 and 𝑘 = 1. For comparison, exact natural 

frequencies are computed from the singularities of the corresponding Bc  matrix: 
 

𝐁c  = [

0 1

EA√
ω2ρ

E
 cos (√

ω2ρ

E
l) + k sin(√

ω2ρ

E
l) −EA√

ω2ρ

E
sin(√

ω2ρ

E
l)+ k cos(√

ω2ρ

E
l)]

        (24) 

 

From the first boundary condition 
 

𝐜 = 𝐋 c1 = [
1
0
]c1                                                             (25) 

 

The mass of the model is defined in Eq. (18). The stiffness matrix associated to coordinates 

c, can be expressed as 
 

𝐊e = EA [

β2l

2
+

β

4
sin(2βl) −

β

4
(1 − cos(2βl))

−
β

4
(1 − cos(2βl))

β2l

2
−

β

4
sin(2βl)

] + k [
sin2(βl) sin(βl) cos (βl)

sin(βl) cos (βl) cos2(βl)
]      (26) 

 

Therefore, the Rayleigh quotient is 
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R =
𝐋T𝐊𝐋

𝐋T𝐌𝐋
= 

EA(
β2l

2
+

β

4
sin(2βl))+ksin(βl)2

ρA(
l

2
−

1

4β
sin(2βl))

                                     (27) 

 

 
Figure 5: Convergence of Rayleigh quotient iteration method for bar with fixed left end and axial spring at 

right end. Parameters: 𝐸 = 1, 𝐴 = 1, 𝜌 = 1, 𝑙 = 1 and 𝑘 = 1. 

 

Figure 5 shows the convergence to the natural frequencies, of the proposed algorithm for 

several initial frequency estimates. Unless the initial estimate is selected very close to the 

boundary of a particular convergence region, the application of four or five steps of the 

proposed algorithm provides a precise estimation of natural frequency and mode shape. As 

the figure shows, the selection of an initial estimate close to the boundary of a convergence 

region may require twelve or more steps to achieve a satisfactory precision. 

In the following another structural model is analyzed, applying the algorithm to a 

clamped-clamped rod. The model in Figure 1 is considered but with both ends fixed. The 

boundary conditions in this case are 
 

φ(0) = 0                                                             (28) 

 

φ(l) = 0                                                             (29) 

Therefore, 
 

𝐁c = [

0 1

sin (√
ω2ρ

E
l) cos (√

ω2ρ

E
l)]                                            (30) 

 

The proposed algorithm requires the use of shape functions that satisfy all geometric 

boundary conditions. Because in this model all boundary conditions are geometric in nature 

(restrained displacement), the selection of either 𝑐1 or 𝑐2 does not allow the satisfaction of all 

geometric boundary conditions. To circumvent this limitation, the model can be conceived as 

two rods of identical properties connected as shown in Figure 6, assuming 𝐸1 = 𝐸2, 𝐴1 =
 𝐴2, , 𝜌1 = 𝜌2, and 𝑙1 + 𝑙2 =  1. The order of the model augments but the boundary conditions 
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now include both geometric and natural boundary conditions, allowing the application of the 

algorithm. 

 

 

 

 

 

 
Figure 6: Continuous model of a rod in longitudinal vibration. 

  

As an additional example, this section focuses in the application of proposed algorithm to a 

structural model consisting of more than one element: two straight bars connected to each 

other and fixed at left and right ends, respectively. The properties of each bar can be identical 

or different. In this example, the model requires the consideration of two shape functions for 

each element and four coefficients in vector 𝒄. 

The solution of this equation in each subdomain 𝑗 of the rod with constant parameters can 

be expressed as: 
 

φj(xj) = cj1 sin (√
ω2ρj

Ej
xj) + cj2 cos (√

ω2ρj

Ej
xj)                           (31) 

 

The boundary conditions for the model in Figure 6 are 

 

φ1(0) = 0                                            (32) 

 

φ2(l2) = 0                                            (33) 

 

φ1(l1) − φ2(0) = 0                                            (34) 

 

E1A1
d

dx
φ1(l1) − E2A2  

d

dx
φ2(0) = 0                                            (35) 

 

The assembly of the corresponding boundary condition matrix for this model leads to 
 

𝐁c 𝐜 =

[
 
 
 
 
 
 
 0 1

0 0

           0 0

            sin (√
ω2ρ2

E2
l2) cos (√

ω2ρ2

E2
l2)

sin (√
ω2ρ1

E1
l1) cos (√

ω2ρ1

E1
l1)

A1√
ω2ρ1

E1
cos (√

ω2ρ1

E1
l1) −E1A1√

ω2ρ1

E1
sin (√

ω2ρ1

E1
l1) E1

           0 1

             E2A2√
ω2ρ2

E2
0

]
 
 
 
 
 
 
 

[

𝑐11

𝑐12
𝑐21

𝑐22

] = 𝟎    (36) 

 

The values of ω that make singular this boundary condition matrix Bc are the natural 

frequencies of the model.  To apply the Rayleigh Quotient iteration method to search for a 

particular natural frequency, we select c11 as degree of freedom, 
 

𝐜 =  𝐋 c11                                                            (37) 
 

and express vector 𝒄, using the geometric boundary conditions (rows 1 through 3 in Eq. 

36), 
 

l1 l2 

1(x1) 

2(x2) x1 

x2 
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     𝐋 = −

[
 
 
 
 
 1 0 0

0 sin (√
ω̂2ρ2

E2
l2) cos (√

ω̂2ρ2

E2
l2)

cos (√
ω̂2ρ1

E1
l1) 0 1

]
 
 
 
 
 
−1

[
 
 
 

0
0

sin (√
ω̂2ρ1

E1
l1)

]
 
 
 
          (38) 

 

The Rayleigh quotient for the model can be computed using Eqs. (22) and (23), with 

matrix L given by Eq. (38) and the assembled mass and stiffness matrices for the model 
 

         𝐌 = [
𝐌1 𝐎
𝐎 𝐌2

]                𝐊 = [
𝐊1 𝐎
𝐎 𝐊2

]                                      (39)                                                                             

 

In Eq. (39), 𝐌1 and 𝐌2 are the mass matrices of elements 1 and 2, respectively, that can be 

computed with Eq. (18) using the length, cross sectional area and density of each element. 𝐊1 

and 𝐊2 are the stiffness matrices of elements 1 and 2, respectively, that can be computed 

using Eq. (20) using the corresponding element properties.  

Once convergence has been achieved to a particular natural frequency and taking the 

selected degree of freedom with a unit value (Eq. 37), the corresponding mode of vibration is 

determined by the coefficients that represent the displacement field (Eq. 9 with parameters 𝐸, 

𝐴, 𝜌 and 𝑙 of the corresponding element), elements of vector L. 

 
Figure 7: Continuous model of a two connected rods in longitudinal vibration. Model fixed in left and right 

ends. Parameters: 𝐸1 = 2, 𝐸2 = 1, 𝐴1 = 1, 𝐴2 = 10, , 𝜌1 = 𝜌2 = 1  𝑙1 = 𝑙2 = 0.5. 
 

To analyze the constant parameter fixed-fixed bar, the following parameters are assumed:  

𝐸1 = 𝐸2 = 1, 𝐴1 =  𝐴2 = 1, , 𝜌1 = 𝜌2 = 1, and 𝑙1 = 𝑙2 =  0.5. The algorithm converges to 

natural frequencies, but not to all natural frequencies. Only odd numbered frequencies are 

estimated (𝜔1, 𝜔3,…), even though random initial estimates close to even numbered 

frequencies are considered. This is the first case in which the proposed algorithm shows 

convergence problems in this investigation. This problem was not solved changing the 𝑐 

coefficient defined as master degree of freedom for the computation of L; other selections 

provided the same results: convergence to symmetric modes of the model was obtained (𝜔1, 

𝜔3,…),, but anti-symmetric modes were not detected by the algorithm (𝜔2, 𝜔4,…),. The 

condition of equal length bar elements was modified to analyze the behavior of the proposed 

algorithm. Using 𝑙1  = 0.3𝑙 and 𝑙2  = 0.7𝑙 or any other pair of lengths summing the total 
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length 𝑙,  both symmetric and anti-symmetric modes were computed by the algorithm. 

To analyze the convergence of the Rayleigh quotient algorithm in a new study case with 

different material properties and sections of the connected bars (see Figure 6), we consider the 

following parameters, 𝐸1 = 2, 𝐸2 = 1, 𝐴1 = 1, 𝐴2 = 10, , 𝜌1 = 𝜌2 = 1  𝑙1 = 𝑙2 = 0.5. The 

tolerance criterion selected to define convergence to natural frequency is |ω̂n+1 − ω̂n| <
0.001. As Figure 7 shows, the application of the algorithm converges to estimates of natural 

frequencies; the computed natural frequencies showed in ‘o’ symbol are precisely the roots of 

the determinant of the boundary matrix presented in solid line.  

The algorithm shows convergence to all natural frequencies, provided the initial frequency 

guess belongs to the region of convergence that includes the fixed point of the sequence 

(natural frequency of interest). 

2.2 Beam element in flexural vibrations. 

In this section, the application of the proposed technique to beam vibrations is considered 

briefly. The idea is to prove that the proposed algorithm can be applied to other types of 

continuum models. The transverse displacement field for a mode of vibration of a piece of 

beam element can be estimated as  

𝜑𝑗(𝑥) = 𝑐𝑗1 𝑠𝑖𝑛(𝑎 𝑥) + 𝑐𝑗2 𝑐𝑜𝑠(𝑎𝑥) + 𝑐𝑗3 𝑠𝑖𝑛ℎ(𝑎𝑥) + 𝑐𝑗4 𝑐𝑜𝑠ℎ(𝑎𝑥)    = 𝐿𝑗(𝑥)𝑟𝑗         (40) 

𝑎 = √
�̂�𝑖

2𝜌𝑗𝐴𝑗

𝐸𝑗𝐼𝑗

4

                                                                           (41) 

In Eq. (41), ω̂i is the estimate of the i-th natural frequency of the model included in the 

proposed formulation. The assumed frequency-dependent functions correspond to the exact 

mode shapes of constant parameter Bernoulli beams in flexure (Clough and Penzien, 1975). 

The computation of mass and stiffness matrices associated to vector c can be obtained 

analytically using the corresponding integral expressions. Appendix I shows the stiffness and 

mass matrices of a beam element associated to the generalized coordinates 𝒄 (interpolation 

defined in Eq. (40)). 

In the application of the proposed technique to frame structures, the continuity of 

transverse displacements and rotations are enforced imposing adequate conditions on the 

displacement field and rotation fields (first derivative of displacement field) at the boundaries 

of adjacent elements. Additional constraints are imposed by structural boundary conditions in 

terms of displacements, rotations, and or moment and shear equilibrium at both ends, to form 

the corresponding rows to the boundary condition matrix 𝐁c. 

 

 

 

Figure 8: Simply supported beam in flexural vibration. 

In an analogous way, as in the case of bars in longitudinal vibrations, the iterative 

computation of a natural frequency from an initial estimate can be performed using the 

𝑢𝑦(𝑥, 𝑡) 

l 

𝜌𝐴 𝐸𝐼 
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Rayleigh quotient algorithm presented in Eqs. (21) and (22) computing 𝐋 vector from the 

boundary condition matrix evaluated at the frequency estimate at each algorithm step. 

Consider as an application example, the simple supported beam shown in Figure 8. The 

parameters are 𝐸 = Young modulus, 𝐴 = cross sectional area, 𝜌 = mass density, 𝐼 = second 

moment of inertia of the cross section, and 𝑙 = length of the beam. 

In this model, the boundary conditions are 

𝜑(0) = 0                                                             (42) 

𝜑(𝑙) = 0                                                             (43) 

𝐸𝐼𝜑′′(0) = 0                                                             (44) 

𝐸𝐼𝜑′′(𝑙) = 0                                                            (45) 

For brevity, the expression of the corresponding four by four boundary condition matrix is 

omitted. The parameters were selected as 𝐸 = 1, 𝐴 = 1, 𝜌 = 1, 𝑙 = 1 and 𝐼 = 1.  Selecting 

𝑐1 as degree of freedom and using the first three boundary conditions for the computation of 𝑳 

vector, the proposed method is applied starting in a range of random initial estimates of 

natural frequency in the interval [0 40]. For all initial estimates the convergence is correct to 

the first two natural frequencies included in the interval, as shown in Figure 9 (frequencies 

estimated by the application of the proposed algorithm are shown in ‘o’ symbols). The solid 

line is the value of the determinant of the boundary condition matrix as a function of 

frequency. 

 

Figure 9: Convergence to natural frequencies of a pinned-pinned beam model.                                                               

Parameters: E=1, A=1, =1, l=1 and I =1. 
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    Consider now a clamped-clamped beam. Because in this case all four boundary conditions 

are kinematic if a single beam element is used, the proposed method cannot be applied 

because there are no natural boundary conditions to neglect to solve for 𝐋 vector. To 

circumvent this problem a two-element model is created for the frequency search as shown in 

Figure 10 in an analogous way as that followed in the case of a bar in longitudinal vibration. 

The mode shape is expressed by two functions, φ1(x1) and φ2(x2), according to the four 

coordinate model given in Eq. (40) for each subdomain with lengths 𝑙1 = 𝑙2 = 𝑙/2. 

 

 

 

Figure 10: Clamped-clamped beam. 

The corresponding eight boundary conditions are:  

𝜑1(0) = 0                                                               (46) 

𝜑1
′ (0) = 0                                                               (47) 

𝜑2(𝑙/2) = 0                                                               (48) 

𝜑2
′ (𝑙/2) = 0                                                               (49) 

𝜑1(𝑙/2) − 𝜑2(0) = 0                                                               (50) 

𝜑1
′ (𝑙/2) − 𝜑2

′ (𝑙/2) = 0                                                               (51) 

𝐸𝐼𝜑1
′′(𝑙/1) − 𝐸𝐼𝜑2

′′(0) = 0                                                               (52) 

𝐸𝐼𝜑1
′′′(𝑙/2) − 𝐸𝐼𝜑2

′′′(0) = 0                                                              (53) 

In these equations, the prime indicates differentiation with respect to 𝑥. Selecting 𝑐3 of the 

left element as degree of freedom, and neglecting the shear continuity boundary condition Eq. 

(53) from the boundary matrix to compute 𝐋, the natural frequencies are estimated from 

random initial estimates in the interval [0 120] and parameters 𝐸 = 1, 𝐴 = 1, 𝜌 = 1; 𝑙 = 2 

(𝑙1 = 1, 𝑙2=1) and 𝐼 = 1. The algorithm converges, but not to every natural frequency. Only 

odd numbered frequencies are estimated (𝜔1, 𝜔3 …), even though random initial estimates 

close to even-numbered frequencies are considered. This is the same situation observed in the 

(x1) 

l 

EI A 

x1 x2 l1 l2 

(x2) 

EI A 

𝑢1(𝑥1, 𝑡) 𝑢2(𝑥2, 𝑡) 
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case of a fixed-fixed bar in longitudinal vibrations. Again, this problem was not solved 

changing the selected 𝑐 coefficient for the computation of 𝐋. Other selections provided the 

same results: convergence to symmetric modes of the model was obtained (𝜔1, 𝜔3 …), but 

anti-symmetric modes were not detected by the algorithm 𝜔2, 𝜔4 …). The condition of equal 

length beam elements was modified to analyze the behavior of the proposed algorithm. Using 

𝑙1  = 0.3𝑙 , 𝑙2 = 0.7𝑙, and the same parameters of the beam elements, both symmetric and 

anti-symmetric modes were computed by the algorithm 

As the previous example shows, the proposed algorithm may show lack of convergence to 

certain frequencies in special parameter cases. The symmetry of the model and mode shapes 

seems to be the cause of this lack of convergence. This conjecture requires in deep 

investigation to be proved true. Although special cases may be found, the use of non-

symmetric models with random subdomains lengths may guarantee convergence of the 

algorithm to all natural frequencies. This concept and the convenience in terms of 

convergence properties of refined mesh models of the continuum models require further 

research to be pursued in the future. 

3 IMPLEMENTATION OF THE ALGORITHM 

As all application examples illustrate, the RQ algorithm converges for any initial natural 

frequency estimate. The implementation of the proposed method requires (at each iteration): 

- An estimate of natural frequency, ω̂n 

- Assembly of mass and stiffness matrices of each continuous element 

- The assembly of 𝐁c, 𝑁Bc
× 𝑁Bc

 matrix, where NBc
  is the number of coefficients used 

in the continuum-model formulation. 

- The selection of 𝑁𝐵𝑐
− 1 rows of 𝐁𝑐 that include all geometric boundary conditions 

- The selection of one degree of freedom of the discrete model (a coefficient 𝑐𝑗 that is 

selected equal to 1) 

- The computation of the L vector that relates the selected degree of freedom with all 

the generalized coordinates of the model (vector 𝒄) computed from the linear relation 

imposed by matrix 𝐁𝑐. 

- The assembly of mass and stiffness matrices for all generalized c-coordinates at the 

structure level 

- The computation of 𝐋𝐓𝐊 𝐋 and 𝐋𝐓𝐌 𝐋 to compute the updated Rayleigh quotient, 

𝑅(�̂�𝑛) =
𝐋(ω̂n)𝐓𝐊(ω̂n)𝐋(ω̂n)

𝐋(ω̂n)𝐓𝐌(ω̂n)𝐋(ω̂n)
 

- The computation of the updated frequency estimate ω̂n+1 as the square root of the 

Rayleigh quotient, ω̂n+1 = √R(ω̂n). 
- The verification of convergence to a natural frequency and mode shape or the need of 

applying an additional iteration. The convergence of the recurrent application of this 

procedure to a natural frequency can be detected by using an adequate tolerance in the 

norm of the difference between two successive frequency estimates or other 

convergence criterion using the estimated mode shape at two successive iteration 

steps; for example, the angle between mode estimates at two consecutive steps. 
 

An initial estimate of natural frequency is needed to evaluate frequency-dependent shape 

functions at start. This estimate can be obtained with a conventional FEM model or other 

methods. It is worth noting that the computation of mass and stiffness matrices must be 

updated at each iteration step, to estimate the natural frequency from the Rayleigh quotient. 

Matrix 𝐁𝒄 is also updated at each iteration step, and the computation of vector 𝐋 (representing 
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the estimate of natural mode of vibration) requires the solution of a linear set of equations at 

each iteration step.  

The linear set of equations to be solved is of order 𝑁𝐵𝑐
− 1. For example, in a constant 

parameter beam element in planar flexural vibration, 4 coefficients are required. If the model 

includes 𝑁𝑒 frame elements in planar vibration, 𝑁𝐵𝑐
= 4𝑁𝑒. A beam element with flexural 

vibrations in two orthogonal planes, axial vibration and torsional vibration, includes 4 + 4 +
2 + 2 =  12 generalized coordinates per element, therefore a structure model with 𝑁𝑒 three-

dimensional beam elements, would require a boundary condition matrix of size 12𝑁𝑒 × 12𝑁𝑒 . 

In the case of frame or truss structures with arbitrary geometry, additional parameters (such 

as nodal displacements) can be added to the 𝐜 vector with its corresponding kinematic 

condition (Matusevich et al., 2008), leading to a larger 𝐵𝒄. This matrix will allow the 

computation of any number of natural frequencies and mode shapes and would provide exact 

values of these frequencies of the continuum model. The assembly of mass and stiffness 

matrices associated to the frequency-dependent shape functions for each class of element is 

required to compute the Rayleigh quotient at each iteration. This procedure can be 

programmed to automate the proposed algorithm for the modal analysis of any structure 

composed by continuum parameter model elements. 

The proposed method is an efficient alternative for exact natural frequency computation of 

continuum models suitable for parallel processing because each frequency search can be 

started simultaneously and dos not require any information of other natural frequencies or 

mode shapes. The method can estimated any number of natural frequencies and mode shapes 

without mesh refinement and is a stable convergent algorithm for any frequency. 

4 CONCLUSIONS 

The application of the Rayleigh quotient for the iterative computation of natural 

frequencies and mode shapes of continuum models has been presented. The method uses 

frequency-dependent shape functions resulting from classical modal analysis obtained from 

separation of variables method applied to the partial differential equations governing each part 

of the model structure. The use of all but one linear boundary conditions of the continuum 

model that include all geometric boundary conditions, allows the expression of all modal 

components coordinates as a function of a single degree of freedom (one of the generalized 

coordinates used in the continuum model). Given a frequency estimate, an improved 

estimation of a natural frequency is computed by the square root of the Rayleigh quotient. The 

method computes a single frequency at a time and does not require mesh adaptation although 

it does require an iterative computation of mass and stiffness matrices and the mode update 

given by the computation of vector L, because shape functions are adjusted as a function of 

natural frequency estimations done in the previous step. The initial estimations can be 

provided by a conventional low order FEM model with a regular mesh or other approximate 

methods. 

The proposed method estimates natural frequencies efficiently up to any desired degree of 

accuracy in low and high frequencies, using a small mesh of continuum elements. 

To illustrate the proposed method the methodology has been applied to rod elements in 

axial vibration and beam elements in flexural vibration. Using these examples, convergence to 

exact values has been demonstrated. The results show that the proposed method is an efficient 

alternative for exact natural frequency computation of continuum models suitable for parallel 

processing. One of the most convenient features of the proposed method is the possibility of 

estimating any number of natural frequencies and mode shapes without mesh refinement and 

using a stable convergent algorithm suitable for parallel processing. 
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Although the method has been presented for the analysis of structures with a few rod 

and/or frame elements, the method can be applied in an analogous manner to modal analysis 

of other types of elements and structures consisting of a large number of continuum elements. 

This extension of the method, the analysis of the speed of convergence and accuracy of the 

proposed adaptive method in the estimation of natural frequencies, and the conditions of lack 

of convergence to particular frequencies in certain models are aspects that require additional 

investigation that will be pursued by the author in future research work.  
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APPENDIX I. Stiffness and mass matrix of beam elements in c coordinates. 

The analytical expressions of the stiffness 𝐊e and mass 𝐌𝑒 matrices for a continuum 

constant parameter Bernoulli beam element model with 𝐜 coordinates are included in this 

appendix.  

𝐊𝑒 = [

𝑘𝑠𝑠 𝑘𝑐𝑠

𝑘𝑐𝑠 𝑘𝑐𝑐

  𝑘𝑠𝑠ℎ 𝑘𝑠𝑐ℎ

  𝑘𝑐𝑠ℎ 𝑘𝑐𝑐ℎ

𝑘𝑠𝑠ℎ 𝑘𝑐𝑠ℎ

𝑘𝑠𝑐ℎ 𝑘𝑐𝑐ℎ

  𝑘𝑠ℎ𝑠ℎ 𝑘𝑐ℎ𝑠ℎ

  𝑘𝑠𝑐ℎ𝑠ℎ 𝑘𝑐ℎ𝑐ℎ

]                                            (I.1) 

𝑎 = √
�̂�𝒊

𝟐𝝆𝒋𝑨𝒋

𝑬𝒋𝑰𝒋

𝟒

                      (I.2) 

 

𝑘𝑠𝑠 = 𝐸𝐼𝑎4(
𝑥

2
− sin(2𝑎𝑥)/(4𝑎))|0

𝑙                  (I.3) 

 

𝑘𝑐𝑐 = 𝐸𝐼𝑎4(2a𝑥 + sin(2𝑎𝑥)/(4𝑎))|0
𝑙             (I.4) 

 

𝑘𝑐ℎ𝑐ℎ = 𝐸𝐼𝑎4 1

4a
(sinh(2𝑎𝑥) + 2a𝑥)|0

𝑙             (I.5) 

 

𝑘𝑐ℎ𝑠ℎ = 𝐸𝐼𝑎4 
1

2a
cosh(2𝑎𝑥)2|0

𝑙           (I.6) 

 

𝑘𝑠ℎ𝑠ℎ = 𝐸𝐼𝑎4 1

4a
(sinh(2𝑎𝑥) − 2a𝑥)|0

𝑙           (I.7) 

 

𝑘𝑐𝑠 = 𝐸𝐼𝑎4 (−
1

2𝑎 
)cos(𝑎𝑥)2|0

𝑙           (I.8) 

 

𝑘𝑐𝑐ℎ = 𝐸𝐼𝑎4 1

4a

1

2a
(cos(𝑎𝑥) sinh(ax) + sin(ax) cosh(ax))|0

𝑙       (I.9) 

 

𝑘𝑐𝑠ℎ = 𝐸𝐼𝑎4 1

4a

1

2a
(sin(𝑎𝑥) sinh(ax) + cos(ax) cosh(ax))|0

𝑙        (I.10) 

 

𝑘𝑠𝑐ℎ = 𝐸𝐼𝑎4 1

4a

1

2a
(sin(𝑎𝑥) sinh(ax) − cos(ax) cosh(ax))|0

𝑙       (I.11) 

 

𝑘𝑠𝑠ℎ = 𝐸𝐼𝑎4 1

2a
(sin(𝑎𝑥) cosh(ax) − cos(ax) sinh(ax))|0

𝑙       (I.12) 
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𝐌𝑒 = [

𝑚𝑠𝑠 𝑚𝑐𝑠

𝑚𝑐𝑠 𝑚𝑐𝑐

  𝑚𝑠𝑠ℎ 𝑚𝑠𝑐ℎ

  𝑚𝑐𝑠ℎ 𝑚𝑐𝑐ℎ
     𝑚𝑠𝑠ℎ 𝑚𝑐𝑠ℎ

   𝑚𝑠𝑐ℎ 𝑚𝑐𝑐ℎ

  𝑚𝑠ℎ𝑠ℎ 𝑚𝑐ℎ𝑠ℎ

  𝑚𝑠𝑐ℎ𝑠ℎ 𝑚𝑐ℎ𝑐ℎ

]                                       (I.13) 

 

𝑚𝑐𝑐 =
𝜌𝐴

4𝑎
 (2a𝑥 + sin(2𝑎𝑥)/(4𝑎))|0

𝑙          (I.14) 

 

𝑚𝑠𝑠 = 𝜌𝐴 (
𝑥

2
− sin(2𝑎𝑥)/(4𝑎))|0

𝑙                (I.15) 

𝑚𝑐ℎ𝑐ℎ = 𝜌𝐴
1

4𝑎
(sin(2𝑎𝑥) + 2𝑎𝑥)|0

𝑙          (I.16) 

 

𝑚𝑠ℎ𝑠ℎ = 𝜌𝐴
1

4𝑎
(sinh(2𝑎𝑥) − 2𝑎𝑥)|0

𝑙          (I.16) 

 

𝑚𝑐𝑐ℎ = 𝜌𝐴
1

2𝑎
(cos(𝑎𝑥) sinh(ax) + sin(ax) cosh (𝑎𝑥))|0

𝑙         (I.17) 

 

𝑚𝑠𝑐ℎ = 𝜌𝐴
1

2𝑎
(sin(𝑎𝑥) sinh(ax) − cos(ax) cosh (𝑎𝑥))|0

𝑙         (I.18) 

 

𝑚𝑐𝑠 = 𝜌𝐴 
−1

2a
cos(𝑎𝑥)2|0

𝑙           (I.19) 

 

𝑚𝑐ℎ𝑠ℎ = 𝜌𝐴 
1

2a
cosh(𝑎𝑥)2|0

𝑙           (I.20) 

 

𝑚𝑠𝑠ℎ = 𝜌𝐴
1

2𝑎
(sin(𝑎𝑥) cosh(ax) − cos(ax) sinh (𝑎𝑥))|0

𝑙         (I.21) 

 

𝑚𝑐𝑠ℎ = 𝜌𝐴
1

2𝑎
(sin(𝑎𝑥) sinh(ax) + cos(ax) cosh (𝑎𝑥))|0

𝑙         (I.22) 
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